langchain/tests/integration_tests/vectorstores/test_azuresearch.py

94 lines
3.2 KiB
Python
Raw Normal View History

import os
import time
import openai
import pytest
from dotenv import load_dotenv
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores.azuresearch import AzureSearch
load_dotenv()
# Azure OpenAI settings
openai.api_type = "azure"
openai.api_base = os.getenv("OPENAI_API_BASE", "")
openai.api_version = "2023-05-15"
openai.api_key = os.getenv("OPENAI_API_KEY", "")
model: str = os.getenv("OPENAI_EMBEDDINGS_ENGINE_DOC", "text-embedding-ada-002")
# Vector store settings
vector_store_address: str = os.getenv("AZURE_SEARCH_ENDPOINT", "")
vector_store_password: str = os.getenv("AZURE_SEARCH_ADMIN_KEY", "")
index_name: str = "embeddings-vector-store-test"
@pytest.fixture
def similarity_search_test() -> None:
"""Test end to end construction and search."""
# Create Embeddings
embeddings: OpenAIEmbeddings = OpenAIEmbeddings(model=model, chunk_size=1)
# Create Vector store
vector_store: AzureSearch = AzureSearch(
azure_search_endpoint=vector_store_address,
azure_search_key=vector_store_password,
index_name=index_name,
embedding_function=embeddings.embed_query,
)
# Add texts to vector store and perform a similarity search
vector_store.add_texts(
["Test 1", "Test 2", "Test 3"],
[
{"title": "Title 1", "any_metadata": "Metadata 1"},
{"title": "Title 2", "any_metadata": "Metadata 2"},
{"title": "Title 3", "any_metadata": "Metadata 3"},
],
)
time.sleep(1)
res = vector_store.similarity_search(query="Test 1", k=3)
assert len(res) == 3
def from_text_similarity_search_test() -> None:
"""Test end to end construction and search."""
# Create Embeddings
embeddings: OpenAIEmbeddings = OpenAIEmbeddings(model=model, chunk_size=1)
# Create Vector store
vector_store: AzureSearch = AzureSearch.from_texts(
azure_search_endpoint=vector_store_address,
azure_search_key=vector_store_password,
index_name=index_name,
texts=["Test 1", "Test 2", "Test 3"],
embedding=embeddings,
)
time.sleep(1)
# Perform a similarity search
res = vector_store.similarity_search(query="Test 1", k=3)
assert len(res) == 3
def test_semantic_hybrid_search() -> None:
"""Test end to end construction and search."""
# Create Embeddings
embeddings: OpenAIEmbeddings = OpenAIEmbeddings(model=model, chunk_size=1)
# Create Vector store
vector_store: AzureSearch = AzureSearch(
azure_search_endpoint=vector_store_address,
azure_search_key=vector_store_password,
index_name=index_name,
embedding_function=embeddings.embed_query,
semantic_configuration_name="default",
)
# Add texts to vector store and perform a semantic hybrid search
vector_store.add_texts(
["Test 1", "Test 2", "Test 3"],
[
{"title": "Title 1", "any_metadata": "Metadata 1"},
{"title": "Title 2", "any_metadata": "Metadata 2"},
{"title": "Title 3", "any_metadata": "Metadata 3"},
],
)
time.sleep(1)
res = vector_store.semantic_hybrid_search(query="What's Azure Search?", k=3)
assert len(res) == 3