langchain/docs/extras/modules/model_io/models/llms/integrations/modal.ipynb

144 lines
3.5 KiB
Plaintext
Raw Normal View History

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Modal\n",
"\n",
"The [Modal Python Library](https://modal.com/docs/guide) provides convenient, on-demand access to serverless cloud compute from Python scripts on your local computer. \n",
"The `Modal` itself does not provide any LLMs but only the infrastructure.\n",
"\n",
"This example goes over how to use LangChain to interact with `Modal`.\n",
"\n",
"[Here](https://modal.com/docs/guide/ex/potus_speech_qanda) is another example how to use LangChain to interact with `Modal`."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"!pip install modal-client"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[?25lLaunching login page in your browser window\u001b[33m...\u001b[0m\n",
"\u001b[2KIf this is not showing up, please copy this URL into your web browser manually:\n",
"\u001b[2Km⠙\u001b[0m Waiting for authentication in the web browser...\n",
"\u001b]8;id=417802;https://modal.com/token-flow/tf-ptEuGecm7T1T5YQe42kwM1\u001b\\\u001b[4;94mhttps://modal.com/token-flow/tf-ptEuGecm7T1T5YQe42kwM1\u001b[0m\u001b]8;;\u001b\\\n",
"\n",
"\u001b[2K\u001b[32m⠙\u001b[0m Waiting for authentication in the web browser...\n",
"\u001b[1A\u001b[2K^C\n",
"\n",
"\u001b[31mAborted.\u001b[0m\n"
]
}
],
"source": [
"# register and get a new token\n",
"\n",
"!modal token new"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Follow [these instructions](https://modal.com/docs/guide/secrets) to deal with secrets."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain.llms import Modal\n",
"from langchain import PromptTemplate, LLMChain"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"template = \"\"\"Question: {question}\n",
"\n",
"Answer: Let's think step by step.\"\"\"\n",
"\n",
"prompt = PromptTemplate(template=template, input_variables=[\"question\"])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"llm = Modal(endpoint_url=\"YOUR_ENDPOINT_URL\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"llm_chain = LLMChain(prompt=prompt, llm=llm)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"question = \"What NFL team won the Super Bowl in the year Justin Beiber was born?\"\n",
"\n",
"llm_chain.run(question)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.6"
},
"vscode": {
"interpreter": {
"hash": "a0a0263b650d907a3bfe41c0f8d6a63a071b884df3cfdc1579f00cdc1aed6b03"
}
}
},
"nbformat": 4,
"nbformat_minor": 4
}