langchain/libs/community/langchain_community/document_compressors/volcengine_rerank.py

135 lines
4.4 KiB
Python
Raw Normal View History

from __future__ import annotations
from copy import deepcopy
from typing import Any, Dict, List, Optional, Sequence, Union
from langchain_core.callbacks.base import Callbacks
from langchain_core.documents import BaseDocumentCompressor, Document
from langchain_core.pydantic_v1 import Extra, root_validator
from langchain_core.utils import get_from_dict_or_env
class VolcengineRerank(BaseDocumentCompressor):
"""Document compressor that uses `Volcengine Rerank API`."""
client: Any = None
"""Volcengine client to use for compressing documents."""
ak: Optional[str] = None
"""Access Key ID.
https://www.volcengine.com/docs/84313/1254553"""
sk: Optional[str] = None
"""Secret Access Key.
https://www.volcengine.com/docs/84313/1254553"""
region: str = "api-vikingdb.volces.com"
"""https://www.volcengine.com/docs/84313/1254488. """
host: str = "cn-beijing"
"""https://www.volcengine.com/docs/84313/1254488. """
top_n: Optional[int] = 3
"""Number of documents to return."""
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
allow_population_by_field_name = True
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
if not values.get("client"):
try:
from volcengine.viking_db import VikingDBService
except ImportError:
raise ImportError(
"Could not import volcengine python package. "
"Please install it with `pip install volcengine` "
"or `pip install --user volcengine`."
)
values["ak"] = get_from_dict_or_env(values, "ak", "VOLC_API_AK")
values["sk"] = get_from_dict_or_env(values, "sk", "VOLC_API_SK")
values["client"] = VikingDBService(
host="api-vikingdb.volces.com",
region="cn-beijing",
scheme="https",
connection_timeout=30,
socket_timeout=30,
ak=values["ak"],
sk=values["sk"],
)
return values
def rerank(
self,
documents: Sequence[Union[str, Document, dict]],
query: str,
*,
top_n: Optional[int] = -1,
) -> List[Dict[str, Any]]:
"""Returns an ordered list of documents ordered by their relevance to the provided query.
Args:
query: The query to use for reranking.
documents: A sequence of documents to rerank.
top_n : The number of results to return. If None returns all results.
Defaults to self.top_n.
""" # noqa: E501
if len(documents) == 0: # to avoid empty api call
return []
docs = [
{
"query": query,
"content": doc.page_content if isinstance(doc, Document) else doc,
}
for doc in documents
]
from volcengine.viking_db import VikingDBService
client: VikingDBService = self.client
results = client.batch_rerank(docs)
result_dicts = []
for index, score in enumerate(results):
result_dicts.append({"index": index, "relevance_score": score})
result_dicts.sort(key=lambda x: x["relevance_score"], reverse=True)
top_n = top_n if (top_n is None or top_n > 0) else self.top_n
return result_dicts[:top_n]
def compress_documents(
self,
documents: Sequence[Document],
query: str,
callbacks: Optional[Callbacks] = None,
) -> Sequence[Document]:
"""
Compress documents using Volcengine's rerank API.
Args:
documents: A sequence of documents to compress.
query: The query to use for compressing the documents.
callbacks: Callbacks to run during the compression process.
Returns:
A sequence of compressed documents.
"""
compressed = []
for res in self.rerank(documents, query):
doc = documents[res["index"]]
doc_copy = Document(doc.page_content, metadata=deepcopy(doc.metadata))
doc_copy.metadata["relevance_score"] = res["relevance_score"]
compressed.append(doc_copy)
return compressed