mirror of
https://github.com/hwchase17/langchain
synced 2024-11-10 01:10:59 +00:00
85 lines
2.8 KiB
Python
85 lines
2.8 KiB
Python
|
"""Util that calls Google Lens Search."""
|
||
|
from typing import Any, Dict, Optional, cast
|
||
|
|
||
|
import requests
|
||
|
from langchain_core.pydantic_v1 import BaseModel, Extra, SecretStr, root_validator
|
||
|
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env
|
||
|
|
||
|
|
||
|
class GoogleLensAPIWrapper(BaseModel):
|
||
|
"""Wrapper for SerpApi's Google Lens API
|
||
|
|
||
|
You can create SerpApi.com key by signing up at: https://serpapi.com/users/sign_up.
|
||
|
|
||
|
The wrapper uses the SerpApi.com python package:
|
||
|
https://serpapi.com/integrations/python
|
||
|
|
||
|
To use, you should have the environment variable ``SERPAPI_API_KEY``
|
||
|
set with your API key, or pass `serp_api_key` as a named parameter
|
||
|
to the constructor.
|
||
|
|
||
|
Example:
|
||
|
.. code-block:: python
|
||
|
|
||
|
from langchain_community.utilities import GoogleLensAPIWrapper
|
||
|
google_lens = GoogleLensAPIWrapper()
|
||
|
google_lens.run('langchain')
|
||
|
"""
|
||
|
|
||
|
serp_search_engine: Any
|
||
|
serp_api_key: Optional[SecretStr] = None
|
||
|
|
||
|
class Config:
|
||
|
"""Configuration for this pydantic object."""
|
||
|
|
||
|
extra = Extra.forbid
|
||
|
|
||
|
@root_validator()
|
||
|
def validate_environment(cls, values: Dict) -> Dict:
|
||
|
"""Validate that api key and python package exists in environment."""
|
||
|
values["serp_api_key"] = convert_to_secret_str(
|
||
|
get_from_dict_or_env(values, "serp_api_key", "SERPAPI_API_KEY")
|
||
|
)
|
||
|
|
||
|
return values
|
||
|
|
||
|
def run(self, query: str) -> str:
|
||
|
"""Run query through Google Trends with Serpapi"""
|
||
|
serpapi_api_key = cast(SecretStr, self.serp_api_key)
|
||
|
|
||
|
params = {
|
||
|
"engine": "google_lens",
|
||
|
"api_key": serpapi_api_key.get_secret_value(),
|
||
|
"url": query,
|
||
|
}
|
||
|
queryURL = f"https://serpapi.com/search?engine={params['engine']}&api_key={params['api_key']}&url={params['url']}"
|
||
|
response = requests.get(queryURL)
|
||
|
|
||
|
if response.status_code != 200:
|
||
|
return "Google Lens search failed"
|
||
|
|
||
|
responseValue = response.json()
|
||
|
|
||
|
if responseValue["search_metadata"]["status"] != "Success":
|
||
|
return "Google Lens search failed"
|
||
|
|
||
|
xs = ""
|
||
|
if len(responseValue["knowledge_graph"]) > 0:
|
||
|
subject = responseValue["knowledge_graph"][0]
|
||
|
xs += f"Subject:{subject['title']}({subject['subtitle']})\n"
|
||
|
xs += f"Link to subject:{subject['link']}\n\n"
|
||
|
xs += "Related Images:\n\n"
|
||
|
for image in responseValue["visual_matches"]:
|
||
|
xs += f"Title: {image['title']}\n"
|
||
|
xs += f"Source({image['source']}): {image['link']}\n"
|
||
|
xs += f"Image: {image['thumbnail']}\n\n"
|
||
|
xs += (
|
||
|
"Reverse Image Search"
|
||
|
+ f"Link: {responseValue['reverse_image_search']['link']}\n"
|
||
|
)
|
||
|
print(xs)
|
||
|
|
||
|
docs = [xs]
|
||
|
|
||
|
return "\n\n".join(docs)
|