langchain/libs/community/langchain_community/document_loaders/directory.py

163 lines
5.8 KiB
Python
Raw Normal View History

community[major], core[patch], langchain[patch], experimental[patch]: Create langchain-community (#14463) Moved the following modules to new package langchain-community in a backwards compatible fashion: ``` mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community ``` Moved the following to core ``` mv langchain/langchain/utils/json_schema.py core/langchain_core/utils mv langchain/langchain/utils/html.py core/langchain_core/utils mv langchain/langchain/utils/strings.py core/langchain_core/utils cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py rm langchain/langchain/utils/env.py ``` See .scripts/community_split/script_integrations.sh for all changes
2023-12-11 21:53:30 +00:00
import concurrent
import logging
import random
from pathlib import Path
from typing import Any, List, Optional, Type, Union
from langchain_core.documents import Document
from langchain_community.document_loaders.base import BaseLoader
from langchain_community.document_loaders.html_bs import BSHTMLLoader
from langchain_community.document_loaders.text import TextLoader
from langchain_community.document_loaders.unstructured import UnstructuredFileLoader
FILE_LOADER_TYPE = Union[
Type[UnstructuredFileLoader], Type[TextLoader], Type[BSHTMLLoader]
]
logger = logging.getLogger(__name__)
def _is_visible(p: Path) -> bool:
parts = p.parts
for _p in parts:
if _p.startswith("."):
return False
return True
class DirectoryLoader(BaseLoader):
"""Load from a directory."""
def __init__(
self,
path: str,
glob: str = "**/[!.]*",
silent_errors: bool = False,
load_hidden: bool = False,
loader_cls: FILE_LOADER_TYPE = UnstructuredFileLoader,
loader_kwargs: Union[dict, None] = None,
recursive: bool = False,
show_progress: bool = False,
use_multithreading: bool = False,
max_concurrency: int = 4,
*,
sample_size: int = 0,
randomize_sample: bool = False,
sample_seed: Union[int, None] = None,
):
"""Initialize with a path to directory and how to glob over it.
Args:
path: Path to directory.
glob: Glob pattern to use to find files. Defaults to "**/[!.]*"
(all files except hidden).
silent_errors: Whether to silently ignore errors. Defaults to False.
load_hidden: Whether to load hidden files. Defaults to False.
loader_cls: Loader class to use for loading files.
Defaults to UnstructuredFileLoader.
loader_kwargs: Keyword arguments to pass to loader_cls. Defaults to None.
recursive: Whether to recursively search for files. Defaults to False.
show_progress: Whether to show a progress bar. Defaults to False.
use_multithreading: Whether to use multithreading. Defaults to False.
max_concurrency: The maximum number of threads to use. Defaults to 4.
sample_size: The maximum number of files you would like to load from the
directory.
randomize_sample: Suffle the files to get a random sample.
sample_seed: set the seed of the random shuffle for reporoducibility.
"""
if loader_kwargs is None:
loader_kwargs = {}
self.path = path
self.glob = glob
self.load_hidden = load_hidden
self.loader_cls = loader_cls
self.loader_kwargs = loader_kwargs
self.silent_errors = silent_errors
self.recursive = recursive
self.show_progress = show_progress
self.use_multithreading = use_multithreading
self.max_concurrency = max_concurrency
self.sample_size = sample_size
self.randomize_sample = randomize_sample
self.sample_seed = sample_seed
def load_file(
self, item: Path, path: Path, docs: List[Document], pbar: Optional[Any]
) -> None:
"""Load a file.
Args:
item: File path.
path: Directory path.
docs: List of documents to append to.
pbar: Progress bar. Defaults to None.
"""
if item.is_file():
if _is_visible(item.relative_to(path)) or self.load_hidden:
try:
logger.debug(f"Processing file: {str(item)}")
sub_docs = self.loader_cls(str(item), **self.loader_kwargs).load()
docs.extend(sub_docs)
except Exception as e:
if self.silent_errors:
logger.warning(f"Error loading file {str(item)}: {e}")
else:
raise e
finally:
if pbar:
pbar.update(1)
def load(self) -> List[Document]:
"""Load documents."""
p = Path(self.path)
if not p.exists():
raise FileNotFoundError(f"Directory not found: '{self.path}'")
if not p.is_dir():
raise ValueError(f"Expected directory, got file: '{self.path}'")
docs: List[Document] = []
items = list(p.rglob(self.glob) if self.recursive else p.glob(self.glob))
if self.sample_size > 0:
if self.randomize_sample:
randomizer = (
random.Random(self.sample_seed) if self.sample_seed else random
)
randomizer.shuffle(items) # type: ignore
items = items[: min(len(items), self.sample_size)]
pbar = None
if self.show_progress:
try:
from tqdm import tqdm
pbar = tqdm(total=len(items))
except ImportError as e:
logger.warning(
"To log the progress of DirectoryLoader you need to install tqdm, "
"`pip install tqdm`"
)
if self.silent_errors:
logger.warning(e)
else:
raise ImportError(
"To log the progress of DirectoryLoader "
"you need to install tqdm, "
"`pip install tqdm`"
)
if self.use_multithreading:
with concurrent.futures.ThreadPoolExecutor(
max_workers=self.max_concurrency
) as executor:
executor.map(lambda i: self.load_file(i, p, docs, pbar), items)
else:
for i in items:
self.load_file(i, p, docs, pbar)
if pbar:
pbar.close()
return docs