2023-12-11 21:53:30 +00:00
|
|
|
import logging
|
2024-03-30 00:52:25 +00:00
|
|
|
from typing import Any, Dict, List, Mapping, Optional, cast
|
2023-12-11 21:53:30 +00:00
|
|
|
|
|
|
|
from langchain_core.callbacks import CallbackManagerForLLMRun
|
|
|
|
from langchain_core.language_models.llms import LLM
|
2024-03-30 00:52:25 +00:00
|
|
|
from langchain_core.pydantic_v1 import Extra, Field, SecretStr, root_validator
|
|
|
|
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env
|
2023-12-11 21:53:30 +00:00
|
|
|
|
|
|
|
from langchain_community.llms.utils import enforce_stop_tokens
|
|
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
|
|
|
|
class Banana(LLM):
|
|
|
|
"""Banana large language models.
|
|
|
|
|
|
|
|
To use, you should have the ``banana-dev`` python package installed,
|
|
|
|
and the environment variable ``BANANA_API_KEY`` set with your API key.
|
|
|
|
This is the team API key available in the Banana dashboard.
|
|
|
|
|
|
|
|
Any parameters that are valid to be passed to the call can be passed
|
|
|
|
in, even if not explicitly saved on this class.
|
|
|
|
|
|
|
|
Example:
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
from langchain_community.llms import Banana
|
|
|
|
banana = Banana(model_key="", model_url_slug="")
|
|
|
|
"""
|
|
|
|
|
|
|
|
model_key: str = ""
|
|
|
|
"""model key to use"""
|
|
|
|
|
|
|
|
model_url_slug: str = ""
|
|
|
|
"""model endpoint to use"""
|
|
|
|
|
|
|
|
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
|
|
|
|
"""Holds any model parameters valid for `create` call not
|
|
|
|
explicitly specified."""
|
|
|
|
|
2024-03-30 00:52:25 +00:00
|
|
|
banana_api_key: Optional[SecretStr] = None
|
2023-12-11 21:53:30 +00:00
|
|
|
|
|
|
|
class Config:
|
|
|
|
"""Configuration for this pydantic config."""
|
|
|
|
|
|
|
|
extra = Extra.forbid
|
|
|
|
|
|
|
|
@root_validator(pre=True)
|
|
|
|
def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
|
|
|
|
"""Build extra kwargs from additional params that were passed in."""
|
|
|
|
all_required_field_names = {field.alias for field in cls.__fields__.values()}
|
|
|
|
|
|
|
|
extra = values.get("model_kwargs", {})
|
|
|
|
for field_name in list(values):
|
|
|
|
if field_name not in all_required_field_names:
|
|
|
|
if field_name in extra:
|
|
|
|
raise ValueError(f"Found {field_name} supplied twice.")
|
|
|
|
logger.warning(
|
|
|
|
f"""{field_name} was transferred to model_kwargs.
|
|
|
|
Please confirm that {field_name} is what you intended."""
|
|
|
|
)
|
|
|
|
extra[field_name] = values.pop(field_name)
|
|
|
|
values["model_kwargs"] = extra
|
|
|
|
return values
|
|
|
|
|
|
|
|
@root_validator()
|
|
|
|
def validate_environment(cls, values: Dict) -> Dict:
|
|
|
|
"""Validate that api key and python package exists in environment."""
|
2024-03-30 00:52:25 +00:00
|
|
|
banana_api_key = convert_to_secret_str(
|
|
|
|
get_from_dict_or_env(values, "banana_api_key", "BANANA_API_KEY")
|
2023-12-11 21:53:30 +00:00
|
|
|
)
|
|
|
|
values["banana_api_key"] = banana_api_key
|
|
|
|
return values
|
|
|
|
|
|
|
|
@property
|
|
|
|
def _identifying_params(self) -> Mapping[str, Any]:
|
|
|
|
"""Get the identifying parameters."""
|
|
|
|
return {
|
|
|
|
**{"model_key": self.model_key},
|
|
|
|
**{"model_url_slug": self.model_url_slug},
|
|
|
|
**{"model_kwargs": self.model_kwargs},
|
|
|
|
}
|
|
|
|
|
|
|
|
@property
|
|
|
|
def _llm_type(self) -> str:
|
|
|
|
"""Return type of llm."""
|
|
|
|
return "bananadev"
|
|
|
|
|
|
|
|
def _call(
|
|
|
|
self,
|
|
|
|
prompt: str,
|
|
|
|
stop: Optional[List[str]] = None,
|
|
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> str:
|
|
|
|
"""Call to Banana endpoint."""
|
|
|
|
try:
|
|
|
|
from banana_dev import Client
|
|
|
|
except ImportError:
|
|
|
|
raise ImportError(
|
|
|
|
"Could not import banana-dev python package. "
|
|
|
|
"Please install it with `pip install banana-dev`."
|
|
|
|
)
|
|
|
|
params = self.model_kwargs or {}
|
|
|
|
params = {**params, **kwargs}
|
2024-03-30 00:52:25 +00:00
|
|
|
api_key = cast(SecretStr, self.banana_api_key)
|
2023-12-11 21:53:30 +00:00
|
|
|
model_key = self.model_key
|
|
|
|
model_url_slug = self.model_url_slug
|
|
|
|
model_inputs = {
|
|
|
|
# a json specific to your model.
|
|
|
|
"prompt": prompt,
|
|
|
|
**params,
|
|
|
|
}
|
|
|
|
model = Client(
|
|
|
|
# Found in main dashboard
|
2024-03-30 00:52:25 +00:00
|
|
|
api_key=api_key.get_secret_value(),
|
2023-12-11 21:53:30 +00:00
|
|
|
# Both found in model details page
|
|
|
|
model_key=model_key,
|
|
|
|
url=f"https://{model_url_slug}.run.banana.dev",
|
|
|
|
)
|
|
|
|
response, meta = model.call("/", model_inputs)
|
|
|
|
try:
|
|
|
|
text = response["outputs"]
|
|
|
|
except (KeyError, TypeError):
|
|
|
|
raise ValueError(
|
|
|
|
"Response should be of schema: {'outputs': 'text'}."
|
|
|
|
"\nTo fix this:"
|
|
|
|
"\n- fork the source repo of the Banana model"
|
|
|
|
"\n- modify app.py to return the above schema"
|
|
|
|
"\n- deploy that as a custom repo"
|
|
|
|
)
|
|
|
|
if stop is not None:
|
|
|
|
# I believe this is required since the stop tokens
|
|
|
|
# are not enforced by the model parameters
|
|
|
|
text = enforce_stop_tokens(text, stop)
|
|
|
|
return text
|