langchain/libs/community/langchain_community/vectorstores/vald.py

420 lines
13 KiB
Python
Raw Normal View History

community[major], core[patch], langchain[patch], experimental[patch]: Create langchain-community (#14463) Moved the following modules to new package langchain-community in a backwards compatible fashion: ``` mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community ``` Moved the following to core ``` mv langchain/langchain/utils/json_schema.py core/langchain_core/utils mv langchain/langchain/utils/html.py core/langchain_core/utils mv langchain/langchain/utils/strings.py core/langchain_core/utils cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py rm langchain/langchain/utils/env.py ``` See .scripts/community_split/script_integrations.sh for all changes
2023-12-11 21:53:30 +00:00
"""Wrapper around Vald vector database."""
from __future__ import annotations
from typing import Any, Iterable, List, Optional, Tuple, Type
import numpy as np
from langchain_core.documents import Document
from langchain_core.embeddings import Embeddings
from langchain_core.vectorstores import VectorStore
from langchain_community.vectorstores.utils import maximal_marginal_relevance
class Vald(VectorStore):
"""Wrapper around Vald vector database.
To use, you should have the ``vald-client-python`` python package installed.
Example:
.. code-block:: python
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import Vald
texts = ['foo', 'bar', 'baz']
vald = Vald.from_texts(
texts=texts,
embedding=HuggingFaceEmbeddings(),
host="localhost",
port=8080,
skip_strict_exist_check=False,
)
"""
def __init__(
self,
embedding: Embeddings,
host: str = "localhost",
port: int = 8080,
grpc_options: Tuple = (
("grpc.keepalive_time_ms", 1000 * 10),
("grpc.keepalive_timeout_ms", 1000 * 10),
),
grpc_use_secure: bool = False,
grpc_credentials: Optional[Any] = None,
):
self._embedding = embedding
self.target = host + ":" + str(port)
self.grpc_options = grpc_options
self.grpc_use_secure = grpc_use_secure
self.grpc_credentials = grpc_credentials
@property
def embeddings(self) -> Optional[Embeddings]:
return self._embedding
def _get_channel(self) -> Any:
try:
import grpc
except ImportError:
raise ValueError(
"Could not import grpcio python package. "
"Please install it with `pip install grpcio`."
)
return (
grpc.secure_channel(
self.target, self.grpc_credentials, options=self.grpc_options
)
if self.grpc_use_secure
else grpc.insecure_channel(self.target, options=self.grpc_options)
)
def add_texts(
self,
texts: Iterable[str],
metadatas: Optional[List[dict]] = None,
grpc_metadata: Optional[Any] = None,
skip_strict_exist_check: bool = False,
**kwargs: Any,
) -> List[str]:
"""
Args:
skip_strict_exist_check: Deprecated. This is not used basically.
"""
try:
from vald.v1.payload import payload_pb2
from vald.v1.vald import upsert_pb2_grpc
except ImportError:
raise ValueError(
"Could not import vald-client-python python package. "
"Please install it with `pip install vald-client-python`."
)
channel = self._get_channel()
# Depending on the network quality,
# it is necessary to wait for ChannelConnectivity.READY.
# _ = grpc.channel_ready_future(channel).result(timeout=10)
stub = upsert_pb2_grpc.UpsertStub(channel)
cfg = payload_pb2.Upsert.Config(skip_strict_exist_check=skip_strict_exist_check)
ids = []
embs = self._embedding.embed_documents(list(texts))
for text, emb in zip(texts, embs):
vec = payload_pb2.Object.Vector(id=text, vector=emb)
res = stub.Upsert(
payload_pb2.Upsert.Request(vector=vec, config=cfg),
metadata=grpc_metadata,
)
ids.append(res.uuid)
channel.close()
return ids
def delete(
self,
ids: Optional[List[str]] = None,
skip_strict_exist_check: bool = False,
grpc_metadata: Optional[Any] = None,
**kwargs: Any,
) -> Optional[bool]:
"""
Args:
skip_strict_exist_check: Deprecated. This is not used basically.
"""
try:
from vald.v1.payload import payload_pb2
from vald.v1.vald import remove_pb2_grpc
except ImportError:
raise ValueError(
"Could not import vald-client-python python package. "
"Please install it with `pip install vald-client-python`."
)
if ids is None:
raise ValueError("No ids provided to delete")
channel = self._get_channel()
# Depending on the network quality,
# it is necessary to wait for ChannelConnectivity.READY.
# _ = grpc.channel_ready_future(channel).result(timeout=10)
stub = remove_pb2_grpc.RemoveStub(channel)
cfg = payload_pb2.Remove.Config(skip_strict_exist_check=skip_strict_exist_check)
for _id in ids:
oid = payload_pb2.Object.ID(id=_id)
_ = stub.Remove(
payload_pb2.Remove.Request(id=oid, config=cfg), metadata=grpc_metadata
)
channel.close()
return True
def similarity_search(
self,
query: str,
k: int = 4,
radius: float = -1.0,
epsilon: float = 0.01,
timeout: int = 3000000000,
grpc_metadata: Optional[Any] = None,
**kwargs: Any,
) -> List[Document]:
docs_and_scores = self.similarity_search_with_score(
query, k, radius, epsilon, timeout, grpc_metadata
)
docs = []
for doc, _ in docs_and_scores:
docs.append(doc)
return docs
def similarity_search_with_score(
self,
query: str,
k: int = 4,
radius: float = -1.0,
epsilon: float = 0.01,
timeout: int = 3000000000,
grpc_metadata: Optional[Any] = None,
**kwargs: Any,
) -> List[Tuple[Document, float]]:
emb = self._embedding.embed_query(query)
docs_and_scores = self.similarity_search_with_score_by_vector(
emb, k, radius, epsilon, timeout, grpc_metadata
)
return docs_and_scores
def similarity_search_by_vector(
self,
embedding: List[float],
k: int = 4,
radius: float = -1.0,
epsilon: float = 0.01,
timeout: int = 3000000000,
grpc_metadata: Optional[Any] = None,
**kwargs: Any,
) -> List[Document]:
docs_and_scores = self.similarity_search_with_score_by_vector(
embedding, k, radius, epsilon, timeout, grpc_metadata
)
docs = []
for doc, _ in docs_and_scores:
docs.append(doc)
return docs
def similarity_search_with_score_by_vector(
self,
embedding: List[float],
k: int = 4,
radius: float = -1.0,
epsilon: float = 0.01,
timeout: int = 3000000000,
grpc_metadata: Optional[Any] = None,
**kwargs: Any,
) -> List[Tuple[Document, float]]:
try:
from vald.v1.payload import payload_pb2
from vald.v1.vald import search_pb2_grpc
except ImportError:
raise ValueError(
"Could not import vald-client-python python package. "
"Please install it with `pip install vald-client-python`."
)
channel = self._get_channel()
# Depending on the network quality,
# it is necessary to wait for ChannelConnectivity.READY.
# _ = grpc.channel_ready_future(channel).result(timeout=10)
stub = search_pb2_grpc.SearchStub(channel)
cfg = payload_pb2.Search.Config(
num=k, radius=radius, epsilon=epsilon, timeout=timeout
)
res = stub.Search(
payload_pb2.Search.Request(vector=embedding, config=cfg),
metadata=grpc_metadata,
)
docs_and_scores = []
for result in res.results:
docs_and_scores.append((Document(page_content=result.id), result.distance))
channel.close()
return docs_and_scores
def max_marginal_relevance_search(
self,
query: str,
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
radius: float = -1.0,
epsilon: float = 0.01,
timeout: int = 3000000000,
grpc_metadata: Optional[Any] = None,
**kwargs: Any,
) -> List[Document]:
emb = self._embedding.embed_query(query)
docs = self.max_marginal_relevance_search_by_vector(
emb,
k=k,
fetch_k=fetch_k,
radius=radius,
epsilon=epsilon,
timeout=timeout,
lambda_mult=lambda_mult,
grpc_metadata=grpc_metadata,
)
return docs
def max_marginal_relevance_search_by_vector(
self,
embedding: List[float],
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
radius: float = -1.0,
epsilon: float = 0.01,
timeout: int = 3000000000,
grpc_metadata: Optional[Any] = None,
**kwargs: Any,
) -> List[Document]:
try:
from vald.v1.payload import payload_pb2
from vald.v1.vald import object_pb2_grpc
except ImportError:
raise ValueError(
"Could not import vald-client-python python package. "
"Please install it with `pip install vald-client-python`."
)
channel = self._get_channel()
# Depending on the network quality,
# it is necessary to wait for ChannelConnectivity.READY.
# _ = grpc.channel_ready_future(channel).result(timeout=10)
stub = object_pb2_grpc.ObjectStub(channel)
docs_and_scores = self.similarity_search_with_score_by_vector(
embedding,
fetch_k=fetch_k,
radius=radius,
epsilon=epsilon,
timeout=timeout,
grpc_metadata=grpc_metadata,
)
docs = []
embs = []
for doc, _ in docs_and_scores:
vec = stub.GetObject(
payload_pb2.Object.VectorRequest(
id=payload_pb2.Object.ID(id=doc.page_content)
),
metadata=grpc_metadata,
)
embs.append(vec.vector)
docs.append(doc)
mmr = maximal_marginal_relevance(
np.array(embedding),
embs,
lambda_mult=lambda_mult,
k=k,
)
channel.close()
return [docs[i] for i in mmr]
@classmethod
def from_texts(
cls: Type[Vald],
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
host: str = "localhost",
port: int = 8080,
grpc_options: Tuple = (
("grpc.keepalive_time_ms", 1000 * 10),
("grpc.keepalive_timeout_ms", 1000 * 10),
),
grpc_use_secure: bool = False,
grpc_credentials: Optional[Any] = None,
grpc_metadata: Optional[Any] = None,
skip_strict_exist_check: bool = False,
**kwargs: Any,
) -> Vald:
"""
Args:
skip_strict_exist_check: Deprecated. This is not used basically.
"""
vald = cls(
embedding=embedding,
host=host,
port=port,
grpc_options=grpc_options,
grpc_use_secure=grpc_use_secure,
grpc_credentials=grpc_credentials,
**kwargs,
)
vald.add_texts(
texts=texts,
metadatas=metadatas,
grpc_metadata=grpc_metadata,
skip_strict_exist_check=skip_strict_exist_check,
)
return vald
"""We will support if there are any requests."""
# async def aadd_texts(
# self,
# texts: Iterable[str],
# metadatas: Optional[List[dict]] = None,
# **kwargs: Any,
# ) -> List[str]:
# pass
#
# def _select_relevance_score_fn(self) -> Callable[[float], float]:
# pass
#
# def _similarity_search_with_relevance_scores(
# self,
# query: str,
# k: int = 4,
# **kwargs: Any,
# ) -> List[Tuple[Document, float]]:
# pass
#
# def similarity_search_with_relevance_scores(
# self,
# query: str,
# k: int = 4,
# **kwargs: Any,
# ) -> List[Tuple[Document, float]]:
# pass
#
# async def amax_marginal_relevance_search_by_vector(
# self,
# embedding: List[float],
# k: int = 4,
# fetch_k: int = 20,
# lambda_mult: float = 0.5,
# **kwargs: Any,
# ) -> List[Document]:
# pass
#
# @classmethod
# async def afrom_texts(
# cls: Type[VST],
# texts: List[str],
# embedding: Embeddings,
# metadatas: Optional[List[dict]] = None,
# **kwargs: Any,
# ) -> VST:
# pass