2023-11-07 22:45:33 +00:00
|
|
|
import os
|
|
|
|
|
|
|
|
from langchain.prompts import ChatPromptTemplate
|
|
|
|
from langchain.vectorstores import AstraDB
|
2024-01-02 20:32:16 +00:00
|
|
|
from langchain_community.chat_models import ChatOpenAI
|
|
|
|
from langchain_community.embeddings import OpenAIEmbeddings
|
docs[patch], templates[patch]: Import from core (#14575)
Update imports to use core for the low-hanging fruit changes. Ran
following
```bash
git grep -l 'langchain.schema.runnable' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.runnable/langchain_core.runnables/g'
git grep -l 'langchain.schema.output_parser' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.output_parser/langchain_core.output_parsers/g'
git grep -l 'langchain.schema.messages' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.messages/langchain_core.messages/g'
git grep -l 'langchain.schema.chat_histry' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.chat_history/langchain_core.chat_history/g'
git grep -l 'langchain.schema.prompt_template' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.prompt_template/langchain_core.prompts/g'
git grep -l 'from langchain.pydantic_v1' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.pydantic_v1/from langchain_core.pydantic_v1/g'
git grep -l 'from langchain.tools.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.tools\.base/from langchain_core.tools/g'
git grep -l 'from langchain.chat_models.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.chat_models.base/from langchain_core.language_models.chat_models/g'
git grep -l 'from langchain.llms.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.llms\.base\ /from langchain_core.language_models.llms\ /g'
git grep -l 'from langchain.embeddings.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.embeddings\.base/from langchain_core.embeddings/g'
git grep -l 'from langchain.vectorstores.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.vectorstores\.base/from langchain_core.vectorstores/g'
git grep -l 'from langchain.agents.tools' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.agents\.tools/from langchain_core.tools/g'
git grep -l 'from langchain.schema.output' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.output\ /from langchain_core.outputs\ /g'
git grep -l 'from langchain.schema.embeddings' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.embeddings/from langchain_core.embeddings/g'
git grep -l 'from langchain.schema.document' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.document/from langchain_core.documents/g'
git grep -l 'from langchain.schema.agent' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.agent/from langchain_core.agents/g'
git grep -l 'from langchain.schema.prompt ' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.prompt\ /from langchain_core.prompt_values /g'
git grep -l 'from langchain.schema.language_model' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.language_model/from langchain_core.language_models/g'
```
2023-12-12 00:49:10 +00:00
|
|
|
from langchain_core.output_parsers import StrOutputParser
|
|
|
|
from langchain_core.runnables import RunnablePassthrough
|
2023-11-07 22:45:33 +00:00
|
|
|
|
|
|
|
from .populate_vector_store import populate
|
|
|
|
|
|
|
|
# inits
|
|
|
|
llm = ChatOpenAI()
|
|
|
|
embeddings = OpenAIEmbeddings()
|
|
|
|
vector_store = AstraDB(
|
|
|
|
embedding=embeddings,
|
|
|
|
collection_name="langserve_rag_demo",
|
|
|
|
token=os.environ["ASTRA_DB_APPLICATION_TOKEN"],
|
|
|
|
api_endpoint=os.environ["ASTRA_DB_API_ENDPOINT"],
|
|
|
|
namespace=os.environ.get("ASTRA_DB_KEYSPACE"),
|
|
|
|
)
|
|
|
|
retriever = vector_store.as_retriever(search_kwargs={"k": 3})
|
|
|
|
|
|
|
|
# For demo reasons, let's ensure there are rows on the vector store.
|
|
|
|
# Please remove this and/or adapt to your use case!
|
|
|
|
|
|
|
|
inserted_lines = populate(vector_store)
|
|
|
|
if inserted_lines:
|
|
|
|
print(f"Done ({inserted_lines} lines inserted).")
|
|
|
|
|
|
|
|
entomology_template = """
|
|
|
|
You are an expert entomologist, tasked with answering enthusiast biologists' questions.
|
|
|
|
You must answer based only on the provided context, do not make up any fact.
|
|
|
|
Your answers must be concise and to the point, but strive to provide scientific details
|
|
|
|
(such as family, order, Latin names, and so on when appropriate).
|
|
|
|
You MUST refuse to answer questions on other topics than entomology,
|
|
|
|
as well as questions whose answer is not found in the provided context.
|
|
|
|
|
|
|
|
CONTEXT:
|
|
|
|
{context}
|
|
|
|
|
|
|
|
QUESTION: {question}
|
|
|
|
|
|
|
|
YOUR ANSWER:"""
|
|
|
|
|
|
|
|
entomology_prompt = ChatPromptTemplate.from_template(entomology_template)
|
|
|
|
|
|
|
|
chain = (
|
|
|
|
{"context": retriever, "question": RunnablePassthrough()}
|
|
|
|
| entomology_prompt
|
|
|
|
| llm
|
|
|
|
| StrOutputParser()
|
|
|
|
)
|