2023-11-03 20:22:55 +00:00
|
|
|
from operator import itemgetter
|
|
|
|
|
|
|
|
from langchain.chat_models import ChatOpenAI
|
|
|
|
from langchain.prompts import ChatPromptTemplate
|
docs[patch], templates[patch]: Import from core (#14575)
Update imports to use core for the low-hanging fruit changes. Ran
following
```bash
git grep -l 'langchain.schema.runnable' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.runnable/langchain_core.runnables/g'
git grep -l 'langchain.schema.output_parser' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.output_parser/langchain_core.output_parsers/g'
git grep -l 'langchain.schema.messages' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.messages/langchain_core.messages/g'
git grep -l 'langchain.schema.chat_histry' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.chat_history/langchain_core.chat_history/g'
git grep -l 'langchain.schema.prompt_template' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.prompt_template/langchain_core.prompts/g'
git grep -l 'from langchain.pydantic_v1' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.pydantic_v1/from langchain_core.pydantic_v1/g'
git grep -l 'from langchain.tools.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.tools\.base/from langchain_core.tools/g'
git grep -l 'from langchain.chat_models.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.chat_models.base/from langchain_core.language_models.chat_models/g'
git grep -l 'from langchain.llms.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.llms\.base\ /from langchain_core.language_models.llms\ /g'
git grep -l 'from langchain.embeddings.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.embeddings\.base/from langchain_core.embeddings/g'
git grep -l 'from langchain.vectorstores.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.vectorstores\.base/from langchain_core.vectorstores/g'
git grep -l 'from langchain.agents.tools' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.agents\.tools/from langchain_core.tools/g'
git grep -l 'from langchain.schema.output' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.output\ /from langchain_core.outputs\ /g'
git grep -l 'from langchain.schema.embeddings' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.embeddings/from langchain_core.embeddings/g'
git grep -l 'from langchain.schema.document' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.document/from langchain_core.documents/g'
git grep -l 'from langchain.schema.agent' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.agent/from langchain_core.agents/g'
git grep -l 'from langchain.schema.prompt ' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.prompt\ /from langchain_core.prompt_values /g'
git grep -l 'from langchain.schema.language_model' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.language_model/from langchain_core.language_models/g'
```
2023-12-12 00:49:10 +00:00
|
|
|
from langchain_core.output_parsers import StrOutputParser
|
|
|
|
from langchain_core.pydantic_v1 import BaseModel
|
|
|
|
from langchain_core.runnables import ConfigurableField, RunnableParallel
|
2023-11-03 20:22:55 +00:00
|
|
|
|
|
|
|
from neo4j_advanced_rag.retrievers import (
|
|
|
|
hypothetic_question_vectorstore,
|
|
|
|
parent_vectorstore,
|
|
|
|
summary_vectorstore,
|
|
|
|
typical_rag,
|
|
|
|
)
|
|
|
|
|
|
|
|
template = """Answer the question based only on the following context:
|
|
|
|
{context}
|
|
|
|
|
|
|
|
Question: {question}
|
|
|
|
"""
|
|
|
|
prompt = ChatPromptTemplate.from_template(template)
|
|
|
|
|
|
|
|
model = ChatOpenAI()
|
|
|
|
|
|
|
|
retriever = typical_rag.as_retriever().configurable_alternatives(
|
|
|
|
ConfigurableField(id="strategy"),
|
|
|
|
default_key="typical_rag",
|
|
|
|
parent_strategy=parent_vectorstore.as_retriever(),
|
|
|
|
hypothetical_questions=hypothetic_question_vectorstore.as_retriever(),
|
|
|
|
summary_strategy=summary_vectorstore.as_retriever(),
|
|
|
|
)
|
|
|
|
|
|
|
|
chain = (
|
|
|
|
RunnableParallel(
|
|
|
|
{
|
|
|
|
"context": itemgetter("question") | retriever,
|
|
|
|
"question": itemgetter("question"),
|
|
|
|
}
|
|
|
|
)
|
|
|
|
| prompt
|
|
|
|
| model
|
|
|
|
| StrOutputParser()
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
# Add typing for input
|
|
|
|
class Question(BaseModel):
|
|
|
|
question: str
|
|
|
|
|
|
|
|
|
|
|
|
chain = chain.with_types(input_type=Question)
|