mirror of
https://github.com/hwchase17/langchain
synced 2024-11-10 01:10:59 +00:00
377 lines
13 KiB
Python
377 lines
13 KiB
Python
|
from __future__ import annotations
|
||
|
|
||
|
import logging
|
||
|
import uuid
|
||
|
from typing import Any, Iterable, List, Optional, Tuple
|
||
|
|
||
|
import numpy as np
|
||
|
from langchain_core.documents import Document
|
||
|
from langchain_core.embeddings import Embeddings
|
||
|
from langchain_core.vectorstores import VectorStore
|
||
|
|
||
|
from langchain_community.vectorstores.utils import maximal_marginal_relevance
|
||
|
|
||
|
logger = logging.getLogger(__name__)
|
||
|
|
||
|
|
||
|
class Dingo(VectorStore):
|
||
|
"""`Dingo` vector store.
|
||
|
|
||
|
To use, you should have the ``dingodb`` python package installed.
|
||
|
|
||
|
Example:
|
||
|
.. code-block:: python
|
||
|
|
||
|
from langchain_community.vectorstores import Dingo
|
||
|
from langchain_community.embeddings.openai import OpenAIEmbeddings
|
||
|
|
||
|
embeddings = OpenAIEmbeddings()
|
||
|
dingo = Dingo(embeddings, "text")
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
embedding: Embeddings,
|
||
|
text_key: str,
|
||
|
*,
|
||
|
client: Any = None,
|
||
|
index_name: Optional[str] = None,
|
||
|
dimension: int = 1024,
|
||
|
host: Optional[List[str]] = None,
|
||
|
user: str = "root",
|
||
|
password: str = "123123",
|
||
|
self_id: bool = False,
|
||
|
):
|
||
|
"""Initialize with Dingo client."""
|
||
|
try:
|
||
|
import dingodb
|
||
|
except ImportError:
|
||
|
raise ImportError(
|
||
|
"Could not import dingo python package. "
|
||
|
"Please install it with `pip install dingodb."
|
||
|
)
|
||
|
|
||
|
host = host if host is not None else ["172.20.31.10:13000"]
|
||
|
|
||
|
# collection
|
||
|
if client is not None:
|
||
|
dingo_client = client
|
||
|
else:
|
||
|
try:
|
||
|
# connect to dingo db
|
||
|
dingo_client = dingodb.DingoDB(user, password, host)
|
||
|
except ValueError as e:
|
||
|
raise ValueError(f"Dingo failed to connect: {e}")
|
||
|
|
||
|
self._text_key = text_key
|
||
|
self._client = dingo_client
|
||
|
|
||
|
if (
|
||
|
index_name is not None
|
||
|
and index_name not in dingo_client.get_index()
|
||
|
and index_name.upper() not in dingo_client.get_index()
|
||
|
):
|
||
|
if self_id is True:
|
||
|
dingo_client.create_index(
|
||
|
index_name, dimension=dimension, auto_id=False
|
||
|
)
|
||
|
else:
|
||
|
dingo_client.create_index(index_name, dimension=dimension)
|
||
|
|
||
|
self._index_name = index_name
|
||
|
self._embedding = embedding
|
||
|
|
||
|
@property
|
||
|
def embeddings(self) -> Optional[Embeddings]:
|
||
|
return self._embedding
|
||
|
|
||
|
def add_texts(
|
||
|
self,
|
||
|
texts: Iterable[str],
|
||
|
metadatas: Optional[List[dict]] = None,
|
||
|
ids: Optional[List[str]] = None,
|
||
|
text_key: str = "text",
|
||
|
batch_size: int = 500,
|
||
|
**kwargs: Any,
|
||
|
) -> List[str]:
|
||
|
"""Run more texts through the embeddings and add to the vectorstore.
|
||
|
|
||
|
Args:
|
||
|
texts: Iterable of strings to add to the vectorstore.
|
||
|
metadatas: Optional list of metadatas associated with the texts.
|
||
|
ids: Optional list of ids to associate with the texts.
|
||
|
|
||
|
Returns:
|
||
|
List of ids from adding the texts into the vectorstore.
|
||
|
|
||
|
"""
|
||
|
|
||
|
# Embed and create the documents
|
||
|
ids = ids or [str(uuid.uuid1().int)[:13] for _ in texts]
|
||
|
metadatas_list = []
|
||
|
texts = list(texts)
|
||
|
embeds = self._embedding.embed_documents(texts)
|
||
|
for i, text in enumerate(texts):
|
||
|
metadata = metadatas[i] if metadatas else {}
|
||
|
metadata[self._text_key] = text
|
||
|
metadatas_list.append(metadata)
|
||
|
# upsert to Dingo
|
||
|
for i in range(0, len(list(texts)), batch_size):
|
||
|
j = i + batch_size
|
||
|
add_res = self._client.vector_add(
|
||
|
self._index_name, metadatas_list[i:j], embeds[i:j], ids[i:j]
|
||
|
)
|
||
|
if not add_res:
|
||
|
raise Exception("vector add fail")
|
||
|
|
||
|
return ids
|
||
|
|
||
|
def similarity_search(
|
||
|
self,
|
||
|
query: str,
|
||
|
k: int = 4,
|
||
|
search_params: Optional[dict] = None,
|
||
|
timeout: Optional[int] = None,
|
||
|
**kwargs: Any,
|
||
|
) -> List[Document]:
|
||
|
"""Return Dingo documents most similar to query, along with scores.
|
||
|
|
||
|
Args:
|
||
|
query: Text to look up documents similar to.
|
||
|
k: Number of Documents to return. Defaults to 4.
|
||
|
search_params: Dictionary of argument(s) to filter on metadata
|
||
|
|
||
|
Returns:
|
||
|
List of Documents most similar to the query and score for each
|
||
|
"""
|
||
|
docs_and_scores = self.similarity_search_with_score(
|
||
|
query, k=k, search_params=search_params
|
||
|
)
|
||
|
return [doc for doc, _ in docs_and_scores]
|
||
|
|
||
|
def similarity_search_with_score(
|
||
|
self,
|
||
|
query: str,
|
||
|
k: int = 4,
|
||
|
search_params: Optional[dict] = None,
|
||
|
timeout: Optional[int] = None,
|
||
|
**kwargs: Any,
|
||
|
) -> List[Tuple[Document, float]]:
|
||
|
"""Return Dingo documents most similar to query, along with scores.
|
||
|
|
||
|
Args:
|
||
|
query: Text to look up documents similar to.
|
||
|
k: Number of Documents to return. Defaults to 4.
|
||
|
search_params: Dictionary of argument(s) to filter on metadata
|
||
|
|
||
|
Returns:
|
||
|
List of Documents most similar to the query and score for each
|
||
|
"""
|
||
|
docs = []
|
||
|
query_obj = self._embedding.embed_query(query)
|
||
|
results = self._client.vector_search(
|
||
|
self._index_name, xq=query_obj, top_k=k, search_params=search_params
|
||
|
)
|
||
|
|
||
|
if not results:
|
||
|
return []
|
||
|
|
||
|
for res in results[0]["vectorWithDistances"]:
|
||
|
metadatas = res["scalarData"]
|
||
|
id = res["id"]
|
||
|
score = res["distance"]
|
||
|
text = metadatas[self._text_key]["fields"][0]["data"]
|
||
|
metadata = {"id": id, "text": text, "score": score}
|
||
|
for meta_key in metadatas.keys():
|
||
|
metadata[meta_key] = metadatas[meta_key]["fields"][0]["data"]
|
||
|
docs.append((Document(page_content=text, metadata=metadata), score))
|
||
|
|
||
|
return docs
|
||
|
|
||
|
def max_marginal_relevance_search_by_vector(
|
||
|
self,
|
||
|
embedding: List[float],
|
||
|
k: int = 4,
|
||
|
fetch_k: int = 20,
|
||
|
lambda_mult: float = 0.5,
|
||
|
search_params: Optional[dict] = None,
|
||
|
**kwargs: Any,
|
||
|
) -> List[Document]:
|
||
|
"""Return docs selected using the maximal marginal relevance.
|
||
|
|
||
|
Maximal marginal relevance optimizes for similarity to query AND diversity
|
||
|
among selected documents.
|
||
|
|
||
|
Args:
|
||
|
embedding: Embedding to look up documents similar to.
|
||
|
k: Number of Documents to return. Defaults to 4.
|
||
|
fetch_k: Number of Documents to fetch to pass to MMR algorithm.
|
||
|
lambda_mult: Number between 0 and 1 that determines the degree
|
||
|
of diversity among the results with 0 corresponding
|
||
|
to maximum diversity and 1 to minimum diversity.
|
||
|
Defaults to 0.5.
|
||
|
Returns:
|
||
|
List of Documents selected by maximal marginal relevance.
|
||
|
"""
|
||
|
results = self._client.vector_search(
|
||
|
self._index_name, [embedding], search_params=search_params, top_k=k
|
||
|
)
|
||
|
|
||
|
mmr_selected = maximal_marginal_relevance(
|
||
|
np.array([embedding], dtype=np.float32),
|
||
|
[
|
||
|
item["vector"]["floatValues"]
|
||
|
for item in results[0]["vectorWithDistances"]
|
||
|
],
|
||
|
k=k,
|
||
|
lambda_mult=lambda_mult,
|
||
|
)
|
||
|
selected = []
|
||
|
for i in mmr_selected:
|
||
|
meta_data = {}
|
||
|
for k, v in results[0]["vectorWithDistances"][i]["scalarData"].items():
|
||
|
meta_data.update({str(k): v["fields"][0]["data"]})
|
||
|
selected.append(meta_data)
|
||
|
return [
|
||
|
Document(page_content=metadata.pop(self._text_key), metadata=metadata)
|
||
|
for metadata in selected
|
||
|
]
|
||
|
|
||
|
def max_marginal_relevance_search(
|
||
|
self,
|
||
|
query: str,
|
||
|
k: int = 4,
|
||
|
fetch_k: int = 20,
|
||
|
lambda_mult: float = 0.5,
|
||
|
search_params: Optional[dict] = None,
|
||
|
**kwargs: Any,
|
||
|
) -> List[Document]:
|
||
|
"""Return docs selected using the maximal marginal relevance.
|
||
|
|
||
|
Maximal marginal relevance optimizes for similarity to query AND diversity
|
||
|
among selected documents.
|
||
|
|
||
|
Args:
|
||
|
query: Text to look up documents similar to.
|
||
|
k: Number of Documents to return. Defaults to 4.
|
||
|
fetch_k: Number of Documents to fetch to pass to MMR algorithm.
|
||
|
lambda_mult: Number between 0 and 1 that determines the degree
|
||
|
of diversity among the results with 0 corresponding
|
||
|
to maximum diversity and 1 to minimum diversity.
|
||
|
Defaults to 0.5.
|
||
|
Returns:
|
||
|
List of Documents selected by maximal marginal relevance.
|
||
|
"""
|
||
|
embedding = self._embedding.embed_query(query)
|
||
|
return self.max_marginal_relevance_search_by_vector(
|
||
|
embedding, k, fetch_k, lambda_mult, search_params
|
||
|
)
|
||
|
|
||
|
@classmethod
|
||
|
def from_texts(
|
||
|
cls,
|
||
|
texts: List[str],
|
||
|
embedding: Embeddings,
|
||
|
metadatas: Optional[List[dict]] = None,
|
||
|
ids: Optional[List[str]] = None,
|
||
|
text_key: str = "text",
|
||
|
index_name: Optional[str] = None,
|
||
|
dimension: int = 1024,
|
||
|
client: Any = None,
|
||
|
host: List[str] = ["172.20.31.10:13000"],
|
||
|
user: str = "root",
|
||
|
password: str = "123123",
|
||
|
batch_size: int = 500,
|
||
|
**kwargs: Any,
|
||
|
) -> Dingo:
|
||
|
"""Construct Dingo wrapper from raw documents.
|
||
|
|
||
|
This is a user friendly interface that:
|
||
|
1. Embeds documents.
|
||
|
2. Adds the documents to a provided Dingo index
|
||
|
|
||
|
This is intended to be a quick way to get started.
|
||
|
|
||
|
Example:
|
||
|
.. code-block:: python
|
||
|
|
||
|
from langchain_community.vectorstores import Dingo
|
||
|
from langchain_community.embeddings import OpenAIEmbeddings
|
||
|
import dingodb
|
||
|
sss
|
||
|
embeddings = OpenAIEmbeddings()
|
||
|
dingo = Dingo.from_texts(
|
||
|
texts,
|
||
|
embeddings,
|
||
|
index_name="langchain-demo"
|
||
|
)
|
||
|
"""
|
||
|
try:
|
||
|
import dingodb
|
||
|
except ImportError:
|
||
|
raise ImportError(
|
||
|
"Could not import dingo python package. "
|
||
|
"Please install it with `pip install dingodb`."
|
||
|
)
|
||
|
|
||
|
if client is not None:
|
||
|
dingo_client = client
|
||
|
else:
|
||
|
try:
|
||
|
# connect to dingo db
|
||
|
dingo_client = dingodb.DingoDB(user, password, host)
|
||
|
except ValueError as e:
|
||
|
raise ValueError(f"Dingo failed to connect: {e}")
|
||
|
if kwargs is not None and kwargs.get("self_id") is True:
|
||
|
if (
|
||
|
index_name is not None
|
||
|
and index_name not in dingo_client.get_index()
|
||
|
and index_name.upper() not in dingo_client.get_index()
|
||
|
):
|
||
|
dingo_client.create_index(
|
||
|
index_name, dimension=dimension, auto_id=False
|
||
|
)
|
||
|
else:
|
||
|
if (
|
||
|
index_name is not None
|
||
|
and index_name not in dingo_client.get_index()
|
||
|
and index_name.upper() not in dingo_client.get_index()
|
||
|
):
|
||
|
dingo_client.create_index(index_name, dimension=dimension)
|
||
|
|
||
|
# Embed and create the documents
|
||
|
|
||
|
ids = ids or [str(uuid.uuid1().int)[:13] for _ in texts]
|
||
|
metadatas_list = []
|
||
|
texts = list(texts)
|
||
|
embeds = embedding.embed_documents(texts)
|
||
|
for i, text in enumerate(texts):
|
||
|
metadata = metadatas[i] if metadatas else {}
|
||
|
metadata[text_key] = text
|
||
|
metadatas_list.append(metadata)
|
||
|
|
||
|
# upsert to Dingo
|
||
|
for i in range(0, len(list(texts)), batch_size):
|
||
|
j = i + batch_size
|
||
|
add_res = dingo_client.vector_add(
|
||
|
index_name, metadatas_list[i:j], embeds[i:j], ids[i:j]
|
||
|
)
|
||
|
if not add_res:
|
||
|
raise Exception("vector add fail")
|
||
|
return cls(embedding, text_key, client=dingo_client, index_name=index_name)
|
||
|
|
||
|
def delete(
|
||
|
self,
|
||
|
ids: Optional[List[str]] = None,
|
||
|
**kwargs: Any,
|
||
|
) -> Any:
|
||
|
"""Delete by vector IDs or filter.
|
||
|
Args:
|
||
|
ids: List of ids to delete.
|
||
|
"""
|
||
|
|
||
|
if ids is None:
|
||
|
raise ValueError("No ids provided to delete.")
|
||
|
|
||
|
return self._client.vector_delete(self._index_name, ids=ids)
|