langchain/docs/extras/integrations/llms/banana.ipynb

131 lines
3.0 KiB
Plaintext
Raw Normal View History

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Banana\n",
"\n",
"\n",
"[Banana](https://www.banana.dev/about-us) is focused on building the machine learning infrastructure.\n",
"\n",
"This example goes over how to use LangChain to interact with Banana models"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"# Install the package https://docs.banana.dev/banana-docs/core-concepts/sdks/python\n",
"!pip install banana-dev"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# get new tokens: https://app.banana.dev/\n",
"# We need three parameters to make a Banana.dev API call:\n",
"# * a team api key\n",
"# * the model's unique key\n",
"# * the model's url slug\n",
"\n",
"import os\n",
"from getpass import getpass\n",
"\n",
"# You can get this from the main dashboard\n",
"# at https://app.banana.dev\n",
"os.environ[\"BANANA_API_KEY\"] = \"YOUR_API_KEY\"\n",
"# OR\n",
"# BANANA_API_KEY = getpass()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain.llms import Banana\n",
"from langchain.prompts import PromptTemplate\nfrom langchain.chains import LLMChain"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"template = \"\"\"Question: {question}\n",
"\n",
"Answer: Let's think step by step.\"\"\"\n",
"\n",
"prompt = PromptTemplate(template=template, input_variables=[\"question\"])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Both of these are found in your model's \n",
"# detail page in https://app.banana.dev\n",
"llm = Banana(model_key=\"YOUR_MODEL_KEY\", model_url_slug=\"YOUR_MODEL_URL_SLUG\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"llm_chain = LLMChain(prompt=prompt, llm=llm)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"question = \"What NFL team won the Super Bowl in the year Justin Beiber was born?\"\n",
"\n",
"llm_chain.run(question)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.6"
},
"vscode": {
"interpreter": {
"hash": "a0a0263b650d907a3bfe41c0f8d6a63a071b884df3cfdc1579f00cdc1aed6b03"
}
}
},
"nbformat": 4,
"nbformat_minor": 4
}