langchain/tests/unit_tests/chains/test_hyde.py

63 lines
1.9 KiB
Python
Raw Normal View History

"""Test HyDE."""
from typing import List, Optional
import numpy as np
from pydantic import BaseModel
from langchain.chains.hyde.base import HypotheticalDocumentEmbedder
from langchain.chains.hyde.prompts import PROMPT_MAP
from langchain.embeddings.base import Embeddings
from langchain.llms.base import BaseLLM
from langchain.schema import Generation, LLMResult
class FakeEmbeddings(Embeddings):
"""Fake embedding class for tests."""
def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Return random floats."""
return [list(np.random.uniform(0, 1, 10)) for _ in range(10)]
def embed_query(self, text: str) -> List[float]:
"""Return random floats."""
return list(np.random.uniform(0, 1, 10))
class FakeLLM(BaseLLM, BaseModel):
"""Fake LLM wrapper for testing purposes."""
n: int = 1
def _generate(
self, prompts: List[str], stop: Optional[List[str]] = None
) -> LLMResult:
return LLMResult(generations=[[Generation(text="foo") for _ in range(self.n)]])
async def _agenerate(
self, prompts: List[str], stop: Optional[List[str]] = None
) -> LLMResult:
return LLMResult(generations=[[Generation(text="foo") for _ in range(self.n)]])
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "fake"
def test_hyde_from_llm() -> None:
"""Test loading HyDE from all prompts."""
for key in PROMPT_MAP:
embedding = HypotheticalDocumentEmbedder.from_llm(
FakeLLM(), FakeEmbeddings(), key
)
embedding.embed_query("foo")
def test_hyde_from_llm_with_multiple_n() -> None:
"""Test loading HyDE from all prompts."""
for key in PROMPT_MAP:
embedding = HypotheticalDocumentEmbedder.from_llm(
FakeLLM(n=8), FakeEmbeddings(), key
)
embedding.embed_query("foo")