mirror of
https://github.com/hwchase17/langchain
synced 2024-10-29 17:07:25 +00:00
200 lines
4.9 KiB
Plaintext
200 lines
4.9 KiB
Plaintext
|
{
|
||
|
"cells": [
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"source": [
|
||
|
"# Tigris\n",
|
||
|
"\n",
|
||
|
"> [Tigris](htttps://tigrisdata.com) is an open source Serverless NoSQL Database and Search Platform designed to simplify building high-performance vector search applications.\n",
|
||
|
"> Tigris eliminates the infrastructure complexity of managing, operating, and synchronizing multiple tools, allowing you to focus on building great applications instead."
|
||
|
],
|
||
|
"metadata": {
|
||
|
"collapsed": false
|
||
|
}
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"source": [
|
||
|
"This notebook guides you how to use Tigris as your VectorStore"
|
||
|
],
|
||
|
"metadata": {
|
||
|
"collapsed": false
|
||
|
}
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"source": [
|
||
|
"**Pre requisites**\n",
|
||
|
"1. An OpenAI account. You can sign up for an account [here](https://platform.openai.com/)\n",
|
||
|
"2. [Sign up for a free Tigris account](https://console.preview.tigrisdata.cloud). Once you have signed up for the Tigris account, create a new project called `vectordemo`. Next, make a note of the *Uri* for the region you've created your project in, the **clientId** and **clientSecret**. You can get all this information from the **Application Keys** section of the project."
|
||
|
],
|
||
|
"metadata": {
|
||
|
"collapsed": false
|
||
|
}
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"source": [
|
||
|
"Let's first install our dependencies:"
|
||
|
],
|
||
|
"metadata": {
|
||
|
"collapsed": false
|
||
|
}
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"!pip install tigrisdb openapi-schema-pydantic openai tiktoken"
|
||
|
],
|
||
|
"metadata": {
|
||
|
"collapsed": false
|
||
|
}
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"source": [
|
||
|
"We will load the `OpenAI` api key and `Tigris` credentials in our environment"
|
||
|
],
|
||
|
"metadata": {
|
||
|
"collapsed": false
|
||
|
}
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"import os\n",
|
||
|
"import getpass\n",
|
||
|
"\n",
|
||
|
"os.environ['OPENAI_API_KEY'] = getpass.getpass('OpenAI API Key:')\n",
|
||
|
"os.environ['TIGRIS_PROJECT'] = getpass.getpass('Tigris Project Name:')\n",
|
||
|
"os.environ['TIGRIS_CLIENT_ID'] = getpass.getpass('Tigris Client Id:')\n",
|
||
|
"os.environ['TIGRIS_CLIENT_SECRET'] = getpass.getpass('Tigris Client Secret:')"
|
||
|
],
|
||
|
"metadata": {
|
||
|
"collapsed": false
|
||
|
}
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"from langchain.embeddings.openai import OpenAIEmbeddings\n",
|
||
|
"from langchain.text_splitter import CharacterTextSplitter\n",
|
||
|
"from langchain.vectorstores import Tigris\n",
|
||
|
"from langchain.document_loaders import TextLoader"
|
||
|
],
|
||
|
"metadata": {
|
||
|
"collapsed": false
|
||
|
}
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"source": [
|
||
|
"### Initialize Tigris vector store\n",
|
||
|
"Let's import our test dataset:"
|
||
|
],
|
||
|
"metadata": {
|
||
|
"collapsed": false
|
||
|
}
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"loader = TextLoader('../../../state_of_the_union.txt')\n",
|
||
|
"documents = loader.load()\n",
|
||
|
"text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)\n",
|
||
|
"docs = text_splitter.split_documents(documents)\n",
|
||
|
"\n",
|
||
|
"embeddings = OpenAIEmbeddings()"
|
||
|
],
|
||
|
"metadata": {
|
||
|
"collapsed": false
|
||
|
}
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"vector_store = Tigris.from_documents(docs, embeddings, index_name=\"my_embeddings\")"
|
||
|
],
|
||
|
"metadata": {
|
||
|
"collapsed": false
|
||
|
}
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"source": [
|
||
|
"### Similarity Search"
|
||
|
],
|
||
|
"metadata": {
|
||
|
"collapsed": false
|
||
|
}
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"query = \"What did the president say about Ketanji Brown Jackson\"\n",
|
||
|
"found_docs = vector_store.similarity_search(query)\n",
|
||
|
"print(found_docs)"
|
||
|
],
|
||
|
"metadata": {
|
||
|
"collapsed": false
|
||
|
}
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"source": [
|
||
|
"### Similarity Search with score (vector distance)"
|
||
|
],
|
||
|
"metadata": {
|
||
|
"collapsed": false
|
||
|
}
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"query = \"What did the president say about Ketanji Brown Jackson\"\n",
|
||
|
"result = vector_store.similarity_search_with_score(query)\n",
|
||
|
"for (doc, score) in result:\n",
|
||
|
" print(f\"document={doc}, score={score}\")"
|
||
|
],
|
||
|
"metadata": {
|
||
|
"collapsed": false
|
||
|
}
|
||
|
}
|
||
|
],
|
||
|
"metadata": {
|
||
|
"kernelspec": {
|
||
|
"display_name": "Python 3",
|
||
|
"language": "python",
|
||
|
"name": "python3"
|
||
|
},
|
||
|
"language_info": {
|
||
|
"codemirror_mode": {
|
||
|
"name": "ipython",
|
||
|
"version": 2
|
||
|
},
|
||
|
"file_extension": ".py",
|
||
|
"mimetype": "text/x-python",
|
||
|
"name": "python",
|
||
|
"nbconvert_exporter": "python",
|
||
|
"pygments_lexer": "ipython2",
|
||
|
"version": "2.7.6"
|
||
|
}
|
||
|
},
|
||
|
"nbformat": 4,
|
||
|
"nbformat_minor": 0
|
||
|
}
|