langchain/tests/integration_tests/llms/test_huggingface_endpoint.py

51 lines
1.6 KiB
Python
Raw Normal View History

"""Test HuggingFace API wrapper."""
import unittest
from pathlib import Path
import pytest
from langchain.llms.huggingface_endpoint import HuggingFaceEndpoint
from langchain.llms.loading import load_llm
from tests.integration_tests.llms.utils import assert_llm_equality
@unittest.skip(
"This test requires an inference endpoint. Tested with Hugging Face endpoints"
)
def test_huggingface_endpoint_text_generation() -> None:
"""Test valid call to HuggingFace text generation model."""
llm = HuggingFaceEndpoint(
endpoint_url="", task="text-generation", model_kwargs={"max_new_tokens": 10}
)
output = llm("Say foo:")
print(output)
assert isinstance(output, str)
@unittest.skip(
"This test requires an inference endpoint. Tested with Hugging Face endpoints"
)
def test_huggingface_endpoint_text2text_generation() -> None:
"""Test valid call to HuggingFace text2text model."""
llm = HuggingFaceEndpoint(endpoint_url="", task="text2text-generation")
output = llm("The capital of New York is")
assert output == "Albany"
def test_huggingface_endpoint_call_error() -> None:
"""Test valid call to HuggingFace that errors."""
llm = HuggingFaceEndpoint(model_kwargs={"max_new_tokens": -1})
with pytest.raises(ValueError):
llm("Say foo:")
def test_saving_loading_endpoint_llm(tmp_path: Path) -> None:
"""Test saving/loading an HuggingFaceHub LLM."""
llm = HuggingFaceEndpoint(
endpoint_url="", task="text-generation", model_kwargs={"max_new_tokens": 10}
)
llm.save(file_path=tmp_path / "hf.yaml")
loaded_llm = load_llm(tmp_path / "hf.yaml")
assert_llm_equality(llm, loaded_llm)