mirror of
https://github.com/hwchase17/langchain
synced 2024-10-31 15:20:26 +00:00
107 lines
2.7 KiB
Plaintext
107 lines
2.7 KiB
Plaintext
|
{
|
||
|
"cells": [
|
||
|
{
|
||
|
"attachments": {},
|
||
|
"cell_type": "markdown",
|
||
|
"id": "9597802c",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"# Nebula\n",
|
||
|
"\n",
|
||
|
"[Nebula](https://symbl.ai/nebula/) is a fully-managed Conversation platform, on which you can build, deploy, and manage scalable AI applications.\n",
|
||
|
"\n",
|
||
|
"This example goes over how to use LangChain to interact with the [Nebula platform](https://docs.symbl.ai/docs/nebula-llm-overview). \n",
|
||
|
"\n",
|
||
|
"It will send the requests to Nebula Service endpoint, which concatenates `SYMBLAI_NEBULA_SERVICE_URL` and `SYMBLAI_NEBULA_SERVICE_PATH`, with a token defined in `SYMBLAI_NEBULA_SERVICE_TOKEN`"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"id": "f15ebe0d",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"### Integrate with a LLMChain"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"id": "5472a7cd-af26-48ca-ae9b-5f6ae73c74d2",
|
||
|
"metadata": {
|
||
|
"tags": []
|
||
|
},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"import os\n",
|
||
|
"\n",
|
||
|
"os.environ[\"SYMBLAI_NEBULA_SERVICE_URL\"] = SYMBLAI_NEBULA_SERVICE_URL\n",
|
||
|
"os.environ[\"SYMBLAI_NEBULA_SERVICE_PATH\"] = SYMBLAI_NEBULA_SERVICE_PATH\n",
|
||
|
"os.environ[\"SYMBLAI_NEBULA_SERVICE_TOKEN\"] = SYMBLAI_NEBULA_SERVICE_TOKEN"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"id": "6fb585dd",
|
||
|
"metadata": {
|
||
|
"tags": []
|
||
|
},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"from langchain.llms import OpenLLM\n",
|
||
|
"\n",
|
||
|
"llm = OpenLLM(\n",
|
||
|
" conversation=\"<Drop your text conversation that you want to ask Nebula to analyze here>\",\n",
|
||
|
")"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"id": "035dea0f",
|
||
|
"metadata": {
|
||
|
"tags": []
|
||
|
},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"from langchain import PromptTemplate, LLMChain\n",
|
||
|
"\n",
|
||
|
"template = \"Identify the {count} main objectives or goals mentioned in this context concisely in less points. Emphasize on key intents.\"\n",
|
||
|
"\n",
|
||
|
"prompt = PromptTemplate(template=template, input_variables=[\"count\"])\n",
|
||
|
"\n",
|
||
|
"llm_chain = LLMChain(prompt=prompt, llm=llm)\n",
|
||
|
"\n",
|
||
|
"generated = llm_chain.run(count=\"five\")\n",
|
||
|
"print(generated)"
|
||
|
]
|
||
|
}
|
||
|
],
|
||
|
"metadata": {
|
||
|
"kernelspec": {
|
||
|
"display_name": "Python 3 (ipykernel)",
|
||
|
"language": "python",
|
||
|
"name": "python3"
|
||
|
},
|
||
|
"language_info": {
|
||
|
"codemirror_mode": {
|
||
|
"name": "ipython",
|
||
|
"version": 3
|
||
|
},
|
||
|
"file_extension": ".py",
|
||
|
"mimetype": "text/x-python",
|
||
|
"name": "python",
|
||
|
"nbconvert_exporter": "python",
|
||
|
"pygments_lexer": "ipython3",
|
||
|
"version": "3.10.8"
|
||
|
},
|
||
|
"vscode": {
|
||
|
"interpreter": {
|
||
|
"hash": "a0a0263b650d907a3bfe41c0f8d6a63a071b884df3cfdc1579f00cdc1aed6b03"
|
||
|
}
|
||
|
}
|
||
|
},
|
||
|
"nbformat": 4,
|
||
|
"nbformat_minor": 5
|
||
|
}
|