mirror of
https://github.com/hwchase17/langchain
synced 2024-11-18 09:25:54 +00:00
120 lines
3.7 KiB
Python
120 lines
3.7 KiB
Python
|
from typing import Any, Dict, List, Mapping, Optional
|
||
|
|
||
|
import requests
|
||
|
from langchain_core.callbacks import CallbackManagerForLLMRun
|
||
|
from langchain_core.language_models.llms import LLM
|
||
|
from langchain_core.pydantic_v1 import Extra, SecretStr, root_validator
|
||
|
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env
|
||
|
|
||
|
from langchain_community.llms.utils import enforce_stop_tokens
|
||
|
|
||
|
|
||
|
class ForefrontAI(LLM):
|
||
|
"""ForefrontAI large language models.
|
||
|
|
||
|
To use, you should have the environment variable ``FOREFRONTAI_API_KEY``
|
||
|
set with your API key.
|
||
|
|
||
|
Example:
|
||
|
.. code-block:: python
|
||
|
|
||
|
from langchain_community.llms import ForefrontAI
|
||
|
forefrontai = ForefrontAI(endpoint_url="")
|
||
|
"""
|
||
|
|
||
|
endpoint_url: str = ""
|
||
|
"""Model name to use."""
|
||
|
|
||
|
temperature: float = 0.7
|
||
|
"""What sampling temperature to use."""
|
||
|
|
||
|
length: int = 256
|
||
|
"""The maximum number of tokens to generate in the completion."""
|
||
|
|
||
|
top_p: float = 1.0
|
||
|
"""Total probability mass of tokens to consider at each step."""
|
||
|
|
||
|
top_k: int = 40
|
||
|
"""The number of highest probability vocabulary tokens to
|
||
|
keep for top-k-filtering."""
|
||
|
|
||
|
repetition_penalty: int = 1
|
||
|
"""Penalizes repeated tokens according to frequency."""
|
||
|
|
||
|
forefrontai_api_key: SecretStr
|
||
|
|
||
|
base_url: Optional[str] = None
|
||
|
"""Base url to use, if None decides based on model name."""
|
||
|
|
||
|
class Config:
|
||
|
"""Configuration for this pydantic object."""
|
||
|
|
||
|
extra = Extra.forbid
|
||
|
|
||
|
@root_validator(pre=True)
|
||
|
def validate_environment(cls, values: Dict) -> Dict:
|
||
|
"""Validate that api key exists in environment."""
|
||
|
values["forefrontai_api_key"] = convert_to_secret_str(
|
||
|
get_from_dict_or_env(values, "forefrontai_api_key", "FOREFRONTAI_API_KEY")
|
||
|
)
|
||
|
return values
|
||
|
|
||
|
@property
|
||
|
def _default_params(self) -> Mapping[str, Any]:
|
||
|
"""Get the default parameters for calling ForefrontAI API."""
|
||
|
return {
|
||
|
"temperature": self.temperature,
|
||
|
"length": self.length,
|
||
|
"top_p": self.top_p,
|
||
|
"top_k": self.top_k,
|
||
|
"repetition_penalty": self.repetition_penalty,
|
||
|
}
|
||
|
|
||
|
@property
|
||
|
def _identifying_params(self) -> Mapping[str, Any]:
|
||
|
"""Get the identifying parameters."""
|
||
|
return {**{"endpoint_url": self.endpoint_url}, **self._default_params}
|
||
|
|
||
|
@property
|
||
|
def _llm_type(self) -> str:
|
||
|
"""Return type of llm."""
|
||
|
return "forefrontai"
|
||
|
|
||
|
def _call(
|
||
|
self,
|
||
|
prompt: str,
|
||
|
stop: Optional[List[str]] = None,
|
||
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||
|
**kwargs: Any,
|
||
|
) -> str:
|
||
|
"""Call out to ForefrontAI's complete endpoint.
|
||
|
|
||
|
Args:
|
||
|
prompt: The prompt to pass into the model.
|
||
|
stop: Optional list of stop words to use when generating.
|
||
|
|
||
|
Returns:
|
||
|
The string generated by the model.
|
||
|
|
||
|
Example:
|
||
|
.. code-block:: python
|
||
|
|
||
|
response = ForefrontAI("Tell me a joke.")
|
||
|
"""
|
||
|
auth_value = f"Bearer {self.forefrontai_api_key.get_secret_value()}"
|
||
|
response = requests.post(
|
||
|
url=self.endpoint_url,
|
||
|
headers={
|
||
|
"Authorization": auth_value,
|
||
|
"Content-Type": "application/json",
|
||
|
},
|
||
|
json={"text": prompt, **self._default_params, **kwargs},
|
||
|
)
|
||
|
response_json = response.json()
|
||
|
text = response_json["result"][0]["completion"]
|
||
|
if stop is not None:
|
||
|
# I believe this is required since the stop tokens
|
||
|
# are not enforced by the model parameters
|
||
|
text = enforce_stop_tokens(text, stop)
|
||
|
return text
|