mirror of
https://github.com/hwchase17/langchain
synced 2024-11-10 01:10:59 +00:00
114 lines
3.7 KiB
Python
114 lines
3.7 KiB
Python
|
import importlib.util
|
||
|
from typing import Any, Dict, List
|
||
|
|
||
|
from langchain_core.embeddings import Embeddings
|
||
|
from langchain_core.pydantic_v1 import BaseModel, Extra, root_validator
|
||
|
|
||
|
|
||
|
class SpacyEmbeddings(BaseModel, Embeddings):
|
||
|
"""Embeddings by SpaCy models.
|
||
|
|
||
|
It only supports the 'en_core_web_sm' model.
|
||
|
|
||
|
Attributes:
|
||
|
nlp (Any): The Spacy model loaded into memory.
|
||
|
|
||
|
Methods:
|
||
|
embed_documents(texts: List[str]) -> List[List[float]]:
|
||
|
Generates embeddings for a list of documents.
|
||
|
embed_query(text: str) -> List[float]:
|
||
|
Generates an embedding for a single piece of text.
|
||
|
"""
|
||
|
|
||
|
nlp: Any # The Spacy model loaded into memory
|
||
|
|
||
|
class Config:
|
||
|
"""Configuration for this pydantic object."""
|
||
|
|
||
|
extra = Extra.forbid # Forbid extra attributes during model initialization
|
||
|
|
||
|
@root_validator(pre=True)
|
||
|
def validate_environment(cls, values: Dict) -> Dict:
|
||
|
"""
|
||
|
Validates that the Spacy package and the 'en_core_web_sm' model are installed.
|
||
|
|
||
|
Args:
|
||
|
values (Dict): The values provided to the class constructor.
|
||
|
|
||
|
Returns:
|
||
|
The validated values.
|
||
|
|
||
|
Raises:
|
||
|
ValueError: If the Spacy package or the 'en_core_web_sm'
|
||
|
model are not installed.
|
||
|
"""
|
||
|
# Check if the Spacy package is installed
|
||
|
if importlib.util.find_spec("spacy") is None:
|
||
|
raise ValueError(
|
||
|
"Spacy package not found. "
|
||
|
"Please install it with `pip install spacy`."
|
||
|
)
|
||
|
try:
|
||
|
# Try to load the 'en_core_web_sm' Spacy model
|
||
|
import spacy
|
||
|
|
||
|
values["nlp"] = spacy.load("en_core_web_sm")
|
||
|
except OSError:
|
||
|
# If the model is not found, raise a ValueError
|
||
|
raise ValueError(
|
||
|
"Spacy model 'en_core_web_sm' not found. "
|
||
|
"Please install it with"
|
||
|
" `python -m spacy download en_core_web_sm`."
|
||
|
)
|
||
|
return values # Return the validated values
|
||
|
|
||
|
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
||
|
"""
|
||
|
Generates embeddings for a list of documents.
|
||
|
|
||
|
Args:
|
||
|
texts (List[str]): The documents to generate embeddings for.
|
||
|
|
||
|
Returns:
|
||
|
A list of embeddings, one for each document.
|
||
|
"""
|
||
|
return [self.nlp(text).vector.tolist() for text in texts]
|
||
|
|
||
|
def embed_query(self, text: str) -> List[float]:
|
||
|
"""
|
||
|
Generates an embedding for a single piece of text.
|
||
|
|
||
|
Args:
|
||
|
text (str): The text to generate an embedding for.
|
||
|
|
||
|
Returns:
|
||
|
The embedding for the text.
|
||
|
"""
|
||
|
return self.nlp(text).vector.tolist()
|
||
|
|
||
|
async def aembed_documents(self, texts: List[str]) -> List[List[float]]:
|
||
|
"""
|
||
|
Asynchronously generates embeddings for a list of documents.
|
||
|
This method is not implemented and raises a NotImplementedError.
|
||
|
|
||
|
Args:
|
||
|
texts (List[str]): The documents to generate embeddings for.
|
||
|
|
||
|
Raises:
|
||
|
NotImplementedError: This method is not implemented.
|
||
|
"""
|
||
|
raise NotImplementedError("Asynchronous embedding generation is not supported.")
|
||
|
|
||
|
async def aembed_query(self, text: str) -> List[float]:
|
||
|
"""
|
||
|
Asynchronously generates an embedding for a single piece of text.
|
||
|
This method is not implemented and raises a NotImplementedError.
|
||
|
|
||
|
Args:
|
||
|
text (str): The text to generate an embedding for.
|
||
|
|
||
|
Raises:
|
||
|
NotImplementedError: This method is not implemented.
|
||
|
"""
|
||
|
raise NotImplementedError("Asynchronous embedding generation is not supported.")
|