langchain/docs/modules/models/text_embedding/examples/openai.ipynb

160 lines
3.2 KiB
Plaintext
Raw Normal View History

2023-02-06 07:02:07 +00:00
{
"cells": [
{
"cell_type": "markdown",
"id": "278b6c63",
2023-02-06 07:02:07 +00:00
"metadata": {},
"source": [
"# OpenAI\n",
"\n",
"Let's load the OpenAI Embedding class."
2023-02-06 07:02:07 +00:00
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "0be1af71",
2023-02-06 07:02:07 +00:00
"metadata": {},
"outputs": [],
"source": [
"from langchain.embeddings import OpenAIEmbeddings"
2023-02-06 07:02:07 +00:00
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "2c66e5da",
2023-02-06 07:02:07 +00:00
"metadata": {},
"outputs": [],
2023-02-06 07:02:07 +00:00
"source": [
"embeddings = OpenAIEmbeddings()"
2023-02-06 07:02:07 +00:00
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "01370375",
2023-02-06 07:02:07 +00:00
"metadata": {},
"outputs": [],
"source": [
"text = \"This is a test document.\""
2023-02-06 07:02:07 +00:00
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "bfb6142c",
2023-02-06 07:02:07 +00:00
"metadata": {},
"outputs": [],
"source": [
"query_result = embeddings.embed_query(text)"
2023-02-06 07:02:07 +00:00
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "0356c3b7",
2023-02-06 07:02:07 +00:00
"metadata": {},
"outputs": [],
2023-02-20 04:47:08 +00:00
"source": [
"doc_result = embeddings.embed_documents([text])"
2023-02-20 04:47:08 +00:00
]
},
{
"cell_type": "markdown",
"id": "bb61bbeb",
2023-02-20 04:47:08 +00:00
"metadata": {},
"source": [
"Let's load the OpenAI Embedding class with first generation models (e.g. text-search-ada-doc-001/text-search-ada-query-001). Note: These are not recommended models - see [here](https://platform.openai.com/docs/guides/embeddings/what-are-embeddings)"
2023-02-20 04:47:08 +00:00
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c0b072cc",
2023-02-20 04:47:08 +00:00
"metadata": {},
"outputs": [],
"source": [
"from langchain.embeddings.openai import OpenAIEmbeddings"
2023-02-20 04:47:08 +00:00
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a56b70f5",
2023-02-20 04:47:08 +00:00
"metadata": {},
"outputs": [],
"source": [
"embeddings = OpenAIEmbeddings()"
2023-02-20 04:47:08 +00:00
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "14aefb64",
2023-02-20 04:47:08 +00:00
"metadata": {},
"outputs": [],
"source": [
"text = \"This is a test document.\""
2023-02-20 04:47:08 +00:00
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3c39ed33",
2023-02-20 04:47:08 +00:00
"metadata": {},
"outputs": [],
2023-02-06 07:02:07 +00:00
"source": [
"query_result = embeddings.embed_query(text)"
2023-02-06 07:02:07 +00:00
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e3221db6",
"metadata": {},
"outputs": [],
"source": [
"doc_result = embeddings.embed_documents([text])"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "aaad49f8",
2023-02-06 07:02:07 +00:00
"metadata": {},
"outputs": [],
"source": [
"# if you are behind an explicit proxy, you can use the OPENAI_PROXY environment variable to pass through\n",
"os.environ[\"OPENAI_PROXY\"] = \"http://proxy.yourcompany.com:8080\""
]
2023-02-06 07:02:07 +00:00
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.11.1 64-bit",
2023-02-06 07:02:07 +00:00
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.1"
},
"vscode": {
"interpreter": {
"hash": "e971737741ff4ec9aff7dc6155a1060a59a8a6d52c757dbbe66bf8ee389494b1"
}
2023-02-06 07:02:07 +00:00
}
},
"nbformat": 4,
"nbformat_minor": 5
}