mirror of
https://github.com/hwchase17/langchain
synced 2024-11-10 01:10:59 +00:00
131 lines
4.5 KiB
Python
131 lines
4.5 KiB
Python
|
from typing import Any, Dict, List, Mapping, Optional
|
||
|
|
||
|
from langchain_core.callbacks import CallbackManagerForLLMRun
|
||
|
from langchain_core.language_models.llms import LLM
|
||
|
from langchain_core.pydantic_v1 import Extra, root_validator
|
||
|
from langchain_core.utils import get_from_dict_or_env
|
||
|
|
||
|
from langchain_community.llms.utils import enforce_stop_tokens
|
||
|
|
||
|
DEFAULT_REPO_ID = "gpt2"
|
||
|
VALID_TASKS = ("text2text-generation", "text-generation", "summarization")
|
||
|
|
||
|
|
||
|
class HuggingFaceHub(LLM):
|
||
|
"""HuggingFaceHub models.
|
||
|
|
||
|
To use, you should have the ``huggingface_hub`` python package installed, and the
|
||
|
environment variable ``HUGGINGFACEHUB_API_TOKEN`` set with your API token, or pass
|
||
|
it as a named parameter to the constructor.
|
||
|
|
||
|
Only supports `text-generation`, `text2text-generation` and `summarization` for now.
|
||
|
|
||
|
Example:
|
||
|
.. code-block:: python
|
||
|
|
||
|
from langchain_community.llms import HuggingFaceHub
|
||
|
hf = HuggingFaceHub(repo_id="gpt2", huggingfacehub_api_token="my-api-key")
|
||
|
"""
|
||
|
|
||
|
client: Any #: :meta private:
|
||
|
repo_id: str = DEFAULT_REPO_ID
|
||
|
"""Model name to use."""
|
||
|
task: Optional[str] = None
|
||
|
"""Task to call the model with.
|
||
|
Should be a task that returns `generated_text` or `summary_text`."""
|
||
|
model_kwargs: Optional[dict] = None
|
||
|
"""Keyword arguments to pass to the model."""
|
||
|
|
||
|
huggingfacehub_api_token: Optional[str] = None
|
||
|
|
||
|
class Config:
|
||
|
"""Configuration for this pydantic object."""
|
||
|
|
||
|
extra = Extra.forbid
|
||
|
|
||
|
@root_validator()
|
||
|
def validate_environment(cls, values: Dict) -> Dict:
|
||
|
"""Validate that api key and python package exists in environment."""
|
||
|
huggingfacehub_api_token = get_from_dict_or_env(
|
||
|
values, "huggingfacehub_api_token", "HUGGINGFACEHUB_API_TOKEN"
|
||
|
)
|
||
|
try:
|
||
|
from huggingface_hub.inference_api import InferenceApi
|
||
|
|
||
|
repo_id = values["repo_id"]
|
||
|
client = InferenceApi(
|
||
|
repo_id=repo_id,
|
||
|
token=huggingfacehub_api_token,
|
||
|
task=values.get("task"),
|
||
|
)
|
||
|
if client.task not in VALID_TASKS:
|
||
|
raise ValueError(
|
||
|
f"Got invalid task {client.task}, "
|
||
|
f"currently only {VALID_TASKS} are supported"
|
||
|
)
|
||
|
values["client"] = client
|
||
|
except ImportError:
|
||
|
raise ValueError(
|
||
|
"Could not import huggingface_hub python package. "
|
||
|
"Please install it with `pip install huggingface_hub`."
|
||
|
)
|
||
|
return values
|
||
|
|
||
|
@property
|
||
|
def _identifying_params(self) -> Mapping[str, Any]:
|
||
|
"""Get the identifying parameters."""
|
||
|
_model_kwargs = self.model_kwargs or {}
|
||
|
return {
|
||
|
**{"repo_id": self.repo_id, "task": self.task},
|
||
|
**{"model_kwargs": _model_kwargs},
|
||
|
}
|
||
|
|
||
|
@property
|
||
|
def _llm_type(self) -> str:
|
||
|
"""Return type of llm."""
|
||
|
return "huggingface_hub"
|
||
|
|
||
|
def _call(
|
||
|
self,
|
||
|
prompt: str,
|
||
|
stop: Optional[List[str]] = None,
|
||
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||
|
**kwargs: Any,
|
||
|
) -> str:
|
||
|
"""Call out to HuggingFace Hub's inference endpoint.
|
||
|
|
||
|
Args:
|
||
|
prompt: The prompt to pass into the model.
|
||
|
stop: Optional list of stop words to use when generating.
|
||
|
|
||
|
Returns:
|
||
|
The string generated by the model.
|
||
|
|
||
|
Example:
|
||
|
.. code-block:: python
|
||
|
|
||
|
response = hf("Tell me a joke.")
|
||
|
"""
|
||
|
_model_kwargs = self.model_kwargs or {}
|
||
|
params = {**_model_kwargs, **kwargs}
|
||
|
response = self.client(inputs=prompt, params=params)
|
||
|
if "error" in response:
|
||
|
raise ValueError(f"Error raised by inference API: {response['error']}")
|
||
|
if self.client.task == "text-generation":
|
||
|
# Text generation return includes the starter text.
|
||
|
text = response[0]["generated_text"][len(prompt) :]
|
||
|
elif self.client.task == "text2text-generation":
|
||
|
text = response[0]["generated_text"]
|
||
|
elif self.client.task == "summarization":
|
||
|
text = response[0]["summary_text"]
|
||
|
else:
|
||
|
raise ValueError(
|
||
|
f"Got invalid task {self.client.task}, "
|
||
|
f"currently only {VALID_TASKS} are supported"
|
||
|
)
|
||
|
if stop is not None:
|
||
|
# This is a bit hacky, but I can't figure out a better way to enforce
|
||
|
# stop tokens when making calls to huggingface_hub.
|
||
|
text = enforce_stop_tokens(text, stop)
|
||
|
return text
|