2023-12-11 21:53:30 +00:00
|
|
|
from __future__ import annotations
|
|
|
|
|
|
|
|
import uuid
|
|
|
|
from typing import Any, Iterable, List, Literal, Optional, Tuple, Type
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import sqlalchemy
|
|
|
|
from langchain_core.documents import Document
|
|
|
|
from langchain_core.embeddings import Embeddings
|
|
|
|
from langchain_core.vectorstores import VectorStore
|
|
|
|
from sqlalchemy import insert, select
|
|
|
|
from sqlalchemy.dialects import postgresql
|
|
|
|
from sqlalchemy.orm import DeclarativeBase, Mapped, mapped_column
|
|
|
|
from sqlalchemy.orm.session import Session
|
|
|
|
|
|
|
|
|
|
|
|
class _ORMBase(DeclarativeBase):
|
|
|
|
__tablename__: str
|
|
|
|
id: Mapped[uuid.UUID]
|
|
|
|
text: Mapped[str]
|
|
|
|
meta: Mapped[dict]
|
|
|
|
embedding: Mapped[np.ndarray]
|
|
|
|
|
|
|
|
|
|
|
|
class PGVecto_rs(VectorStore):
|
2023-12-19 13:58:24 +00:00
|
|
|
"""VectorStore backed by pgvecto_rs."""
|
|
|
|
|
2023-12-11 21:53:30 +00:00
|
|
|
_engine: sqlalchemy.engine.Engine
|
|
|
|
_table: Type[_ORMBase]
|
|
|
|
_embedding: Embeddings
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
embedding: Embeddings,
|
|
|
|
dimension: int,
|
|
|
|
db_url: str,
|
|
|
|
collection_name: str,
|
|
|
|
new_table: bool = False,
|
|
|
|
) -> None:
|
2023-12-19 13:58:24 +00:00
|
|
|
"""Initialize a PGVecto_rs vectorstore.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
embedding: Embeddings to use.
|
|
|
|
dimension: Dimension of the embeddings.
|
|
|
|
db_url: Database URL.
|
|
|
|
collection_name: Name of the collection.
|
|
|
|
new_table: Whether to create a new table or connect to an existing one.
|
|
|
|
Defaults to False.
|
|
|
|
"""
|
2023-12-11 21:53:30 +00:00
|
|
|
try:
|
|
|
|
from pgvecto_rs.sqlalchemy import Vector
|
|
|
|
except ImportError as e:
|
|
|
|
raise ImportError(
|
|
|
|
"Unable to import pgvector_rs, please install with "
|
|
|
|
"`pip install pgvector_rs`."
|
|
|
|
) from e
|
|
|
|
|
|
|
|
class _Table(_ORMBase):
|
|
|
|
__tablename__ = f"collection_{collection_name}"
|
|
|
|
id: Mapped[uuid.UUID] = mapped_column(
|
|
|
|
postgresql.UUID(as_uuid=True), primary_key=True, default=uuid.uuid4
|
|
|
|
)
|
|
|
|
text: Mapped[str] = mapped_column(sqlalchemy.String)
|
|
|
|
meta: Mapped[dict] = mapped_column(postgresql.JSONB)
|
|
|
|
embedding: Mapped[np.ndarray] = mapped_column(Vector(dimension))
|
|
|
|
|
|
|
|
self._engine = sqlalchemy.create_engine(db_url)
|
|
|
|
self._table = _Table
|
|
|
|
self._table.__table__.create(self._engine, checkfirst=not new_table) # type: ignore
|
|
|
|
self._embedding = embedding
|
|
|
|
|
|
|
|
# ================ Create interface =================
|
|
|
|
@classmethod
|
|
|
|
def from_texts(
|
|
|
|
cls,
|
|
|
|
texts: List[str],
|
|
|
|
embedding: Embeddings,
|
|
|
|
metadatas: Optional[List[dict]] = None,
|
|
|
|
db_url: str = "",
|
|
|
|
collection_name: str = str(uuid.uuid4().hex),
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> PGVecto_rs:
|
|
|
|
"""Return VectorStore initialized from texts and optional metadatas."""
|
|
|
|
sample_embedding = embedding.embed_query("Hello pgvecto_rs!")
|
|
|
|
dimension = len(sample_embedding)
|
|
|
|
if db_url is None:
|
|
|
|
raise ValueError("db_url must be provided")
|
|
|
|
_self: PGVecto_rs = cls(
|
|
|
|
embedding=embedding,
|
|
|
|
dimension=dimension,
|
|
|
|
db_url=db_url,
|
|
|
|
collection_name=collection_name,
|
|
|
|
new_table=True,
|
|
|
|
)
|
|
|
|
_self.add_texts(texts, metadatas, **kwargs)
|
|
|
|
return _self
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def from_documents(
|
|
|
|
cls,
|
|
|
|
documents: List[Document],
|
|
|
|
embedding: Embeddings,
|
|
|
|
db_url: str = "",
|
|
|
|
collection_name: str = str(uuid.uuid4().hex),
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> PGVecto_rs:
|
|
|
|
"""Return VectorStore initialized from documents."""
|
|
|
|
texts = [document.page_content for document in documents]
|
|
|
|
metadatas = [document.metadata for document in documents]
|
|
|
|
return cls.from_texts(
|
|
|
|
texts, embedding, metadatas, db_url, collection_name, **kwargs
|
|
|
|
)
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def from_collection_name(
|
|
|
|
cls,
|
|
|
|
embedding: Embeddings,
|
|
|
|
db_url: str,
|
|
|
|
collection_name: str,
|
|
|
|
) -> PGVecto_rs:
|
|
|
|
"""Create new empty vectorstore with collection_name.
|
|
|
|
Or connect to an existing vectorstore in database if exists.
|
|
|
|
Arguments should be the same as when the vectorstore was created."""
|
|
|
|
sample_embedding = embedding.embed_query("Hello pgvecto_rs!")
|
|
|
|
return cls(
|
|
|
|
embedding=embedding,
|
|
|
|
dimension=len(sample_embedding),
|
|
|
|
db_url=db_url,
|
|
|
|
collection_name=collection_name,
|
|
|
|
)
|
|
|
|
|
|
|
|
# ================ Insert interface =================
|
|
|
|
|
|
|
|
def add_texts(
|
|
|
|
self,
|
|
|
|
texts: Iterable[str],
|
|
|
|
metadatas: Optional[List[dict]] = None,
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> List[str]:
|
|
|
|
"""Run more texts through the embeddings and add to the vectorstore.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
texts: Iterable of strings to add to the vectorstore.
|
|
|
|
metadatas: Optional list of metadatas associated with the texts.
|
|
|
|
kwargs: vectorstore specific parameters
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
List of ids of the added texts.
|
|
|
|
|
|
|
|
"""
|
|
|
|
embeddings = self._embedding.embed_documents(list(texts))
|
|
|
|
with Session(self._engine) as _session:
|
|
|
|
results: List[str] = []
|
|
|
|
for text, embedding, metadata in zip(
|
|
|
|
texts, embeddings, metadatas or [dict()] * len(list(texts))
|
|
|
|
):
|
|
|
|
t = insert(self._table).values(
|
|
|
|
text=text, meta=metadata, embedding=embedding
|
|
|
|
)
|
|
|
|
id = _session.execute(t).inserted_primary_key[0] # type: ignore
|
|
|
|
results.append(str(id))
|
|
|
|
_session.commit()
|
|
|
|
return results
|
|
|
|
|
|
|
|
def add_documents(self, documents: List[Document], **kwargs: Any) -> List[str]:
|
|
|
|
"""Run more documents through the embeddings and add to the vectorstore.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
documents (List[Document]): List of documents to add to the vectorstore.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
List of ids of the added documents.
|
|
|
|
"""
|
|
|
|
return self.add_texts(
|
|
|
|
[document.page_content for document in documents],
|
|
|
|
[document.metadata for document in documents],
|
|
|
|
**kwargs,
|
|
|
|
)
|
|
|
|
|
|
|
|
# ================ Query interface =================
|
|
|
|
def similarity_search_with_score_by_vector(
|
|
|
|
self,
|
|
|
|
query_vector: List[float],
|
|
|
|
k: int = 4,
|
|
|
|
distance_func: Literal[
|
|
|
|
"sqrt_euclid", "neg_dot_prod", "ned_cos"
|
|
|
|
] = "sqrt_euclid",
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> List[Tuple[Document, float]]:
|
|
|
|
"""Return docs most similar to query vector, with its score."""
|
|
|
|
with Session(self._engine) as _session:
|
|
|
|
real_distance_func = (
|
|
|
|
self._table.embedding.squared_euclidean_distance
|
|
|
|
if distance_func == "sqrt_euclid"
|
|
|
|
else self._table.embedding.negative_dot_product_distance
|
|
|
|
if distance_func == "neg_dot_prod"
|
|
|
|
else self._table.embedding.negative_cosine_distance
|
|
|
|
if distance_func == "ned_cos"
|
|
|
|
else None
|
|
|
|
)
|
|
|
|
if real_distance_func is None:
|
|
|
|
raise ValueError("Invalid distance function")
|
|
|
|
|
|
|
|
t = (
|
|
|
|
select(self._table, real_distance_func(query_vector).label("score"))
|
|
|
|
.order_by("score")
|
|
|
|
.limit(k) # type: ignore
|
|
|
|
)
|
|
|
|
return [
|
|
|
|
(Document(page_content=row[0].text, metadata=row[0].meta), row[1])
|
|
|
|
for row in _session.execute(t)
|
|
|
|
]
|
|
|
|
|
|
|
|
def similarity_search_by_vector(
|
|
|
|
self,
|
|
|
|
embedding: List[float],
|
|
|
|
k: int = 4,
|
|
|
|
distance_func: Literal[
|
|
|
|
"sqrt_euclid", "neg_dot_prod", "ned_cos"
|
|
|
|
] = "sqrt_euclid",
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> List[Document]:
|
|
|
|
return [
|
|
|
|
doc
|
|
|
|
for doc, score in self.similarity_search_with_score_by_vector(
|
|
|
|
embedding, k, distance_func, **kwargs
|
|
|
|
)
|
|
|
|
]
|
|
|
|
|
|
|
|
def similarity_search_with_score(
|
|
|
|
self,
|
|
|
|
query: str,
|
|
|
|
k: int = 4,
|
|
|
|
distance_func: Literal[
|
|
|
|
"sqrt_euclid", "neg_dot_prod", "ned_cos"
|
|
|
|
] = "sqrt_euclid",
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> List[Tuple[Document, float]]:
|
|
|
|
query_vector = self._embedding.embed_query(query)
|
|
|
|
return self.similarity_search_with_score_by_vector(
|
|
|
|
query_vector, k, distance_func, **kwargs
|
|
|
|
)
|
|
|
|
|
|
|
|
def similarity_search(
|
|
|
|
self,
|
|
|
|
query: str,
|
|
|
|
k: int = 4,
|
|
|
|
distance_func: Literal[
|
|
|
|
"sqrt_euclid", "neg_dot_prod", "ned_cos"
|
|
|
|
] = "sqrt_euclid",
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> List[Document]:
|
|
|
|
"""Return docs most similar to query."""
|
|
|
|
query_vector = self._embedding.embed_query(query)
|
|
|
|
return [
|
|
|
|
doc
|
|
|
|
for doc, score in self.similarity_search_with_score_by_vector(
|
|
|
|
query_vector, k, distance_func, **kwargs
|
|
|
|
)
|
|
|
|
]
|