mirror of
https://github.com/hwchase17/langchain
synced 2024-10-31 15:20:26 +00:00
162 lines
3.8 KiB
Plaintext
162 lines
3.8 KiB
Plaintext
|
```python
|
||
|
from langchain import PromptTemplate, OpenAI, LLMChain
|
||
|
|
||
|
prompt_template = "What is a good name for a company that makes {product}?"
|
||
|
|
||
|
llm = OpenAI(temperature=0)
|
||
|
llm_chain = LLMChain(
|
||
|
llm=llm,
|
||
|
prompt=PromptTemplate.from_template(prompt_template)
|
||
|
)
|
||
|
llm_chain("colorful socks")
|
||
|
```
|
||
|
|
||
|
<CodeOutputBlock lang="python">
|
||
|
|
||
|
```
|
||
|
{'product': 'colorful socks', 'text': '\n\nSocktastic!'}
|
||
|
```
|
||
|
|
||
|
</CodeOutputBlock>
|
||
|
|
||
|
## Additional ways of running LLM Chain
|
||
|
|
||
|
Aside from `__call__` and `run` methods shared by all `Chain` object, `LLMChain` offers a few more ways of calling the chain logic:
|
||
|
|
||
|
- `apply` allows you run the chain against a list of inputs:
|
||
|
|
||
|
|
||
|
```python
|
||
|
input_list = [
|
||
|
{"product": "socks"},
|
||
|
{"product": "computer"},
|
||
|
{"product": "shoes"}
|
||
|
]
|
||
|
|
||
|
llm_chain.apply(input_list)
|
||
|
```
|
||
|
|
||
|
<CodeOutputBlock lang="python">
|
||
|
|
||
|
```
|
||
|
[{'text': '\n\nSocktastic!'},
|
||
|
{'text': '\n\nTechCore Solutions.'},
|
||
|
{'text': '\n\nFootwear Factory.'}]
|
||
|
```
|
||
|
|
||
|
</CodeOutputBlock>
|
||
|
|
||
|
- `generate` is similar to `apply`, except it return an `LLMResult` instead of string. `LLMResult` often contains useful generation such as token usages and finish reason.
|
||
|
|
||
|
|
||
|
```python
|
||
|
llm_chain.generate(input_list)
|
||
|
```
|
||
|
|
||
|
<CodeOutputBlock lang="python">
|
||
|
|
||
|
```
|
||
|
LLMResult(generations=[[Generation(text='\n\nSocktastic!', generation_info={'finish_reason': 'stop', 'logprobs': None})], [Generation(text='\n\nTechCore Solutions.', generation_info={'finish_reason': 'stop', 'logprobs': None})], [Generation(text='\n\nFootwear Factory.', generation_info={'finish_reason': 'stop', 'logprobs': None})]], llm_output={'token_usage': {'prompt_tokens': 36, 'total_tokens': 55, 'completion_tokens': 19}, 'model_name': 'text-davinci-003'})
|
||
|
```
|
||
|
|
||
|
</CodeOutputBlock>
|
||
|
|
||
|
- `predict` is similar to `run` method except that the input keys are specified as keyword arguments instead of a Python dict.
|
||
|
|
||
|
|
||
|
```python
|
||
|
# Single input example
|
||
|
llm_chain.predict(product="colorful socks")
|
||
|
```
|
||
|
|
||
|
<CodeOutputBlock lang="python">
|
||
|
|
||
|
```
|
||
|
'\n\nSocktastic!'
|
||
|
```
|
||
|
|
||
|
</CodeOutputBlock>
|
||
|
|
||
|
|
||
|
```python
|
||
|
# Multiple inputs example
|
||
|
|
||
|
template = """Tell me a {adjective} joke about {subject}."""
|
||
|
prompt = PromptTemplate(template=template, input_variables=["adjective", "subject"])
|
||
|
llm_chain = LLMChain(prompt=prompt, llm=OpenAI(temperature=0))
|
||
|
|
||
|
llm_chain.predict(adjective="sad", subject="ducks")
|
||
|
```
|
||
|
|
||
|
<CodeOutputBlock lang="python">
|
||
|
|
||
|
```
|
||
|
'\n\nQ: What did the duck say when his friend died?\nA: Quack, quack, goodbye.'
|
||
|
```
|
||
|
|
||
|
</CodeOutputBlock>
|
||
|
|
||
|
## Parsing the outputs
|
||
|
|
||
|
By default, `LLMChain` does not parse the output even if the underlying `prompt` object has an output parser. If you would like to apply that output parser on the LLM output, use `predict_and_parse` instead of `predict` and `apply_and_parse` instead of `apply`.
|
||
|
|
||
|
With `predict`:
|
||
|
|
||
|
|
||
|
```python
|
||
|
from langchain.output_parsers import CommaSeparatedListOutputParser
|
||
|
|
||
|
output_parser = CommaSeparatedListOutputParser()
|
||
|
template = """List all the colors in a rainbow"""
|
||
|
prompt = PromptTemplate(template=template, input_variables=[], output_parser=output_parser)
|
||
|
llm_chain = LLMChain(prompt=prompt, llm=llm)
|
||
|
|
||
|
llm_chain.predict()
|
||
|
```
|
||
|
|
||
|
<CodeOutputBlock lang="python">
|
||
|
|
||
|
```
|
||
|
'\n\nRed, orange, yellow, green, blue, indigo, violet'
|
||
|
```
|
||
|
|
||
|
</CodeOutputBlock>
|
||
|
|
||
|
With `predict_and_parser`:
|
||
|
|
||
|
|
||
|
```python
|
||
|
llm_chain.predict_and_parse()
|
||
|
```
|
||
|
|
||
|
<CodeOutputBlock lang="python">
|
||
|
|
||
|
```
|
||
|
['Red', 'orange', 'yellow', 'green', 'blue', 'indigo', 'violet']
|
||
|
```
|
||
|
|
||
|
</CodeOutputBlock>
|
||
|
|
||
|
## Initialize from string
|
||
|
|
||
|
You can also construct an LLMChain from a string template directly.
|
||
|
|
||
|
|
||
|
```python
|
||
|
template = """Tell me a {adjective} joke about {subject}."""
|
||
|
llm_chain = LLMChain.from_string(llm=llm, template=template)
|
||
|
```
|
||
|
|
||
|
|
||
|
```python
|
||
|
llm_chain.predict(adjective="sad", subject="ducks")
|
||
|
```
|
||
|
|
||
|
<CodeOutputBlock lang="python">
|
||
|
|
||
|
```
|
||
|
'\n\nQ: What did the duck say when his friend died?\nA: Quack, quack, goodbye.'
|
||
|
```
|
||
|
|
||
|
</CodeOutputBlock>
|