langchain/templates/neo4j-cypher/neo4j_cypher/chain.py

84 lines
2.3 KiB
Python
Raw Normal View History

2023-10-27 02:44:30 +00:00
from langchain.chains.graph_qa.cypher_utils import CypherQueryCorrector, Schema
from langchain.chat_models import ChatOpenAI
from langchain.graphs import Neo4jGraph
from langchain.prompts import ChatPromptTemplate
from langchain.pydantic_v1 import BaseModel
from langchain.schema.output_parser import StrOutputParser
from langchain.schema.runnable import RunnablePassthrough
# Connection to Neo4j
graph = Neo4jGraph()
# Cypher validation tool for relationship directions
corrector_schema = [
Schema(el["start"], el["type"], el["end"])
for el in graph.structured_schema.get("relationships")
]
cypher_validation = CypherQueryCorrector(corrector_schema)
# LLMs
cypher_llm = ChatOpenAI(model_name="gpt-4", temperature=0.0)
qa_llm = ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0.0)
# Generate Cypher statement based on natural language input
cypher_template = """Based on the Neo4j graph schema below, write a Cypher query that would answer the user's question:
{schema}
Question: {question}
2023-10-27 02:44:30 +00:00
Cypher query:""" # noqa: E501
cypher_prompt = ChatPromptTemplate.from_messages(
[
(
"system",
"Given an input question, convert it to a Cypher query. No pre-amble.",
),
("human", cypher_template),
]
)
cypher_response = (
RunnablePassthrough.assign(
schema=lambda _: graph.get_schema,
)
| cypher_prompt
| cypher_llm.bind(stop=["\nCypherResult:"])
| StrOutputParser()
)
# Generate natural language response based on database results
response_template = """Based on the the question, Cypher query, and Cypher response, write a natural language response:
Question: {question}
Cypher query: {query}
2023-10-27 02:44:30 +00:00
Cypher Response: {response}""" # noqa: E501
response_prompt = ChatPromptTemplate.from_messages(
[
(
"system",
2023-10-27 02:44:30 +00:00
"Given an input question and Cypher response, convert it to a "
"natural language answer. No pre-amble.",
),
("human", response_template),
]
)
chain = (
RunnablePassthrough.assign(query=cypher_response)
| RunnablePassthrough.assign(
response=lambda x: graph.query(cypher_validation(x["query"])),
)
| response_prompt
| qa_llm
| StrOutputParser()
)
# Add typing for input
class Question(BaseModel):
question: str
chain = chain.with_types(input_type=Question)