mirror of
https://github.com/hwchase17/langchain
synced 2024-10-31 15:20:26 +00:00
211 lines
6.7 KiB
Plaintext
211 lines
6.7 KiB
Plaintext
|
{
|
||
|
"cells": [
|
||
|
{
|
||
|
"attachments": {},
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"# PromptLayer\n",
|
||
|
"\n",
|
||
|
"![PromptLayer](https://promptlayer.com/text_logo.png)\n",
|
||
|
"\n",
|
||
|
"[PromptLayer](https://promptlayer.com) is a an LLM observability platform that lets you visualize requests, version prompts, and track usage. In this guide we will go over how to setup the `PromptLayerCallbackHandler`. \n",
|
||
|
"\n",
|
||
|
"While PromptLayer does have LLMs that integrate directly with LangChain (eg [`PromptLayerOpenAI`](https://python.langchain.com/docs/modules/model_io/models/llms/integrations/promptlayer_openai)), this callback is the recommended way to integrate PromptLayer with LangChain.\n",
|
||
|
"\n",
|
||
|
"See [our docs](https://docs.promptlayer.com/languages/langchain) for more information."
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"attachments": {},
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {
|
||
|
"tags": []
|
||
|
},
|
||
|
"source": [
|
||
|
"## Installation and Setup"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"!pip install promptlayer --upgrade"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"attachments": {},
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"### Getting API Credentials\n",
|
||
|
"\n",
|
||
|
"If you do not have a PromptLayer account, create one on [promptlayer.com](https://www.promptlayer.com). Then get an API key by clicking on the settings cog in the navbar and\n",
|
||
|
"set it as an environment variabled called `PROMPTLAYER_API_KEY`\n"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"attachments": {},
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"### Usage\n",
|
||
|
"\n",
|
||
|
"Getting started with `PromptLayerCallbackHandler` is fairly simple, it takes two optional arguments:\n",
|
||
|
"1. `pl_tags` - an optional list of strings that will be tracked as tags on PromptLayer.\n",
|
||
|
"2. `pl_id_callback` - an optional function that will take `promptlayer_request_id` as an argument. This ID can be used with all of PromptLayer's tracking features to track, metadata, scores, and prompt usage."
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"attachments": {},
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"### Simple OpenAI Example\n",
|
||
|
"\n",
|
||
|
"In this simple example we use `PromptLayerCallbackHandler` with `ChatOpenAI`. We add a PromptLayer tag named `chatopenai`"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"import promptlayer # Don't forget this 🍰\n",
|
||
|
"from langchain.callbacks import PromptLayerCallbackHandler\n",
|
||
|
"from langchain.chat_models import ChatOpenAI\n",
|
||
|
"from langchain.schema import (\n",
|
||
|
" HumanMessage,\n",
|
||
|
")\n",
|
||
|
"\n",
|
||
|
"chat_llm = ChatOpenAI(\n",
|
||
|
" temperature=0,\n",
|
||
|
" callbacks=[PromptLayerCallbackHandler(pl_tags=[\"chatopenai\"])],\n",
|
||
|
")\n",
|
||
|
"llm_results = chat_llm(\n",
|
||
|
" [\n",
|
||
|
" HumanMessage(content=\"What comes after 1,2,3 ?\"),\n",
|
||
|
" HumanMessage(content=\"Tell me another joke?\"),\n",
|
||
|
" ]\n",
|
||
|
")\n",
|
||
|
"print(llm_results)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"attachments": {},
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"### GPT4All Example"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"import promptlayer # Don't forget this 🍰\n",
|
||
|
"from langchain.callbacks import PromptLayerCallbackHandler\n",
|
||
|
"\n",
|
||
|
"from langchain.llms import GPT4All\n",
|
||
|
"\n",
|
||
|
"model = GPT4All(model=\"./models/gpt4all-model.bin\", n_ctx=512, n_threads=8)\n",
|
||
|
"\n",
|
||
|
"response = model(\n",
|
||
|
" \"Once upon a time, \",\n",
|
||
|
" callbacks=[PromptLayerCallbackHandler(pl_tags=[\"langchain\", \"gpt4all\"])],\n",
|
||
|
")"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"attachments": {},
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"### Full Featured Example\n",
|
||
|
"\n",
|
||
|
"In this example we unlock more of the power of PromptLayer.\n",
|
||
|
"\n",
|
||
|
"PromptLayer allows you to visually create, version, and track prompt templates. Using the [Prompt Registry](https://docs.promptlayer.com/features/prompt-registry), we can programatically fetch the prompt template called `example`.\n",
|
||
|
"\n",
|
||
|
"We also define a `pl_id_callback` function which takes in the `promptlayer_request_id` and logs a score, metadata and links the prompt template used. Read more about tracking on [our docs](https://docs.promptlayer.com/features/prompt-history/request-id)."
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"import promptlayer # Don't forget this 🍰\n",
|
||
|
"from langchain.callbacks import PromptLayerCallbackHandler\n",
|
||
|
"from langchain.llms import OpenAI\n",
|
||
|
"\n",
|
||
|
"\n",
|
||
|
"def pl_id_callback(promptlayer_request_id):\n",
|
||
|
" print(\"prompt layer id \", promptlayer_request_id)\n",
|
||
|
" promptlayer.track.score(\n",
|
||
|
" request_id=promptlayer_request_id, score=100\n",
|
||
|
" ) # score is an integer 0-100\n",
|
||
|
" promptlayer.track.metadata(\n",
|
||
|
" request_id=promptlayer_request_id, metadata={\"foo\": \"bar\"}\n",
|
||
|
" ) # metadata is a dictionary of key value pairs that is tracked on PromptLayer\n",
|
||
|
" promptlayer.track.prompt(\n",
|
||
|
" request_id=promptlayer_request_id,\n",
|
||
|
" prompt_name=\"example\",\n",
|
||
|
" prompt_input_variables={\"product\": \"toasters\"},\n",
|
||
|
" version=1,\n",
|
||
|
" ) # link the request to a prompt template\n",
|
||
|
"\n",
|
||
|
"\n",
|
||
|
"openai_llm = OpenAI(\n",
|
||
|
" model_name=\"text-davinci-002\",\n",
|
||
|
" callbacks=[PromptLayerCallbackHandler(pl_id_callback=pl_id_callback)],\n",
|
||
|
")\n",
|
||
|
"\n",
|
||
|
"example_prompt = promptlayer.prompts.get(\"example\", version=1, langchain=True)\n",
|
||
|
"openai_llm(example_prompt.format(product=\"toasters\"))"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"attachments": {},
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"That is all it takes! After setup all your requests will show up on the PromptLayer dashboard.\n",
|
||
|
"This callback also works with any LLM implemented on LangChain."
|
||
|
]
|
||
|
}
|
||
|
],
|
||
|
"metadata": {
|
||
|
"kernelspec": {
|
||
|
"display_name": "base",
|
||
|
"language": "python",
|
||
|
"name": "python3"
|
||
|
},
|
||
|
"language_info": {
|
||
|
"codemirror_mode": {
|
||
|
"name": "ipython",
|
||
|
"version": 3
|
||
|
},
|
||
|
"file_extension": ".py",
|
||
|
"mimetype": "text/x-python",
|
||
|
"name": "python",
|
||
|
"nbconvert_exporter": "python",
|
||
|
"pygments_lexer": "ipython3",
|
||
|
"version": "3.8.8 (default, Apr 13 2021, 12:59:45) \n[Clang 10.0.0 ]"
|
||
|
},
|
||
|
"vscode": {
|
||
|
"interpreter": {
|
||
|
"hash": "c4fe2cd85a8d9e8baaec5340ce66faff1c77581a9f43e6c45e85e09b6fced008"
|
||
|
}
|
||
|
}
|
||
|
},
|
||
|
"nbformat": 4,
|
||
|
"nbformat_minor": 4
|
||
|
}
|