langchain/docs/extras/integrations/llms/symblai_nebula.ipynb

107 lines
2.7 KiB
Plaintext
Raw Normal View History

2023-08-07 20:15:26 +00:00
{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"id": "9597802c",
"metadata": {},
"source": [
"# Nebula\n",
"\n",
"[Nebula](https://symbl.ai/nebula/) is a fully-managed Conversation platform, on which you can build, deploy, and manage scalable AI applications.\n",
"\n",
"This example goes over how to use LangChain to interact with the [Nebula platform](https://docs.symbl.ai/docs/nebula-llm-overview). \n",
"\n",
"It will send the requests to Nebula Service endpoint, which concatenates `SYMBLAI_NEBULA_SERVICE_URL` and `SYMBLAI_NEBULA_SERVICE_PATH`, with a token defined in `SYMBLAI_NEBULA_SERVICE_TOKEN`"
]
},
{
"cell_type": "markdown",
"id": "f15ebe0d",
"metadata": {},
"source": [
"### Integrate with a LLMChain"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5472a7cd-af26-48ca-ae9b-5f6ae73c74d2",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"import os\n",
"\n",
"os.environ[\"NEBULA_SERVICE_URL\"] = NEBULA_SERVICE_URL\n",
"os.environ[\"NEBULA_SERVICE_PATH\"] = NEBULA_SERVICE_PATH\n",
"os.environ[\"NEBULA_SERVICE_API_KEY\"] = NEBULA_SERVICE_API_KEY"
2023-08-07 20:15:26 +00:00
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6fb585dd",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from langchain.llms import OpenLLM\n",
"\n",
"llm = OpenLLM(\n",
" conversation=\"<Drop your text conversation that you want to ask Nebula to analyze here>\",\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "035dea0f",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from langchain import PromptTemplate, LLMChain\n",
"\n",
"template = \"Identify the {count} main objectives or goals mentioned in this context concisely in less points. Emphasize on key intents.\"\n",
"\n",
"prompt = PromptTemplate(template=template, input_variables=[\"count\"])\n",
"\n",
"llm_chain = LLMChain(prompt=prompt, llm=llm)\n",
"\n",
"generated = llm_chain.run(count=\"five\")\n",
"print(generated)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.8"
},
"vscode": {
"interpreter": {
"hash": "a0a0263b650d907a3bfe41c0f8d6a63a071b884df3cfdc1579f00cdc1aed6b03"
}
}
},
"nbformat": 4,
"nbformat_minor": 5
}