langchain/libs/experimental/langchain_experimental/generative_agents/generative_agent.py

249 lines
9.9 KiB
Python
Raw Normal View History

import re
from datetime import datetime
from typing import Any, Dict, List, Optional, Tuple
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
2023-07-07 20:09:10 +00:00
from langchain.schema.language_model import BaseLanguageModel
2023-07-22 01:44:32 +00:00
from pydantic import BaseModel, Field
from langchain_experimental.generative_agents.memory import GenerativeAgentMemory
class GenerativeAgent(BaseModel):
"""An Agent as a character with memory and innate characteristics."""
name: str
"""The character's name."""
age: Optional[int] = None
"""The optional age of the character."""
traits: str = "N/A"
"""Permanent traits to ascribe to the character."""
status: str
"""The traits of the character you wish not to change."""
memory: GenerativeAgentMemory
"""The memory object that combines relevance, recency, and 'importance'."""
llm: BaseLanguageModel
"""The underlying language model."""
verbose: bool = False
summary: str = "" #: :meta private:
"""Stateful self-summary generated via reflection on the character's memory."""
summary_refresh_seconds: int = 3600 #: :meta private:
"""How frequently to re-generate the summary."""
last_refreshed: datetime = Field(default_factory=datetime.now) # : :meta private:
"""The last time the character's summary was regenerated."""
daily_summaries: List[str] = Field(default_factory=list) # : :meta private:
"""Summary of the events in the plan that the agent took."""
class Config:
"""Configuration for this pydantic object."""
arbitrary_types_allowed = True
# LLM-related methods
@staticmethod
def _parse_list(text: str) -> List[str]:
"""Parse a newline-separated string into a list of strings."""
lines = re.split(r"\n", text.strip())
return [re.sub(r"^\s*\d+\.\s*", "", line).strip() for line in lines]
def chain(self, prompt: PromptTemplate) -> LLMChain:
return LLMChain(
llm=self.llm, prompt=prompt, verbose=self.verbose, memory=self.memory
)
def _get_entity_from_observation(self, observation: str) -> str:
prompt = PromptTemplate.from_template(
"What is the observed entity in the following observation? {observation}"
+ "\nEntity="
)
return self.chain(prompt).run(observation=observation).strip()
def _get_entity_action(self, observation: str, entity_name: str) -> str:
prompt = PromptTemplate.from_template(
"What is the {entity} doing in the following observation? {observation}"
+ "\nThe {entity} is"
)
return (
self.chain(prompt).run(entity=entity_name, observation=observation).strip()
)
def summarize_related_memories(self, observation: str) -> str:
"""Summarize memories that are most relevant to an observation."""
prompt = PromptTemplate.from_template(
"""
{q1}?
Context from memory:
{relevant_memories}
Relevant context:
"""
)
entity_name = self._get_entity_from_observation(observation)
entity_action = self._get_entity_action(observation, entity_name)
q1 = f"What is the relationship between {self.name} and {entity_name}"
q2 = f"{entity_name} is {entity_action}"
return self.chain(prompt=prompt).run(q1=q1, queries=[q1, q2]).strip()
def _generate_reaction(
self, observation: str, suffix: str, now: Optional[datetime] = None
) -> str:
"""React to a given observation or dialogue act."""
prompt = PromptTemplate.from_template(
"{agent_summary_description}"
+ "\nIt is {current_time}."
+ "\n{agent_name}'s status: {agent_status}"
+ "\nSummary of relevant context from {agent_name}'s memory:"
+ "\n{relevant_memories}"
+ "\nMost recent observations: {most_recent_memories}"
+ "\nObservation: {observation}"
+ "\n\n"
+ suffix
)
agent_summary_description = self.get_summary(now=now)
relevant_memories_str = self.summarize_related_memories(observation)
current_time_str = (
datetime.now().strftime("%B %d, %Y, %I:%M %p")
if now is None
else now.strftime("%B %d, %Y, %I:%M %p")
)
kwargs: Dict[str, Any] = dict(
agent_summary_description=agent_summary_description,
current_time=current_time_str,
relevant_memories=relevant_memories_str,
agent_name=self.name,
observation=observation,
agent_status=self.status,
)
consumed_tokens = self.llm.get_num_tokens(
prompt.format(most_recent_memories="", **kwargs)
)
kwargs[self.memory.most_recent_memories_token_key] = consumed_tokens
return self.chain(prompt=prompt).run(**kwargs).strip()
def _clean_response(self, text: str) -> str:
return re.sub(f"^{self.name} ", "", text.strip()).strip()
def generate_reaction(
self, observation: str, now: Optional[datetime] = None
) -> Tuple[bool, str]:
"""React to a given observation."""
call_to_action_template = (
"Should {agent_name} react to the observation, and if so,"
+ " what would be an appropriate reaction? Respond in one line."
+ ' If the action is to engage in dialogue, write:\nSAY: "what to say"'
+ "\notherwise, write:\nREACT: {agent_name}'s reaction (if anything)."
+ "\nEither do nothing, react, or say something but not both.\n\n"
)
full_result = self._generate_reaction(
observation, call_to_action_template, now=now
)
result = full_result.strip().split("\n")[0]
# AAA
self.memory.save_context(
{},
{
self.memory.add_memory_key: f"{self.name} observed "
f"{observation} and reacted by {result}",
self.memory.now_key: now,
},
)
if "REACT:" in result:
reaction = self._clean_response(result.split("REACT:")[-1])
return False, f"{self.name} {reaction}"
if "SAY:" in result:
said_value = self._clean_response(result.split("SAY:")[-1])
return True, f"{self.name} said {said_value}"
else:
return False, result
def generate_dialogue_response(
self, observation: str, now: Optional[datetime] = None
) -> Tuple[bool, str]:
"""React to a given observation."""
call_to_action_template = (
"What would {agent_name} say? To end the conversation, write:"
' GOODBYE: "what to say". Otherwise to continue the conversation,'
' write: SAY: "what to say next"\n\n'
)
full_result = self._generate_reaction(
observation, call_to_action_template, now=now
)
result = full_result.strip().split("\n")[0]
if "GOODBYE:" in result:
farewell = self._clean_response(result.split("GOODBYE:")[-1])
self.memory.save_context(
{},
{
self.memory.add_memory_key: f"{self.name} observed "
f"{observation} and said {farewell}",
self.memory.now_key: now,
},
)
return False, f"{self.name} said {farewell}"
if "SAY:" in result:
response_text = self._clean_response(result.split("SAY:")[-1])
self.memory.save_context(
{},
{
self.memory.add_memory_key: f"{self.name} observed "
f"{observation} and said {response_text}",
self.memory.now_key: now,
},
)
return True, f"{self.name} said {response_text}"
else:
return False, result
######################################################
# Agent stateful' summary methods. #
# Each dialog or response prompt includes a header #
# summarizing the agent's self-description. This is #
# updated periodically through probing its memories #
######################################################
def _compute_agent_summary(self) -> str:
""""""
prompt = PromptTemplate.from_template(
"How would you summarize {name}'s core characteristics given the"
+ " following statements:\n"
+ "{relevant_memories}"
+ "Do not embellish."
+ "\n\nSummary: "
)
# The agent seeks to think about their core characteristics.
return (
self.chain(prompt)
.run(name=self.name, queries=[f"{self.name}'s core characteristics"])
.strip()
)
def get_summary(
self, force_refresh: bool = False, now: Optional[datetime] = None
) -> str:
"""Return a descriptive summary of the agent."""
current_time = datetime.now() if now is None else now
since_refresh = (current_time - self.last_refreshed).seconds
if (
not self.summary
or since_refresh >= self.summary_refresh_seconds
or force_refresh
):
self.summary = self._compute_agent_summary()
self.last_refreshed = current_time
age = self.age if self.age is not None else "N/A"
return (
f"Name: {self.name} (age: {age})"
+ f"\nInnate traits: {self.traits}"
+ f"\n{self.summary}"
)
def get_full_header(
self, force_refresh: bool = False, now: Optional[datetime] = None
) -> str:
"""Return a full header of the agent's status, summary, and current time."""
now = datetime.now() if now is None else now
summary = self.get_summary(force_refresh=force_refresh, now=now)
current_time_str = now.strftime("%B %d, %Y, %I:%M %p")
return (
f"{summary}\nIt is {current_time_str}.\n{self.name}'s status: {self.status}"
)