langchain/templates/pii-protected-chatbot/pii_protected_chatbot/chain.py

86 lines
2.2 KiB
Python
Raw Normal View History

from typing import List, Tuple
from langchain.chat_models import ChatOpenAI
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
docs[patch], templates[patch]: Import from core (#14575) Update imports to use core for the low-hanging fruit changes. Ran following ```bash git grep -l 'langchain.schema.runnable' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.runnable/langchain_core.runnables/g' git grep -l 'langchain.schema.output_parser' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.output_parser/langchain_core.output_parsers/g' git grep -l 'langchain.schema.messages' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.messages/langchain_core.messages/g' git grep -l 'langchain.schema.chat_histry' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.chat_history/langchain_core.chat_history/g' git grep -l 'langchain.schema.prompt_template' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.prompt_template/langchain_core.prompts/g' git grep -l 'from langchain.pydantic_v1' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.pydantic_v1/from langchain_core.pydantic_v1/g' git grep -l 'from langchain.tools.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.tools\.base/from langchain_core.tools/g' git grep -l 'from langchain.chat_models.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.chat_models.base/from langchain_core.language_models.chat_models/g' git grep -l 'from langchain.llms.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.llms\.base\ /from langchain_core.language_models.llms\ /g' git grep -l 'from langchain.embeddings.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.embeddings\.base/from langchain_core.embeddings/g' git grep -l 'from langchain.vectorstores.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.vectorstores\.base/from langchain_core.vectorstores/g' git grep -l 'from langchain.agents.tools' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.agents\.tools/from langchain_core.tools/g' git grep -l 'from langchain.schema.output' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.output\ /from langchain_core.outputs\ /g' git grep -l 'from langchain.schema.embeddings' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.embeddings/from langchain_core.embeddings/g' git grep -l 'from langchain.schema.document' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.document/from langchain_core.documents/g' git grep -l 'from langchain.schema.agent' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.agent/from langchain_core.agents/g' git grep -l 'from langchain.schema.prompt ' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.prompt\ /from langchain_core.prompt_values /g' git grep -l 'from langchain.schema.language_model' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.language_model/from langchain_core.language_models/g' ```
2023-12-12 00:49:10 +00:00
from langchain_core.messages import AIMessage, HumanMessage
from langchain_core.output_parsers import StrOutputParser
from langchain_core.pydantic_v1 import BaseModel
from langchain_core.runnables import RunnablePassthrough
from presidio_analyzer import AnalyzerEngine
# Formatting for chat history
def _format_chat_history(chat_history: List[Tuple[str, str]]):
buffer = []
for human, ai in chat_history:
buffer.append(HumanMessage(content=human))
buffer.append(AIMessage(content=ai))
return buffer
# Prompt we will use
_prompt = ChatPromptTemplate.from_messages(
[
(
"system",
"You are a helpful assistant who speaks like a pirate",
),
MessagesPlaceholder(variable_name="chat_history"),
("human", "{text}"),
]
)
# Model we will use
_model = ChatOpenAI()
# Standard conversation chain.
chat_chain = (
{
"chat_history": lambda x: _format_chat_history(x["chat_history"]),
"text": lambda x: x["text"],
}
| _prompt
| _model
| StrOutputParser()
)
# PII Detection logic
analyzer = AnalyzerEngine()
# You can customize this to detect any PII
def _detect_pii(inputs: dict) -> bool:
analyzer_results = analyzer.analyze(text=inputs["text"], language="en")
return bool(analyzer_results)
# Add logic to route on whether PII has been detected
def _route_on_pii(inputs: dict):
if inputs["pii_detected"]:
# Response if PII is detected
return "Sorry, I can't answer questions that involve PII"
else:
return chat_chain
# Final chain
chain = RunnablePassthrough.assign(
# First detect PII
pii_detected=_detect_pii
) | {
# Then use this information to generate the response
"response": _route_on_pii,
# Return boolean of whether PII is detected so client can decided
# whether or not to include in chat history
"pii_detected": lambda x: x["pii_detected"],
}
# Add typing for playground
class ChainInput(BaseModel):
text: str
chat_history: List[Tuple[str, str]]
chain = chain.with_types(input_type=ChainInput)