mirror of
https://github.com/hwchase17/langchain
synced 2024-11-18 09:25:54 +00:00
233 lines
7.4 KiB
Python
233 lines
7.4 KiB
Python
|
import json
|
||
|
import logging
|
||
|
from typing import Any, Callable, Dict, List, Mapping, Optional
|
||
|
|
||
|
import requests
|
||
|
from langchain_core.callbacks import CallbackManagerForLLMRun
|
||
|
from langchain_core.language_models.llms import LLM
|
||
|
from langchain_core.pydantic_v1 import Extra, SecretStr, root_validator
|
||
|
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env
|
||
|
from requests import ConnectTimeout, ReadTimeout, RequestException
|
||
|
from tenacity import (
|
||
|
before_sleep_log,
|
||
|
retry,
|
||
|
retry_if_exception_type,
|
||
|
stop_after_attempt,
|
||
|
wait_exponential,
|
||
|
)
|
||
|
|
||
|
from langchain_community.llms.utils import enforce_stop_tokens
|
||
|
|
||
|
DEFAULT_NEBULA_SERVICE_URL = "https://api-nebula.symbl.ai"
|
||
|
DEFAULT_NEBULA_SERVICE_PATH = "/v1/model/generate"
|
||
|
|
||
|
logger = logging.getLogger(__name__)
|
||
|
|
||
|
|
||
|
class Nebula(LLM):
|
||
|
"""Nebula Service models.
|
||
|
|
||
|
To use, you should have the environment variable ``NEBULA_SERVICE_URL``,
|
||
|
``NEBULA_SERVICE_PATH`` and ``NEBULA_API_KEY`` set with your Nebula
|
||
|
Service, or pass it as a named parameter to the constructor.
|
||
|
|
||
|
Example:
|
||
|
.. code-block:: python
|
||
|
|
||
|
from langchain_community.llms import Nebula
|
||
|
|
||
|
nebula = Nebula(
|
||
|
nebula_service_url="NEBULA_SERVICE_URL",
|
||
|
nebula_service_path="NEBULA_SERVICE_PATH",
|
||
|
nebula_api_key="NEBULA_API_KEY",
|
||
|
)
|
||
|
""" # noqa: E501
|
||
|
|
||
|
"""Key/value arguments to pass to the model. Reserved for future use"""
|
||
|
model_kwargs: Optional[dict] = None
|
||
|
|
||
|
"""Optional"""
|
||
|
|
||
|
nebula_service_url: Optional[str] = None
|
||
|
nebula_service_path: Optional[str] = None
|
||
|
nebula_api_key: Optional[SecretStr] = None
|
||
|
model: Optional[str] = None
|
||
|
max_new_tokens: Optional[int] = 128
|
||
|
temperature: Optional[float] = 0.6
|
||
|
top_p: Optional[float] = 0.95
|
||
|
repetition_penalty: Optional[float] = 1.0
|
||
|
top_k: Optional[int] = 1
|
||
|
stop_sequences: Optional[List[str]] = None
|
||
|
max_retries: Optional[int] = 10
|
||
|
|
||
|
class Config:
|
||
|
"""Configuration for this pydantic object."""
|
||
|
|
||
|
extra = Extra.forbid
|
||
|
|
||
|
@root_validator()
|
||
|
def validate_environment(cls, values: Dict) -> Dict:
|
||
|
"""Validate that api key and python package exists in environment."""
|
||
|
nebula_service_url = get_from_dict_or_env(
|
||
|
values,
|
||
|
"nebula_service_url",
|
||
|
"NEBULA_SERVICE_URL",
|
||
|
DEFAULT_NEBULA_SERVICE_URL,
|
||
|
)
|
||
|
nebula_service_path = get_from_dict_or_env(
|
||
|
values,
|
||
|
"nebula_service_path",
|
||
|
"NEBULA_SERVICE_PATH",
|
||
|
DEFAULT_NEBULA_SERVICE_PATH,
|
||
|
)
|
||
|
nebula_api_key = convert_to_secret_str(
|
||
|
get_from_dict_or_env(values, "nebula_api_key", "NEBULA_API_KEY", None)
|
||
|
)
|
||
|
|
||
|
if nebula_service_url.endswith("/"):
|
||
|
nebula_service_url = nebula_service_url[:-1]
|
||
|
if not nebula_service_path.startswith("/"):
|
||
|
nebula_service_path = "/" + nebula_service_path
|
||
|
|
||
|
values["nebula_service_url"] = nebula_service_url
|
||
|
values["nebula_service_path"] = nebula_service_path
|
||
|
values["nebula_api_key"] = nebula_api_key
|
||
|
|
||
|
return values
|
||
|
|
||
|
@property
|
||
|
def _default_params(self) -> Dict[str, Any]:
|
||
|
"""Get the default parameters for calling Cohere API."""
|
||
|
return {
|
||
|
"max_new_tokens": self.max_new_tokens,
|
||
|
"temperature": self.temperature,
|
||
|
"top_k": self.top_k,
|
||
|
"top_p": self.top_p,
|
||
|
"repetition_penalty": self.repetition_penalty,
|
||
|
}
|
||
|
|
||
|
@property
|
||
|
def _identifying_params(self) -> Mapping[str, Any]:
|
||
|
"""Get the identifying parameters."""
|
||
|
_model_kwargs = self.model_kwargs or {}
|
||
|
return {
|
||
|
"nebula_service_url": self.nebula_service_url,
|
||
|
"nebula_service_path": self.nebula_service_path,
|
||
|
**{"model_kwargs": _model_kwargs},
|
||
|
}
|
||
|
|
||
|
@property
|
||
|
def _llm_type(self) -> str:
|
||
|
"""Return type of llm."""
|
||
|
return "nebula"
|
||
|
|
||
|
def _invocation_params(
|
||
|
self, stop_sequences: Optional[List[str]], **kwargs: Any
|
||
|
) -> dict:
|
||
|
params = self._default_params
|
||
|
if self.stop_sequences is not None and stop_sequences is not None:
|
||
|
raise ValueError("`stop` found in both the input and default params.")
|
||
|
elif self.stop_sequences is not None:
|
||
|
params["stop_sequences"] = self.stop_sequences
|
||
|
else:
|
||
|
params["stop_sequences"] = stop_sequences
|
||
|
return {**params, **kwargs}
|
||
|
|
||
|
@staticmethod
|
||
|
def _process_response(response: Any, stop: Optional[List[str]]) -> str:
|
||
|
text = response["output"]["text"]
|
||
|
if stop:
|
||
|
text = enforce_stop_tokens(text, stop)
|
||
|
return text
|
||
|
|
||
|
def _call(
|
||
|
self,
|
||
|
prompt: str,
|
||
|
stop: Optional[List[str]] = None,
|
||
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||
|
**kwargs: Any,
|
||
|
) -> str:
|
||
|
"""Call out to Nebula Service endpoint.
|
||
|
Args:
|
||
|
prompt: The prompt to pass into the model.
|
||
|
stop: Optional list of stop words to use when generating.
|
||
|
Returns:
|
||
|
The string generated by the model.
|
||
|
Example:
|
||
|
.. code-block:: python
|
||
|
response = nebula("Tell me a joke.")
|
||
|
"""
|
||
|
params = self._invocation_params(stop, **kwargs)
|
||
|
prompt = prompt.strip()
|
||
|
|
||
|
response = completion_with_retry(
|
||
|
self,
|
||
|
prompt=prompt,
|
||
|
params=params,
|
||
|
url=f"{self.nebula_service_url}{self.nebula_service_path}",
|
||
|
)
|
||
|
_stop = params.get("stop_sequences")
|
||
|
return self._process_response(response, _stop)
|
||
|
|
||
|
|
||
|
def make_request(
|
||
|
self: Nebula,
|
||
|
prompt: str,
|
||
|
url: str = f"{DEFAULT_NEBULA_SERVICE_URL}{DEFAULT_NEBULA_SERVICE_PATH}",
|
||
|
params: Optional[Dict] = None,
|
||
|
) -> Any:
|
||
|
"""Generate text from the model."""
|
||
|
params = params or {}
|
||
|
api_key = None
|
||
|
if self.nebula_api_key is not None:
|
||
|
api_key = self.nebula_api_key.get_secret_value()
|
||
|
headers = {
|
||
|
"Content-Type": "application/json",
|
||
|
"ApiKey": f"{api_key}",
|
||
|
}
|
||
|
|
||
|
body = {"prompt": prompt}
|
||
|
|
||
|
# add params to body
|
||
|
for key, value in params.items():
|
||
|
body[key] = value
|
||
|
|
||
|
# make request
|
||
|
response = requests.post(url, headers=headers, json=body)
|
||
|
|
||
|
if response.status_code != 200:
|
||
|
raise Exception(
|
||
|
f"Request failed with status code {response.status_code}"
|
||
|
f" and message {response.text}"
|
||
|
)
|
||
|
|
||
|
return json.loads(response.text)
|
||
|
|
||
|
|
||
|
def _create_retry_decorator(llm: Nebula) -> Callable[[Any], Any]:
|
||
|
min_seconds = 4
|
||
|
max_seconds = 10
|
||
|
# Wait 2^x * 1 second between each retry starting with
|
||
|
# 4 seconds, then up to 10 seconds, then 10 seconds afterward
|
||
|
max_retries = llm.max_retries if llm.max_retries is not None else 3
|
||
|
return retry(
|
||
|
reraise=True,
|
||
|
stop=stop_after_attempt(max_retries),
|
||
|
wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds),
|
||
|
retry=(
|
||
|
retry_if_exception_type((RequestException, ConnectTimeout, ReadTimeout))
|
||
|
),
|
||
|
before_sleep=before_sleep_log(logger, logging.WARNING),
|
||
|
)
|
||
|
|
||
|
|
||
|
def completion_with_retry(llm: Nebula, **kwargs: Any) -> Any:
|
||
|
"""Use tenacity to retry the completion call."""
|
||
|
retry_decorator = _create_retry_decorator(llm)
|
||
|
|
||
|
@retry_decorator
|
||
|
def _completion_with_retry(**_kwargs: Any) -> Any:
|
||
|
return make_request(llm, **_kwargs)
|
||
|
|
||
|
return _completion_with_retry(**kwargs)
|