mirror of
https://github.com/hwchase17/langchain
synced 2024-10-29 17:07:25 +00:00
397 lines
13 KiB
Plaintext
397 lines
13 KiB
Plaintext
|
{
|
||
|
"cells": [
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"id": "13afcae7",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"# Self-querying with Qdrant\n",
|
||
|
"\n",
|
||
|
">[Qdrant](https://qdrant.tech/documentation/) (read: quadrant ) is a vector similarity search engine. It provides a production-ready service with a convenient API to store, search, and manage points - vectors with an additional payload. `Qdrant` is tailored to extended filtering support. It makes it useful \n",
|
||
|
"\n",
|
||
|
"In the notebook we'll demo the `SelfQueryRetriever` wrapped around a Qdrant vector store. "
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"id": "68e75fb9",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"## Creating a Qdrant vectorstore\n",
|
||
|
"First we'll want to create a Chroma VectorStore and seed it with some data. We've created a small demo set of documents that contain summaries of movies.\n",
|
||
|
"\n",
|
||
|
"NOTE: The self-query retriever requires you to have `lark` installed (`pip install lark`). We also need the `qdrant-client` package."
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 1,
|
||
|
"id": "63a8af5b",
|
||
|
"metadata": {
|
||
|
"tags": []
|
||
|
},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"#!pip install lark qdrant-client"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"id": "83811610-7df3-4ede-b268-68a6a83ba9e2",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"We want to use `OpenAIEmbeddings` so we have to get the OpenAI API Key."
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 2,
|
||
|
"id": "dd01b61b-7d32-4a55-85d6-b2d2d4f18840",
|
||
|
"metadata": {
|
||
|
"tags": []
|
||
|
},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"# import os\n",
|
||
|
"# import getpass\n",
|
||
|
"\n",
|
||
|
"# os.environ['OPENAI_API_KEY'] = getpass.getpass('OpenAI API Key:')"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 3,
|
||
|
"id": "cb4a5787",
|
||
|
"metadata": {
|
||
|
"tags": []
|
||
|
},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"from langchain.schema import Document\n",
|
||
|
"from langchain.embeddings.openai import OpenAIEmbeddings\n",
|
||
|
"from langchain.vectorstores import Qdrant\n",
|
||
|
"\n",
|
||
|
"embeddings = OpenAIEmbeddings()"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 4,
|
||
|
"id": "bcbe04d9",
|
||
|
"metadata": {
|
||
|
"tags": []
|
||
|
},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"docs = [\n",
|
||
|
" Document(page_content=\"A bunch of scientists bring back dinosaurs and mayhem breaks loose\", metadata={\"year\": 1993, \"rating\": 7.7, \"genre\": \"science fiction\"}),\n",
|
||
|
" Document(page_content=\"Leo DiCaprio gets lost in a dream within a dream within a dream within a ...\", metadata={\"year\": 2010, \"director\": \"Christopher Nolan\", \"rating\": 8.2}),\n",
|
||
|
" Document(page_content=\"A psychologist / detective gets lost in a series of dreams within dreams within dreams and Inception reused the idea\", metadata={\"year\": 2006, \"director\": \"Satoshi Kon\", \"rating\": 8.6}),\n",
|
||
|
" Document(page_content=\"A bunch of normal-sized women are supremely wholesome and some men pine after them\", metadata={\"year\": 2019, \"director\": \"Greta Gerwig\", \"rating\": 8.3}),\n",
|
||
|
" Document(page_content=\"Toys come alive and have a blast doing so\", metadata={\"year\": 1995, \"genre\": \"animated\"}),\n",
|
||
|
" Document(page_content=\"Three men walk into the Zone, three men walk out of the Zone\", metadata={\"year\": 1979, \"rating\": 9.9, \"director\": \"Andrei Tarkovsky\", \"genre\": \"science fiction\", \"rating\": 9.9})\n",
|
||
|
"]\n",
|
||
|
"vectorstore = Qdrant.from_documents(\n",
|
||
|
" docs, \n",
|
||
|
" embeddings, \n",
|
||
|
" location=\":memory:\", # Local mode with in-memory storage only\n",
|
||
|
" collection_name=\"my_documents\",\n",
|
||
|
")"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"id": "5ecaab6d",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"## Creating our self-querying retriever\n",
|
||
|
"Now we can instantiate our retriever. To do this we'll need to provide some information upfront about the metadata fields that our documents support and a short description of the document contents."
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 5,
|
||
|
"id": "86e34dbf",
|
||
|
"metadata": {
|
||
|
"tags": []
|
||
|
},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"from langchain.llms import OpenAI\n",
|
||
|
"from langchain.retrievers.self_query.base import SelfQueryRetriever\n",
|
||
|
"from langchain.chains.query_constructor.base import AttributeInfo\n",
|
||
|
"\n",
|
||
|
"metadata_field_info=[\n",
|
||
|
" AttributeInfo(\n",
|
||
|
" name=\"genre\",\n",
|
||
|
" description=\"The genre of the movie\", \n",
|
||
|
" type=\"string or list[string]\", \n",
|
||
|
" ),\n",
|
||
|
" AttributeInfo(\n",
|
||
|
" name=\"year\",\n",
|
||
|
" description=\"The year the movie was released\", \n",
|
||
|
" type=\"integer\", \n",
|
||
|
" ),\n",
|
||
|
" AttributeInfo(\n",
|
||
|
" name=\"director\",\n",
|
||
|
" description=\"The name of the movie director\", \n",
|
||
|
" type=\"string\", \n",
|
||
|
" ),\n",
|
||
|
" AttributeInfo(\n",
|
||
|
" name=\"rating\",\n",
|
||
|
" description=\"A 1-10 rating for the movie\",\n",
|
||
|
" type=\"float\"\n",
|
||
|
" ),\n",
|
||
|
"]\n",
|
||
|
"document_content_description = \"Brief summary of a movie\"\n",
|
||
|
"llm = OpenAI(temperature=0)\n",
|
||
|
"retriever = SelfQueryRetriever.from_llm(llm, vectorstore, document_content_description, metadata_field_info, verbose=True)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"id": "ea9df8d4",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"## Testing it out\n",
|
||
|
"And now we can try actually using our retriever!"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 6,
|
||
|
"id": "38a126e9",
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"name": "stdout",
|
||
|
"output_type": "stream",
|
||
|
"text": [
|
||
|
"query='dinosaur' filter=None limit=None\n"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"data": {
|
||
|
"text/plain": [
|
||
|
"[Document(page_content='A bunch of scientists bring back dinosaurs and mayhem breaks loose', metadata={'year': 1993, 'rating': 7.7, 'genre': 'science fiction'}),\n",
|
||
|
" Document(page_content='Toys come alive and have a blast doing so', metadata={'year': 1995, 'genre': 'animated'}),\n",
|
||
|
" Document(page_content='Three men walk into the Zone, three men walk out of the Zone', metadata={'year': 1979, 'rating': 9.9, 'director': 'Andrei Tarkovsky', 'genre': 'science fiction'}),\n",
|
||
|
" Document(page_content='A psychologist / detective gets lost in a series of dreams within dreams within dreams and Inception reused the idea', metadata={'year': 2006, 'director': 'Satoshi Kon', 'rating': 8.6})]"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 6,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"# This example only specifies a relevant query\n",
|
||
|
"retriever.get_relevant_documents(\"What are some movies about dinosaurs\")"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 7,
|
||
|
"id": "fc3f1e6e",
|
||
|
"metadata": {
|
||
|
"scrolled": false
|
||
|
},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"name": "stdout",
|
||
|
"output_type": "stream",
|
||
|
"text": [
|
||
|
"query=' ' filter=Comparison(comparator=<Comparator.GT: 'gt'>, attribute='rating', value=8.5) limit=None\n"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"data": {
|
||
|
"text/plain": [
|
||
|
"[Document(page_content='Three men walk into the Zone, three men walk out of the Zone', metadata={'year': 1979, 'rating': 9.9, 'director': 'Andrei Tarkovsky', 'genre': 'science fiction'}),\n",
|
||
|
" Document(page_content='A psychologist / detective gets lost in a series of dreams within dreams within dreams and Inception reused the idea', metadata={'year': 2006, 'director': 'Satoshi Kon', 'rating': 8.6})]"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 7,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"# This example only specifies a filter\n",
|
||
|
"retriever.get_relevant_documents(\"I want to watch a movie rated higher than 8.5\")"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 9,
|
||
|
"id": "b19d4da0",
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"name": "stdout",
|
||
|
"output_type": "stream",
|
||
|
"text": [
|
||
|
"query='women' filter=Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='director', value='Greta Gerwig') limit=None\n"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"data": {
|
||
|
"text/plain": [
|
||
|
"[Document(page_content='A bunch of normal-sized women are supremely wholesome and some men pine after them', metadata={'year': 2019, 'director': 'Greta Gerwig', 'rating': 8.3})]"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 9,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"# This example specifies a query and a filter\n",
|
||
|
"retriever.get_relevant_documents(\"Has Greta Gerwig directed any movies about women\")"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 10,
|
||
|
"id": "f900e40e",
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"name": "stdout",
|
||
|
"output_type": "stream",
|
||
|
"text": [
|
||
|
"query=' ' filter=Operation(operator=<Operator.AND: 'and'>, arguments=[Comparison(comparator=<Comparator.GT: 'gt'>, attribute='rating', value=8.5), Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='genre', value='science fiction')]) limit=None\n"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"data": {
|
||
|
"text/plain": [
|
||
|
"[Document(page_content='Three men walk into the Zone, three men walk out of the Zone', metadata={'year': 1979, 'rating': 9.9, 'director': 'Andrei Tarkovsky', 'genre': 'science fiction'})]"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 10,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"# This example specifies a composite filter\n",
|
||
|
"retriever.get_relevant_documents(\"What's a highly rated (above 8.5) science fiction film?\")"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 11,
|
||
|
"id": "12a51522",
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"name": "stdout",
|
||
|
"output_type": "stream",
|
||
|
"text": [
|
||
|
"query='toys' filter=Operation(operator=<Operator.AND: 'and'>, arguments=[Comparison(comparator=<Comparator.GT: 'gt'>, attribute='year', value=1990), Comparison(comparator=<Comparator.LT: 'lt'>, attribute='year', value=2005), Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='genre', value='animated')]) limit=None\n"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"data": {
|
||
|
"text/plain": [
|
||
|
"[Document(page_content='Toys come alive and have a blast doing so', metadata={'year': 1995, 'genre': 'animated'})]"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 11,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"# This example specifies a query and composite filter\n",
|
||
|
"retriever.get_relevant_documents(\"What's a movie after 1990 but before 2005 that's all about toys, and preferably is animated\")"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"id": "39bd1de1-b9fe-4a98-89da-58d8a7a6ae51",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"## Filter k\n",
|
||
|
"\n",
|
||
|
"We can also use the self query retriever to specify `k`: the number of documents to fetch.\n",
|
||
|
"\n",
|
||
|
"We can do this by passing `enable_limit=True` to the constructor."
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 12,
|
||
|
"id": "bff36b88-b506-4877-9c63-e5a1a8d78e64",
|
||
|
"metadata": {
|
||
|
"tags": []
|
||
|
},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"retriever = SelfQueryRetriever.from_llm(\n",
|
||
|
" llm, \n",
|
||
|
" vectorstore, \n",
|
||
|
" document_content_description, \n",
|
||
|
" metadata_field_info, \n",
|
||
|
" enable_limit=True,\n",
|
||
|
" verbose=True\n",
|
||
|
")"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 13,
|
||
|
"id": "2758d229-4f97-499c-819f-888acaf8ee10",
|
||
|
"metadata": {
|
||
|
"tags": []
|
||
|
},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"name": "stdout",
|
||
|
"output_type": "stream",
|
||
|
"text": [
|
||
|
"query='dinosaur' filter=None limit=2\n"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"data": {
|
||
|
"text/plain": [
|
||
|
"[Document(page_content='A bunch of scientists bring back dinosaurs and mayhem breaks loose', metadata={'year': 1993, 'rating': 7.7, 'genre': 'science fiction'}),\n",
|
||
|
" Document(page_content='Toys come alive and have a blast doing so', metadata={'year': 1995, 'genre': 'animated'})]"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 13,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"# This example only specifies a relevant query\n",
|
||
|
"retriever.get_relevant_documents(\"what are two movies about dinosaurs\")"
|
||
|
]
|
||
|
}
|
||
|
],
|
||
|
"metadata": {
|
||
|
"kernelspec": {
|
||
|
"display_name": "Python 3 (ipykernel)",
|
||
|
"language": "python",
|
||
|
"name": "python3"
|
||
|
},
|
||
|
"language_info": {
|
||
|
"codemirror_mode": {
|
||
|
"name": "ipython",
|
||
|
"version": 3
|
||
|
},
|
||
|
"file_extension": ".py",
|
||
|
"mimetype": "text/x-python",
|
||
|
"name": "python",
|
||
|
"nbconvert_exporter": "python",
|
||
|
"pygments_lexer": "ipython3",
|
||
|
"version": "3.11.3"
|
||
|
}
|
||
|
},
|
||
|
"nbformat": 4,
|
||
|
"nbformat_minor": 5
|
||
|
}
|