mirror of
https://github.com/hwchase17/langchain
synced 2024-11-06 03:20:49 +00:00
240 lines
7.3 KiB
Python
240 lines
7.3 KiB
Python
|
"""Test chat model integration."""
|
||
|
from typing import List, Optional
|
||
|
from unittest.mock import Mock, call
|
||
|
|
||
|
import pytest
|
||
|
from ai21 import MissingApiKeyError
|
||
|
from ai21.models import ChatMessage, Penalty, RoleType
|
||
|
from langchain_core.messages import (
|
||
|
AIMessage,
|
||
|
BaseMessage,
|
||
|
HumanMessage,
|
||
|
SystemMessage,
|
||
|
)
|
||
|
from langchain_core.messages import (
|
||
|
ChatMessage as LangChainChatMessage,
|
||
|
)
|
||
|
|
||
|
from langchain_ai21.chat_models import (
|
||
|
ChatAI21,
|
||
|
_convert_message_to_ai21_message,
|
||
|
_convert_messages_to_ai21_messages,
|
||
|
)
|
||
|
from tests.unit_tests.conftest import (
|
||
|
BASIC_EXAMPLE_LLM_PARAMETERS,
|
||
|
DUMMY_API_KEY,
|
||
|
temporarily_unset_api_key,
|
||
|
)
|
||
|
|
||
|
|
||
|
def test_initialization__when_no_api_key__should_raise_exception() -> None:
|
||
|
"""Test integration initialization."""
|
||
|
with temporarily_unset_api_key():
|
||
|
with pytest.raises(MissingApiKeyError):
|
||
|
ChatAI21(model="j2-ultra")
|
||
|
|
||
|
|
||
|
def test_initialization__when_default_parameters_in_init() -> None:
|
||
|
"""Test chat model initialization."""
|
||
|
ChatAI21(api_key=DUMMY_API_KEY, model="j2-ultra")
|
||
|
|
||
|
|
||
|
def test_initialization__when_custom_parameters_in_init() -> None:
|
||
|
model = "j2-mid"
|
||
|
num_results = 1
|
||
|
max_tokens = 10
|
||
|
min_tokens = 20
|
||
|
temperature = 0.1
|
||
|
top_p = 0.1
|
||
|
top_k_returns = 0
|
||
|
frequency_penalty = Penalty(scale=0.2, apply_to_numbers=True)
|
||
|
presence_penalty = Penalty(scale=0.2, apply_to_stopwords=True)
|
||
|
count_penalty = Penalty(scale=0.2, apply_to_punctuation=True, apply_to_emojis=True)
|
||
|
|
||
|
llm = ChatAI21(
|
||
|
api_key=DUMMY_API_KEY,
|
||
|
model=model,
|
||
|
num_results=num_results,
|
||
|
max_tokens=max_tokens,
|
||
|
min_tokens=min_tokens,
|
||
|
temperature=temperature,
|
||
|
top_p=top_p,
|
||
|
top_k_returns=top_k_returns,
|
||
|
frequency_penalty=frequency_penalty,
|
||
|
presence_penalty=presence_penalty,
|
||
|
count_penalty=count_penalty,
|
||
|
)
|
||
|
assert llm.model == model
|
||
|
assert llm.num_results == num_results
|
||
|
assert llm.max_tokens == max_tokens
|
||
|
assert llm.min_tokens == min_tokens
|
||
|
assert llm.temperature == temperature
|
||
|
assert llm.top_p == top_p
|
||
|
assert llm.top_k_return == top_k_returns
|
||
|
assert llm.frequency_penalty == frequency_penalty
|
||
|
assert llm.presence_penalty == presence_penalty
|
||
|
assert count_penalty == count_penalty
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
ids=[
|
||
|
"when_human_message",
|
||
|
"when_ai_message",
|
||
|
],
|
||
|
argnames=["message", "expected_ai21_message"],
|
||
|
argvalues=[
|
||
|
(
|
||
|
HumanMessage(content="Human Message Content"),
|
||
|
ChatMessage(role=RoleType.USER, text="Human Message Content"),
|
||
|
),
|
||
|
(
|
||
|
AIMessage(content="AI Message Content"),
|
||
|
ChatMessage(role=RoleType.ASSISTANT, text="AI Message Content"),
|
||
|
),
|
||
|
],
|
||
|
)
|
||
|
def test_convert_message_to_ai21_message(
|
||
|
message: BaseMessage, expected_ai21_message: ChatMessage
|
||
|
) -> None:
|
||
|
ai21_message = _convert_message_to_ai21_message(message)
|
||
|
assert ai21_message == expected_ai21_message
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
ids=[
|
||
|
"when_system_message",
|
||
|
"when_langchain_chat_message",
|
||
|
],
|
||
|
argnames=["message"],
|
||
|
argvalues=[
|
||
|
(SystemMessage(content="System Message Content"),),
|
||
|
(LangChainChatMessage(content="Chat Message Content", role="human"),),
|
||
|
],
|
||
|
)
|
||
|
def test_convert_message_to_ai21_message__when_invalid_role__should_raise_exception(
|
||
|
message: BaseMessage,
|
||
|
) -> None:
|
||
|
with pytest.raises(ValueError) as e:
|
||
|
_convert_message_to_ai21_message(message)
|
||
|
assert e.value.args[0] == (
|
||
|
f"Could not resolve role type from message {message}. "
|
||
|
f"Only support {HumanMessage.__name__} and {AIMessage.__name__}."
|
||
|
)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
ids=[
|
||
|
"when_all_messages_are_human_messages__should_return_system_none",
|
||
|
"when_first_message_is_system__should_return_system",
|
||
|
],
|
||
|
argnames=["messages", "expected_system", "expected_messages"],
|
||
|
argvalues=[
|
||
|
(
|
||
|
[
|
||
|
HumanMessage(content="Human Message Content 1"),
|
||
|
HumanMessage(content="Human Message Content 2"),
|
||
|
],
|
||
|
None,
|
||
|
[
|
||
|
ChatMessage(role=RoleType.USER, text="Human Message Content 1"),
|
||
|
ChatMessage(role=RoleType.USER, text="Human Message Content 2"),
|
||
|
],
|
||
|
),
|
||
|
(
|
||
|
[
|
||
|
SystemMessage(content="System Message Content 1"),
|
||
|
HumanMessage(content="Human Message Content 1"),
|
||
|
],
|
||
|
"System Message Content 1",
|
||
|
[
|
||
|
ChatMessage(role=RoleType.USER, text="Human Message Content 1"),
|
||
|
],
|
||
|
),
|
||
|
],
|
||
|
)
|
||
|
def test_convert_messages(
|
||
|
messages: List[BaseMessage],
|
||
|
expected_system: Optional[str],
|
||
|
expected_messages: List[ChatMessage],
|
||
|
) -> None:
|
||
|
system, ai21_messages = _convert_messages_to_ai21_messages(messages)
|
||
|
assert ai21_messages == expected_messages
|
||
|
assert system == expected_system
|
||
|
|
||
|
|
||
|
def test_convert_messages_when_system_is_not_first__should_raise_value_error() -> None:
|
||
|
messages = [
|
||
|
HumanMessage(content="Human Message Content 1"),
|
||
|
SystemMessage(content="System Message Content 1"),
|
||
|
]
|
||
|
with pytest.raises(ValueError):
|
||
|
_convert_messages_to_ai21_messages(messages)
|
||
|
|
||
|
|
||
|
def test_invoke(mock_client_with_chat: Mock) -> None:
|
||
|
chat_input = "I'm Pickle Rick"
|
||
|
|
||
|
llm = ChatAI21(
|
||
|
model="j2-ultra",
|
||
|
api_key=DUMMY_API_KEY,
|
||
|
client=mock_client_with_chat,
|
||
|
**BASIC_EXAMPLE_LLM_PARAMETERS,
|
||
|
)
|
||
|
llm.invoke(input=chat_input, config=dict(tags=["foo"]))
|
||
|
|
||
|
mock_client_with_chat.chat.create.assert_called_once_with(
|
||
|
model="j2-ultra",
|
||
|
messages=[ChatMessage(role=RoleType.USER, text=chat_input)],
|
||
|
system="",
|
||
|
stop_sequences=None,
|
||
|
**BASIC_EXAMPLE_LLM_PARAMETERS,
|
||
|
)
|
||
|
|
||
|
|
||
|
def test_generate(mock_client_with_chat: Mock) -> None:
|
||
|
messages0 = [
|
||
|
HumanMessage(content="I'm Pickle Rick"),
|
||
|
AIMessage(content="Hello Pickle Rick! I am your AI Assistant"),
|
||
|
HumanMessage(content="Nice to meet you."),
|
||
|
]
|
||
|
messages1 = [
|
||
|
SystemMessage(content="system message"),
|
||
|
HumanMessage(content="What is 1 + 1"),
|
||
|
]
|
||
|
llm = ChatAI21(
|
||
|
model="j2-ultra",
|
||
|
client=mock_client_with_chat,
|
||
|
**BASIC_EXAMPLE_LLM_PARAMETERS,
|
||
|
)
|
||
|
|
||
|
llm.generate(messages=[messages0, messages1])
|
||
|
mock_client_with_chat.chat.create.assert_has_calls(
|
||
|
[
|
||
|
call(
|
||
|
model="j2-ultra",
|
||
|
messages=[
|
||
|
ChatMessage(
|
||
|
role=RoleType.USER,
|
||
|
text=str(messages0[0].content),
|
||
|
),
|
||
|
ChatMessage(
|
||
|
role=RoleType.ASSISTANT, text=str(messages0[1].content)
|
||
|
),
|
||
|
ChatMessage(role=RoleType.USER, text=str(messages0[2].content)),
|
||
|
],
|
||
|
system="",
|
||
|
stop_sequences=None,
|
||
|
**BASIC_EXAMPLE_LLM_PARAMETERS,
|
||
|
),
|
||
|
call(
|
||
|
model="j2-ultra",
|
||
|
messages=[
|
||
|
ChatMessage(role=RoleType.USER, text=str(messages1[1].content)),
|
||
|
],
|
||
|
system="system message",
|
||
|
stop_sequences=None,
|
||
|
**BASIC_EXAMPLE_LLM_PARAMETERS,
|
||
|
),
|
||
|
]
|
||
|
)
|