langchain/templates/rag-redis/ingest.py

46 lines
1.6 KiB
Python
Raw Normal View History

import os
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import UnstructuredFileLoader
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import Redis
from rag_redis.config import EMBED_MODEL, INDEX_NAME, INDEX_SCHEMA, REDIS_URL
def ingest_documents():
"""
Ingest PDF to Redis from the data/ directory that
contains Edgar 10k filings data for Nike.
"""
# Load list of pdfs
company_name = "Nike"
data_path = "data/"
2023-10-29 22:50:09 +00:00
doc = [os.path.join(data_path, file) for file in os.listdir(data_path)][0]
print("Parsing 10k filing doc for NIKE", doc) # noqa: T201
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1500, chunk_overlap=100, add_start_index=True
)
loader = UnstructuredFileLoader(doc, mode="single", strategy="fast")
chunks = loader.load_and_split(text_splitter)
print("Done preprocessing. Created", len(chunks), "chunks of the original pdf") # noqa: T201
# Create vectorstore
2023-10-29 22:50:09 +00:00
embedder = HuggingFaceEmbeddings(model_name=EMBED_MODEL)
_ = Redis.from_texts(
# appending this little bit can sometimes help with semantic retrieval
# especially with multiple companies
texts=[f"Company: {company_name}. " + chunk.page_content for chunk in chunks],
metadatas=[chunk.metadata for chunk in chunks],
embedding=embedder,
index_name=INDEX_NAME,
index_schema=INDEX_SCHEMA,
2023-10-29 22:50:09 +00:00
redis_url=REDIS_URL,
)
if __name__ == "__main__":
ingest_documents()