mirror of
https://github.com/hwchase17/langchain
synced 2024-11-10 01:10:59 +00:00
108 lines
3.4 KiB
Python
108 lines
3.4 KiB
Python
|
from typing import Any, Dict, List, Literal, Optional
|
||
|
|
||
|
import numpy as np
|
||
|
from langchain_core.embeddings import Embeddings
|
||
|
from langchain_core.pydantic_v1 import BaseModel, Extra, root_validator
|
||
|
|
||
|
|
||
|
class FastEmbedEmbeddings(BaseModel, Embeddings):
|
||
|
"""Qdrant FastEmbedding models.
|
||
|
FastEmbed is a lightweight, fast, Python library built for embedding generation.
|
||
|
See more documentation at:
|
||
|
* https://github.com/qdrant/fastembed/
|
||
|
* https://qdrant.github.io/fastembed/
|
||
|
|
||
|
To use this class, you must install the `fastembed` Python package.
|
||
|
|
||
|
`pip install fastembed`
|
||
|
Example:
|
||
|
from langchain_community.embeddings import FastEmbedEmbeddings
|
||
|
fastembed = FastEmbedEmbeddings()
|
||
|
"""
|
||
|
|
||
|
model_name: str = "BAAI/bge-small-en-v1.5"
|
||
|
"""Name of the FastEmbedding model to use
|
||
|
Defaults to "BAAI/bge-small-en-v1.5"
|
||
|
Find the list of supported models at
|
||
|
https://qdrant.github.io/fastembed/examples/Supported_Models/
|
||
|
"""
|
||
|
|
||
|
max_length: int = 512
|
||
|
"""The maximum number of tokens. Defaults to 512.
|
||
|
Unknown behavior for values > 512.
|
||
|
"""
|
||
|
|
||
|
cache_dir: Optional[str]
|
||
|
"""The path to the cache directory.
|
||
|
Defaults to `local_cache` in the parent directory
|
||
|
"""
|
||
|
|
||
|
threads: Optional[int]
|
||
|
"""The number of threads single onnxruntime session can use.
|
||
|
Defaults to None
|
||
|
"""
|
||
|
|
||
|
doc_embed_type: Literal["default", "passage"] = "default"
|
||
|
"""Type of embedding to use for documents
|
||
|
"default": Uses FastEmbed's default embedding method
|
||
|
"passage": Prefixes the text with "passage" before embedding.
|
||
|
"""
|
||
|
|
||
|
_model: Any # : :meta private:
|
||
|
|
||
|
class Config:
|
||
|
"""Configuration for this pydantic object."""
|
||
|
|
||
|
extra = Extra.forbid
|
||
|
|
||
|
@root_validator()
|
||
|
def validate_environment(cls, values: Dict) -> Dict:
|
||
|
"""Validate that FastEmbed has been installed."""
|
||
|
try:
|
||
|
from fastembed.embedding import FlagEmbedding
|
||
|
|
||
|
model_name = values.get("model_name")
|
||
|
max_length = values.get("max_length")
|
||
|
cache_dir = values.get("cache_dir")
|
||
|
threads = values.get("threads")
|
||
|
values["_model"] = FlagEmbedding(
|
||
|
model_name=model_name,
|
||
|
max_length=max_length,
|
||
|
cache_dir=cache_dir,
|
||
|
threads=threads,
|
||
|
)
|
||
|
except ImportError as ie:
|
||
|
raise ImportError(
|
||
|
"Could not import 'fastembed' Python package. "
|
||
|
"Please install it with `pip install fastembed`."
|
||
|
) from ie
|
||
|
return values
|
||
|
|
||
|
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
||
|
"""Generate embeddings for documents using FastEmbed.
|
||
|
|
||
|
Args:
|
||
|
texts: The list of texts to embed.
|
||
|
|
||
|
Returns:
|
||
|
List of embeddings, one for each text.
|
||
|
"""
|
||
|
embeddings: List[np.ndarray]
|
||
|
if self.doc_embed_type == "passage":
|
||
|
embeddings = self._model.passage_embed(texts)
|
||
|
else:
|
||
|
embeddings = self._model.embed(texts)
|
||
|
return [e.tolist() for e in embeddings]
|
||
|
|
||
|
def embed_query(self, text: str) -> List[float]:
|
||
|
"""Generate query embeddings using FastEmbed.
|
||
|
|
||
|
Args:
|
||
|
text: The text to embed.
|
||
|
|
||
|
Returns:
|
||
|
Embeddings for the text.
|
||
|
"""
|
||
|
query_embeddings: np.ndarray = next(self._model.query_embed(text))
|
||
|
return query_embeddings.tolist()
|