mirror of
https://github.com/hwchase17/langchain
synced 2024-11-04 06:00:26 +00:00
163 lines
5.3 KiB
Python
163 lines
5.3 KiB
Python
|
import base64
|
||
|
import itertools
|
||
|
import json
|
||
|
import re
|
||
|
from pathlib import Path
|
||
|
from typing import Dict, List, Type
|
||
|
|
||
|
import requests
|
||
|
from langchain_core.pydantic_v1 import BaseModel, Field
|
||
|
|
||
|
from langchain_community.tools import Tool
|
||
|
|
||
|
|
||
|
def strip_markdown_code(md_string: str) -> str:
|
||
|
"""Strip markdown code from a string."""
|
||
|
stripped_string = re.sub(r"^`{1,3}.*?\n", "", md_string, flags=re.DOTALL)
|
||
|
stripped_string = re.sub(r"`{1,3}$", "", stripped_string)
|
||
|
return stripped_string
|
||
|
|
||
|
|
||
|
def head_file(path: str, n: int) -> List[str]:
|
||
|
"""Get the first n lines of a file."""
|
||
|
try:
|
||
|
with open(path, "r") as f:
|
||
|
return [str(line) for line in itertools.islice(f, n)]
|
||
|
except Exception:
|
||
|
return []
|
||
|
|
||
|
|
||
|
def file_to_base64(path: str) -> str:
|
||
|
"""Convert a file to base64."""
|
||
|
with open(path, "rb") as f:
|
||
|
return base64.b64encode(f.read()).decode()
|
||
|
|
||
|
|
||
|
class BearlyInterpreterToolArguments(BaseModel):
|
||
|
"""Arguments for the BearlyInterpreterTool."""
|
||
|
|
||
|
python_code: str = Field(
|
||
|
...,
|
||
|
example="print('Hello World')",
|
||
|
description=(
|
||
|
"The pure python script to be evaluated. "
|
||
|
"The contents will be in main.py. "
|
||
|
"It should not be in markdown format."
|
||
|
),
|
||
|
)
|
||
|
|
||
|
|
||
|
base_description = """Evaluates python code in a sandbox environment. \
|
||
|
The environment resets on every execution. \
|
||
|
You must send the whole script every time and print your outputs. \
|
||
|
Script should be pure python code that can be evaluated. \
|
||
|
It should be in python format NOT markdown. \
|
||
|
The code should NOT be wrapped in backticks. \
|
||
|
All python packages including requests, matplotlib, scipy, numpy, pandas, \
|
||
|
etc are available. \
|
||
|
If you have any files outputted write them to "output/" relative to the execution \
|
||
|
path. Output can only be read from the directory, stdout, and stdin. \
|
||
|
Do not use things like plot.show() as it will \
|
||
|
not work instead write them out `output/` and a link to the file will be returned. \
|
||
|
print() any output and results so you can capture the output."""
|
||
|
|
||
|
|
||
|
class FileInfo(BaseModel):
|
||
|
"""Information about a file to be uploaded."""
|
||
|
|
||
|
source_path: str
|
||
|
description: str
|
||
|
target_path: str
|
||
|
|
||
|
|
||
|
class BearlyInterpreterTool:
|
||
|
"""Tool for evaluating python code in a sandbox environment."""
|
||
|
|
||
|
api_key: str
|
||
|
endpoint = "https://exec.bearly.ai/v1/interpreter"
|
||
|
name = "bearly_interpreter"
|
||
|
args_schema: Type[BaseModel] = BearlyInterpreterToolArguments
|
||
|
files: Dict[str, FileInfo] = {}
|
||
|
|
||
|
def __init__(self, api_key: str):
|
||
|
self.api_key = api_key
|
||
|
|
||
|
@property
|
||
|
def file_description(self) -> str:
|
||
|
if len(self.files) == 0:
|
||
|
return ""
|
||
|
lines = ["The following files available in the evaluation environment:"]
|
||
|
for target_path, file_info in self.files.items():
|
||
|
peek_content = head_file(file_info.source_path, 4)
|
||
|
lines.append(
|
||
|
f"- path: `{target_path}` \n first four lines: {peek_content}"
|
||
|
f" \n description: `{file_info.description}`"
|
||
|
)
|
||
|
return "\n".join(lines)
|
||
|
|
||
|
@property
|
||
|
def description(self) -> str:
|
||
|
return (base_description + "\n\n" + self.file_description).strip()
|
||
|
|
||
|
def make_input_files(self) -> List[dict]:
|
||
|
files = []
|
||
|
for target_path, file_info in self.files.items():
|
||
|
files.append(
|
||
|
{
|
||
|
"pathname": target_path,
|
||
|
"contentsBasesixtyfour": file_to_base64(file_info.source_path),
|
||
|
}
|
||
|
)
|
||
|
return files
|
||
|
|
||
|
def _run(self, python_code: str) -> dict:
|
||
|
script = strip_markdown_code(python_code)
|
||
|
resp = requests.post(
|
||
|
"https://exec.bearly.ai/v1/interpreter",
|
||
|
data=json.dumps(
|
||
|
{
|
||
|
"fileContents": script,
|
||
|
"inputFiles": self.make_input_files(),
|
||
|
"outputDir": "output/",
|
||
|
"outputAsLinks": True,
|
||
|
}
|
||
|
),
|
||
|
headers={"Authorization": self.api_key},
|
||
|
).json()
|
||
|
return {
|
||
|
"stdout": base64.b64decode(resp["stdoutBasesixtyfour"]).decode()
|
||
|
if resp["stdoutBasesixtyfour"]
|
||
|
else "",
|
||
|
"stderr": base64.b64decode(resp["stderrBasesixtyfour"]).decode()
|
||
|
if resp["stderrBasesixtyfour"]
|
||
|
else "",
|
||
|
"fileLinks": resp["fileLinks"],
|
||
|
"exitCode": resp["exitCode"],
|
||
|
}
|
||
|
|
||
|
async def _arun(self, query: str) -> str:
|
||
|
"""Use the tool asynchronously."""
|
||
|
raise NotImplementedError("custom_search does not support async")
|
||
|
|
||
|
def add_file(self, source_path: str, target_path: str, description: str) -> None:
|
||
|
if target_path in self.files:
|
||
|
raise ValueError("target_path already exists")
|
||
|
if not Path(source_path).exists():
|
||
|
raise ValueError("source_path does not exist")
|
||
|
self.files[target_path] = FileInfo(
|
||
|
target_path=target_path, source_path=source_path, description=description
|
||
|
)
|
||
|
|
||
|
def clear_files(self) -> None:
|
||
|
self.files = {}
|
||
|
|
||
|
# TODO: this is because we can't have a dynamic description
|
||
|
# because of the base pydantic class
|
||
|
def as_tool(self) -> Tool:
|
||
|
return Tool.from_function(
|
||
|
func=self._run,
|
||
|
name=self.name,
|
||
|
description=self.description,
|
||
|
args_schema=self.args_schema,
|
||
|
)
|