mirror of
https://github.com/hwchase17/langchain
synced 2024-11-10 01:10:59 +00:00
75 lines
2.4 KiB
Python
75 lines
2.4 KiB
Python
|
"""Utility functions for working with vectors and vectorstores."""
|
||
|
|
||
|
from enum import Enum
|
||
|
from typing import List, Tuple, Type
|
||
|
|
||
|
import numpy as np
|
||
|
from langchain_core.documents import Document
|
||
|
|
||
|
from langchain_community.utils.math import cosine_similarity
|
||
|
|
||
|
|
||
|
class DistanceStrategy(str, Enum):
|
||
|
"""Enumerator of the Distance strategies for calculating distances
|
||
|
between vectors."""
|
||
|
|
||
|
EUCLIDEAN_DISTANCE = "EUCLIDEAN_DISTANCE"
|
||
|
MAX_INNER_PRODUCT = "MAX_INNER_PRODUCT"
|
||
|
DOT_PRODUCT = "DOT_PRODUCT"
|
||
|
JACCARD = "JACCARD"
|
||
|
COSINE = "COSINE"
|
||
|
|
||
|
|
||
|
def maximal_marginal_relevance(
|
||
|
query_embedding: np.ndarray,
|
||
|
embedding_list: list,
|
||
|
lambda_mult: float = 0.5,
|
||
|
k: int = 4,
|
||
|
) -> List[int]:
|
||
|
"""Calculate maximal marginal relevance."""
|
||
|
if min(k, len(embedding_list)) <= 0:
|
||
|
return []
|
||
|
if query_embedding.ndim == 1:
|
||
|
query_embedding = np.expand_dims(query_embedding, axis=0)
|
||
|
similarity_to_query = cosine_similarity(query_embedding, embedding_list)[0]
|
||
|
most_similar = int(np.argmax(similarity_to_query))
|
||
|
idxs = [most_similar]
|
||
|
selected = np.array([embedding_list[most_similar]])
|
||
|
while len(idxs) < min(k, len(embedding_list)):
|
||
|
best_score = -np.inf
|
||
|
idx_to_add = -1
|
||
|
similarity_to_selected = cosine_similarity(embedding_list, selected)
|
||
|
for i, query_score in enumerate(similarity_to_query):
|
||
|
if i in idxs:
|
||
|
continue
|
||
|
redundant_score = max(similarity_to_selected[i])
|
||
|
equation_score = (
|
||
|
lambda_mult * query_score - (1 - lambda_mult) * redundant_score
|
||
|
)
|
||
|
if equation_score > best_score:
|
||
|
best_score = equation_score
|
||
|
idx_to_add = i
|
||
|
idxs.append(idx_to_add)
|
||
|
selected = np.append(selected, [embedding_list[idx_to_add]], axis=0)
|
||
|
return idxs
|
||
|
|
||
|
|
||
|
def filter_complex_metadata(
|
||
|
documents: List[Document],
|
||
|
*,
|
||
|
allowed_types: Tuple[Type, ...] = (str, bool, int, float),
|
||
|
) -> List[Document]:
|
||
|
"""Filter out metadata types that are not supported for a vector store."""
|
||
|
updated_documents = []
|
||
|
for document in documents:
|
||
|
filtered_metadata = {}
|
||
|
for key, value in document.metadata.items():
|
||
|
if not isinstance(value, allowed_types):
|
||
|
continue
|
||
|
filtered_metadata[key] = value
|
||
|
|
||
|
document.metadata = filtered_metadata
|
||
|
updated_documents.append(document)
|
||
|
|
||
|
return updated_documents
|