mirror of
https://github.com/hwchase17/langchain
synced 2024-11-10 01:10:59 +00:00
529 lines
19 KiB
Python
529 lines
19 KiB
Python
|
from __future__ import annotations
|
||
|
|
||
|
import datetime
|
||
|
import os
|
||
|
from typing import (
|
||
|
TYPE_CHECKING,
|
||
|
Any,
|
||
|
Callable,
|
||
|
Dict,
|
||
|
Iterable,
|
||
|
List,
|
||
|
Optional,
|
||
|
Tuple,
|
||
|
)
|
||
|
from uuid import uuid4
|
||
|
|
||
|
import numpy as np
|
||
|
from langchain_core.documents import Document
|
||
|
from langchain_core.embeddings import Embeddings
|
||
|
from langchain_core.vectorstores import VectorStore
|
||
|
|
||
|
from langchain_community.vectorstores.utils import maximal_marginal_relevance
|
||
|
|
||
|
if TYPE_CHECKING:
|
||
|
import weaviate
|
||
|
|
||
|
|
||
|
def _default_schema(index_name: str) -> Dict:
|
||
|
return {
|
||
|
"class": index_name,
|
||
|
"properties": [
|
||
|
{
|
||
|
"name": "text",
|
||
|
"dataType": ["text"],
|
||
|
}
|
||
|
],
|
||
|
}
|
||
|
|
||
|
|
||
|
def _create_weaviate_client(
|
||
|
url: Optional[str] = None,
|
||
|
api_key: Optional[str] = None,
|
||
|
**kwargs: Any,
|
||
|
) -> weaviate.Client:
|
||
|
try:
|
||
|
import weaviate
|
||
|
except ImportError:
|
||
|
raise ImportError(
|
||
|
"Could not import weaviate python package. "
|
||
|
"Please install it with `pip install weaviate-client`"
|
||
|
)
|
||
|
url = url or os.environ.get("WEAVIATE_URL")
|
||
|
api_key = api_key or os.environ.get("WEAVIATE_API_KEY")
|
||
|
auth = weaviate.auth.AuthApiKey(api_key=api_key) if api_key else None
|
||
|
return weaviate.Client(url=url, auth_client_secret=auth, **kwargs)
|
||
|
|
||
|
|
||
|
def _default_score_normalizer(val: float) -> float:
|
||
|
return 1 - 1 / (1 + np.exp(val))
|
||
|
|
||
|
|
||
|
def _json_serializable(value: Any) -> Any:
|
||
|
if isinstance(value, datetime.datetime):
|
||
|
return value.isoformat()
|
||
|
return value
|
||
|
|
||
|
|
||
|
class Weaviate(VectorStore):
|
||
|
"""`Weaviate` vector store.
|
||
|
|
||
|
To use, you should have the ``weaviate-client`` python package installed.
|
||
|
|
||
|
Example:
|
||
|
.. code-block:: python
|
||
|
|
||
|
import weaviate
|
||
|
from langchain_community.vectorstores import Weaviate
|
||
|
|
||
|
client = weaviate.Client(url=os.environ["WEAVIATE_URL"], ...)
|
||
|
weaviate = Weaviate(client, index_name, text_key)
|
||
|
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
client: Any,
|
||
|
index_name: str,
|
||
|
text_key: str,
|
||
|
embedding: Optional[Embeddings] = None,
|
||
|
attributes: Optional[List[str]] = None,
|
||
|
relevance_score_fn: Optional[
|
||
|
Callable[[float], float]
|
||
|
] = _default_score_normalizer,
|
||
|
by_text: bool = True,
|
||
|
):
|
||
|
"""Initialize with Weaviate client."""
|
||
|
try:
|
||
|
import weaviate
|
||
|
except ImportError:
|
||
|
raise ImportError(
|
||
|
"Could not import weaviate python package. "
|
||
|
"Please install it with `pip install weaviate-client`."
|
||
|
)
|
||
|
if not isinstance(client, weaviate.Client):
|
||
|
raise ValueError(
|
||
|
f"client should be an instance of weaviate.Client, got {type(client)}"
|
||
|
)
|
||
|
self._client = client
|
||
|
self._index_name = index_name
|
||
|
self._embedding = embedding
|
||
|
self._text_key = text_key
|
||
|
self._query_attrs = [self._text_key]
|
||
|
self.relevance_score_fn = relevance_score_fn
|
||
|
self._by_text = by_text
|
||
|
if attributes is not None:
|
||
|
self._query_attrs.extend(attributes)
|
||
|
|
||
|
@property
|
||
|
def embeddings(self) -> Optional[Embeddings]:
|
||
|
return self._embedding
|
||
|
|
||
|
def _select_relevance_score_fn(self) -> Callable[[float], float]:
|
||
|
return (
|
||
|
self.relevance_score_fn
|
||
|
if self.relevance_score_fn
|
||
|
else _default_score_normalizer
|
||
|
)
|
||
|
|
||
|
def add_texts(
|
||
|
self,
|
||
|
texts: Iterable[str],
|
||
|
metadatas: Optional[List[dict]] = None,
|
||
|
**kwargs: Any,
|
||
|
) -> List[str]:
|
||
|
"""Upload texts with metadata (properties) to Weaviate."""
|
||
|
from weaviate.util import get_valid_uuid
|
||
|
|
||
|
ids = []
|
||
|
embeddings: Optional[List[List[float]]] = None
|
||
|
if self._embedding:
|
||
|
if not isinstance(texts, list):
|
||
|
texts = list(texts)
|
||
|
embeddings = self._embedding.embed_documents(texts)
|
||
|
|
||
|
with self._client.batch as batch:
|
||
|
for i, text in enumerate(texts):
|
||
|
data_properties = {self._text_key: text}
|
||
|
if metadatas is not None:
|
||
|
for key, val in metadatas[i].items():
|
||
|
data_properties[key] = _json_serializable(val)
|
||
|
|
||
|
# Allow for ids (consistent w/ other methods)
|
||
|
# # Or uuids (backwards compatible w/ existing arg)
|
||
|
# If the UUID of one of the objects already exists
|
||
|
# then the existing object will be replaced by the new object.
|
||
|
_id = get_valid_uuid(uuid4())
|
||
|
if "uuids" in kwargs:
|
||
|
_id = kwargs["uuids"][i]
|
||
|
elif "ids" in kwargs:
|
||
|
_id = kwargs["ids"][i]
|
||
|
|
||
|
batch.add_data_object(
|
||
|
data_object=data_properties,
|
||
|
class_name=self._index_name,
|
||
|
uuid=_id,
|
||
|
vector=embeddings[i] if embeddings else None,
|
||
|
tenant=kwargs.get("tenant"),
|
||
|
)
|
||
|
ids.append(_id)
|
||
|
return ids
|
||
|
|
||
|
def similarity_search(
|
||
|
self, query: str, k: int = 4, **kwargs: Any
|
||
|
) -> List[Document]:
|
||
|
"""Return docs most similar to query.
|
||
|
|
||
|
Args:
|
||
|
query: Text to look up documents similar to.
|
||
|
k: Number of Documents to return. Defaults to 4.
|
||
|
|
||
|
Returns:
|
||
|
List of Documents most similar to the query.
|
||
|
"""
|
||
|
if self._by_text:
|
||
|
return self.similarity_search_by_text(query, k, **kwargs)
|
||
|
else:
|
||
|
if self._embedding is None:
|
||
|
raise ValueError(
|
||
|
"_embedding cannot be None for similarity_search when "
|
||
|
"_by_text=False"
|
||
|
)
|
||
|
embedding = self._embedding.embed_query(query)
|
||
|
return self.similarity_search_by_vector(embedding, k, **kwargs)
|
||
|
|
||
|
def similarity_search_by_text(
|
||
|
self, query: str, k: int = 4, **kwargs: Any
|
||
|
) -> List[Document]:
|
||
|
"""Return docs most similar to query.
|
||
|
|
||
|
Args:
|
||
|
query: Text to look up documents similar to.
|
||
|
k: Number of Documents to return. Defaults to 4.
|
||
|
|
||
|
Returns:
|
||
|
List of Documents most similar to the query.
|
||
|
"""
|
||
|
content: Dict[str, Any] = {"concepts": [query]}
|
||
|
if kwargs.get("search_distance"):
|
||
|
content["certainty"] = kwargs.get("search_distance")
|
||
|
query_obj = self._client.query.get(self._index_name, self._query_attrs)
|
||
|
if kwargs.get("where_filter"):
|
||
|
query_obj = query_obj.with_where(kwargs.get("where_filter"))
|
||
|
if kwargs.get("tenant"):
|
||
|
query_obj = query_obj.with_tenant(kwargs.get("tenant"))
|
||
|
if kwargs.get("additional"):
|
||
|
query_obj = query_obj.with_additional(kwargs.get("additional"))
|
||
|
result = query_obj.with_near_text(content).with_limit(k).do()
|
||
|
if "errors" in result:
|
||
|
raise ValueError(f"Error during query: {result['errors']}")
|
||
|
docs = []
|
||
|
for res in result["data"]["Get"][self._index_name]:
|
||
|
text = res.pop(self._text_key)
|
||
|
docs.append(Document(page_content=text, metadata=res))
|
||
|
return docs
|
||
|
|
||
|
def similarity_search_by_vector(
|
||
|
self, embedding: List[float], k: int = 4, **kwargs: Any
|
||
|
) -> List[Document]:
|
||
|
"""Look up similar documents by embedding vector in Weaviate."""
|
||
|
vector = {"vector": embedding}
|
||
|
query_obj = self._client.query.get(self._index_name, self._query_attrs)
|
||
|
if kwargs.get("where_filter"):
|
||
|
query_obj = query_obj.with_where(kwargs.get("where_filter"))
|
||
|
if kwargs.get("tenant"):
|
||
|
query_obj = query_obj.with_tenant(kwargs.get("tenant"))
|
||
|
if kwargs.get("additional"):
|
||
|
query_obj = query_obj.with_additional(kwargs.get("additional"))
|
||
|
result = query_obj.with_near_vector(vector).with_limit(k).do()
|
||
|
if "errors" in result:
|
||
|
raise ValueError(f"Error during query: {result['errors']}")
|
||
|
docs = []
|
||
|
for res in result["data"]["Get"][self._index_name]:
|
||
|
text = res.pop(self._text_key)
|
||
|
docs.append(Document(page_content=text, metadata=res))
|
||
|
return docs
|
||
|
|
||
|
def max_marginal_relevance_search(
|
||
|
self,
|
||
|
query: str,
|
||
|
k: int = 4,
|
||
|
fetch_k: int = 20,
|
||
|
lambda_mult: float = 0.5,
|
||
|
**kwargs: Any,
|
||
|
) -> List[Document]:
|
||
|
"""Return docs selected using the maximal marginal relevance.
|
||
|
|
||
|
Maximal marginal relevance optimizes for similarity to query AND diversity
|
||
|
among selected documents.
|
||
|
|
||
|
Args:
|
||
|
query: Text to look up documents similar to.
|
||
|
k: Number of Documents to return. Defaults to 4.
|
||
|
fetch_k: Number of Documents to fetch to pass to MMR algorithm.
|
||
|
lambda_mult: Number between 0 and 1 that determines the degree
|
||
|
of diversity among the results with 0 corresponding
|
||
|
to maximum diversity and 1 to minimum diversity.
|
||
|
Defaults to 0.5.
|
||
|
|
||
|
Returns:
|
||
|
List of Documents selected by maximal marginal relevance.
|
||
|
"""
|
||
|
if self._embedding is not None:
|
||
|
embedding = self._embedding.embed_query(query)
|
||
|
else:
|
||
|
raise ValueError(
|
||
|
"max_marginal_relevance_search requires a suitable Embeddings object"
|
||
|
)
|
||
|
|
||
|
return self.max_marginal_relevance_search_by_vector(
|
||
|
embedding, k=k, fetch_k=fetch_k, lambda_mult=lambda_mult, **kwargs
|
||
|
)
|
||
|
|
||
|
def max_marginal_relevance_search_by_vector(
|
||
|
self,
|
||
|
embedding: List[float],
|
||
|
k: int = 4,
|
||
|
fetch_k: int = 20,
|
||
|
lambda_mult: float = 0.5,
|
||
|
**kwargs: Any,
|
||
|
) -> List[Document]:
|
||
|
"""Return docs selected using the maximal marginal relevance.
|
||
|
|
||
|
Maximal marginal relevance optimizes for similarity to query AND diversity
|
||
|
among selected documents.
|
||
|
|
||
|
Args:
|
||
|
embedding: Embedding to look up documents similar to.
|
||
|
k: Number of Documents to return. Defaults to 4.
|
||
|
fetch_k: Number of Documents to fetch to pass to MMR algorithm.
|
||
|
lambda_mult: Number between 0 and 1 that determines the degree
|
||
|
of diversity among the results with 0 corresponding
|
||
|
to maximum diversity and 1 to minimum diversity.
|
||
|
Defaults to 0.5.
|
||
|
|
||
|
Returns:
|
||
|
List of Documents selected by maximal marginal relevance.
|
||
|
"""
|
||
|
vector = {"vector": embedding}
|
||
|
query_obj = self._client.query.get(self._index_name, self._query_attrs)
|
||
|
if kwargs.get("where_filter"):
|
||
|
query_obj = query_obj.with_where(kwargs.get("where_filter"))
|
||
|
if kwargs.get("tenant"):
|
||
|
query_obj = query_obj.with_tenant(kwargs.get("tenant"))
|
||
|
results = (
|
||
|
query_obj.with_additional("vector")
|
||
|
.with_near_vector(vector)
|
||
|
.with_limit(fetch_k)
|
||
|
.do()
|
||
|
)
|
||
|
|
||
|
payload = results["data"]["Get"][self._index_name]
|
||
|
embeddings = [result["_additional"]["vector"] for result in payload]
|
||
|
mmr_selected = maximal_marginal_relevance(
|
||
|
np.array(embedding), embeddings, k=k, lambda_mult=lambda_mult
|
||
|
)
|
||
|
|
||
|
docs = []
|
||
|
for idx in mmr_selected:
|
||
|
text = payload[idx].pop(self._text_key)
|
||
|
payload[idx].pop("_additional")
|
||
|
meta = payload[idx]
|
||
|
docs.append(Document(page_content=text, metadata=meta))
|
||
|
return docs
|
||
|
|
||
|
def similarity_search_with_score(
|
||
|
self, query: str, k: int = 4, **kwargs: Any
|
||
|
) -> List[Tuple[Document, float]]:
|
||
|
"""
|
||
|
Return list of documents most similar to the query
|
||
|
text and cosine distance in float for each.
|
||
|
Lower score represents more similarity.
|
||
|
"""
|
||
|
if self._embedding is None:
|
||
|
raise ValueError(
|
||
|
"_embedding cannot be None for similarity_search_with_score"
|
||
|
)
|
||
|
content: Dict[str, Any] = {"concepts": [query]}
|
||
|
if kwargs.get("search_distance"):
|
||
|
content["certainty"] = kwargs.get("search_distance")
|
||
|
query_obj = self._client.query.get(self._index_name, self._query_attrs)
|
||
|
if kwargs.get("where_filter"):
|
||
|
query_obj = query_obj.with_where(kwargs.get("where_filter"))
|
||
|
if kwargs.get("tenant"):
|
||
|
query_obj = query_obj.with_tenant(kwargs.get("tenant"))
|
||
|
|
||
|
embedded_query = self._embedding.embed_query(query)
|
||
|
if not self._by_text:
|
||
|
vector = {"vector": embedded_query}
|
||
|
result = (
|
||
|
query_obj.with_near_vector(vector)
|
||
|
.with_limit(k)
|
||
|
.with_additional("vector")
|
||
|
.do()
|
||
|
)
|
||
|
else:
|
||
|
result = (
|
||
|
query_obj.with_near_text(content)
|
||
|
.with_limit(k)
|
||
|
.with_additional("vector")
|
||
|
.do()
|
||
|
)
|
||
|
|
||
|
if "errors" in result:
|
||
|
raise ValueError(f"Error during query: {result['errors']}")
|
||
|
|
||
|
docs_and_scores = []
|
||
|
for res in result["data"]["Get"][self._index_name]:
|
||
|
text = res.pop(self._text_key)
|
||
|
score = np.dot(res["_additional"]["vector"], embedded_query)
|
||
|
docs_and_scores.append((Document(page_content=text, metadata=res), score))
|
||
|
return docs_and_scores
|
||
|
|
||
|
@classmethod
|
||
|
def from_texts(
|
||
|
cls,
|
||
|
texts: List[str],
|
||
|
embedding: Embeddings,
|
||
|
metadatas: Optional[List[dict]] = None,
|
||
|
*,
|
||
|
client: Optional[weaviate.Client] = None,
|
||
|
weaviate_url: Optional[str] = None,
|
||
|
weaviate_api_key: Optional[str] = None,
|
||
|
batch_size: Optional[int] = None,
|
||
|
index_name: Optional[str] = None,
|
||
|
text_key: str = "text",
|
||
|
by_text: bool = False,
|
||
|
relevance_score_fn: Optional[
|
||
|
Callable[[float], float]
|
||
|
] = _default_score_normalizer,
|
||
|
**kwargs: Any,
|
||
|
) -> Weaviate:
|
||
|
"""Construct Weaviate wrapper from raw documents.
|
||
|
|
||
|
This is a user-friendly interface that:
|
||
|
1. Embeds documents.
|
||
|
2. Creates a new index for the embeddings in the Weaviate instance.
|
||
|
3. Adds the documents to the newly created Weaviate index.
|
||
|
|
||
|
This is intended to be a quick way to get started.
|
||
|
|
||
|
Args:
|
||
|
texts: Texts to add to vector store.
|
||
|
embedding: Text embedding model to use.
|
||
|
metadatas: Metadata associated with each text.
|
||
|
client: weaviate.Client to use.
|
||
|
weaviate_url: The Weaviate URL. If using Weaviate Cloud Services get it
|
||
|
from the ``Details`` tab. Can be passed in as a named param or by
|
||
|
setting the environment variable ``WEAVIATE_URL``. Should not be
|
||
|
specified if client is provided.
|
||
|
weaviate_api_key: The Weaviate API key. If enabled and using Weaviate Cloud
|
||
|
Services, get it from ``Details`` tab. Can be passed in as a named param
|
||
|
or by setting the environment variable ``WEAVIATE_API_KEY``. Should
|
||
|
not be specified if client is provided.
|
||
|
batch_size: Size of batch operations.
|
||
|
index_name: Index name.
|
||
|
text_key: Key to use for uploading/retrieving text to/from vectorstore.
|
||
|
by_text: Whether to search by text or by embedding.
|
||
|
relevance_score_fn: Function for converting whatever distance function the
|
||
|
vector store uses to a relevance score, which is a normalized similarity
|
||
|
score (0 means dissimilar, 1 means similar).
|
||
|
**kwargs: Additional named parameters to pass to ``Weaviate.__init__()``.
|
||
|
|
||
|
Example:
|
||
|
.. code-block:: python
|
||
|
|
||
|
from langchain_community.embeddings import OpenAIEmbeddings
|
||
|
from langchain_community.vectorstores import Weaviate
|
||
|
|
||
|
embeddings = OpenAIEmbeddings()
|
||
|
weaviate = Weaviate.from_texts(
|
||
|
texts,
|
||
|
embeddings,
|
||
|
weaviate_url="http://localhost:8080"
|
||
|
)
|
||
|
"""
|
||
|
|
||
|
try:
|
||
|
from weaviate.util import get_valid_uuid
|
||
|
except ImportError as e:
|
||
|
raise ImportError(
|
||
|
"Could not import weaviate python package. "
|
||
|
"Please install it with `pip install weaviate-client`"
|
||
|
) from e
|
||
|
|
||
|
client = client or _create_weaviate_client(
|
||
|
url=weaviate_url,
|
||
|
api_key=weaviate_api_key,
|
||
|
)
|
||
|
if batch_size:
|
||
|
client.batch.configure(batch_size=batch_size)
|
||
|
|
||
|
index_name = index_name or f"LangChain_{uuid4().hex}"
|
||
|
schema = _default_schema(index_name)
|
||
|
# check whether the index already exists
|
||
|
if not client.schema.exists(index_name):
|
||
|
client.schema.create_class(schema)
|
||
|
|
||
|
embeddings = embedding.embed_documents(texts) if embedding else None
|
||
|
attributes = list(metadatas[0].keys()) if metadatas else None
|
||
|
|
||
|
# If the UUID of one of the objects already exists
|
||
|
# then the existing object will be replaced by the new object.
|
||
|
if "uuids" in kwargs:
|
||
|
uuids = kwargs.pop("uuids")
|
||
|
else:
|
||
|
uuids = [get_valid_uuid(uuid4()) for _ in range(len(texts))]
|
||
|
|
||
|
with client.batch as batch:
|
||
|
for i, text in enumerate(texts):
|
||
|
data_properties = {
|
||
|
text_key: text,
|
||
|
}
|
||
|
if metadatas is not None:
|
||
|
for key in metadatas[i].keys():
|
||
|
data_properties[key] = metadatas[i][key]
|
||
|
|
||
|
_id = uuids[i]
|
||
|
|
||
|
# if an embedding strategy is not provided, we let
|
||
|
# weaviate create the embedding. Note that this will only
|
||
|
# work if weaviate has been installed with a vectorizer module
|
||
|
# like text2vec-contextionary for example
|
||
|
params = {
|
||
|
"uuid": _id,
|
||
|
"data_object": data_properties,
|
||
|
"class_name": index_name,
|
||
|
}
|
||
|
if embeddings is not None:
|
||
|
params["vector"] = embeddings[i]
|
||
|
|
||
|
batch.add_data_object(**params)
|
||
|
|
||
|
batch.flush()
|
||
|
|
||
|
return cls(
|
||
|
client,
|
||
|
index_name,
|
||
|
text_key,
|
||
|
embedding=embedding,
|
||
|
attributes=attributes,
|
||
|
relevance_score_fn=relevance_score_fn,
|
||
|
by_text=by_text,
|
||
|
**kwargs,
|
||
|
)
|
||
|
|
||
|
def delete(self, ids: Optional[List[str]] = None, **kwargs: Any) -> None:
|
||
|
"""Delete by vector IDs.
|
||
|
|
||
|
Args:
|
||
|
ids: List of ids to delete.
|
||
|
"""
|
||
|
|
||
|
if ids is None:
|
||
|
raise ValueError("No ids provided to delete.")
|
||
|
|
||
|
# TODO: Check if this can be done in bulk
|
||
|
for id in ids:
|
||
|
self._client.data_object.delete(uuid=id)
|