2023-10-26 01:47:42 +00:00
|
|
|
import os
|
|
|
|
|
|
|
|
import cassio
|
|
|
|
from langchain.chat_models import ChatOpenAI
|
|
|
|
from langchain.embeddings import OpenAIEmbeddings
|
|
|
|
from langchain.prompts import ChatPromptTemplate
|
|
|
|
from langchain.schema.output_parser import StrOutputParser
|
2023-10-27 02:44:30 +00:00
|
|
|
from langchain.schema.runnable import RunnablePassthrough
|
|
|
|
from langchain.vectorstores import Cassandra
|
2023-10-26 01:47:42 +00:00
|
|
|
|
|
|
|
use_cassandra = int(os.environ.get("USE_CASSANDRA_CLUSTER", "0"))
|
|
|
|
if use_cassandra:
|
|
|
|
from .cassandra_cluster_init import get_cassandra_connection
|
|
|
|
session, keyspace = get_cassandra_connection()
|
|
|
|
cassio.init(
|
|
|
|
session=session,
|
|
|
|
keyspace=keyspace,
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
cassio.init(
|
|
|
|
token=os.environ["ASTRA_DB_APPLICATION_TOKEN"],
|
|
|
|
database_id=os.environ["ASTRA_DB_ID"],
|
|
|
|
keyspace=os.environ.get("ASTRA_DB_KEYSPACE"),
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
# inits
|
|
|
|
llm = ChatOpenAI()
|
|
|
|
embeddings = OpenAIEmbeddings()
|
|
|
|
vector_store = Cassandra(
|
|
|
|
session=None,
|
|
|
|
keyspace=None,
|
|
|
|
embedding=embeddings,
|
|
|
|
table_name="langserve_rag_demo",
|
|
|
|
)
|
|
|
|
retriever = vector_store.as_retriever(search_kwargs={'k': 3})
|
|
|
|
|
|
|
|
entomology_template = """
|
|
|
|
You are an expert entomologist, tasked with answering enthusiast biologists' questions.
|
|
|
|
You must answer based only on the provided context, do not make up any fact.
|
|
|
|
Your answers must be concise and to the point, but strive to provide scientific details
|
|
|
|
(such as family, order, Latin names, and so on when appropriate).
|
|
|
|
You MUST refuse to answer questions on other topics than entomology,
|
|
|
|
as well as questions whose answer is not found in the provided context.
|
|
|
|
|
|
|
|
CONTEXT:
|
|
|
|
{context}
|
|
|
|
|
|
|
|
QUESTION: {question}
|
|
|
|
|
|
|
|
YOUR ANSWER:"""
|
|
|
|
|
|
|
|
entomology_prompt = ChatPromptTemplate.from_template(entomology_template)
|
|
|
|
|
|
|
|
chain = (
|
|
|
|
{"context": retriever, "question": RunnablePassthrough()}
|
|
|
|
| entomology_prompt
|
|
|
|
| llm
|
|
|
|
| StrOutputParser()
|
|
|
|
)
|