mirror of
https://github.com/hwchase17/langchain
synced 2024-10-31 15:20:26 +00:00
177 lines
4.1 KiB
Plaintext
177 lines
4.1 KiB
Plaintext
|
{
|
||
|
"cells": [
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"id": "f897c784",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"# Custom ExampleSelector\n",
|
||
|
"\n",
|
||
|
"This notebook goes over how to implement a custom ExampleSelector. ExampleSelectors are used to select examples to use in few shot prompts.\n",
|
||
|
"\n",
|
||
|
"An ExampleSelector must implement two methods:\n",
|
||
|
"\n",
|
||
|
"1. An `add_example` method which takes in an example and adds it into the ExampleSelector\n",
|
||
|
"2. A `select_examples` method which takes in input variables (which are meant to be user input) and returns a list of examples to use in the few shot prompt.\n",
|
||
|
"\n",
|
||
|
"\n",
|
||
|
"Let's implement a custom ExampleSelector that just selects two examples at random."
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 1,
|
||
|
"id": "1a945da1",
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"from langchain.prompts.example_selector.base import BaseExampleSelector\n",
|
||
|
"from typing import Dict, List\n",
|
||
|
"import numpy as np"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 2,
|
||
|
"id": "62cf0ad7",
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"class CustomExampleSelector(BaseExampleSelector):\n",
|
||
|
" \n",
|
||
|
" def __init__(self, examples: List[Dict[str, str]]):\n",
|
||
|
" self.examples = examples\n",
|
||
|
" \n",
|
||
|
" def add_example(self, example: Dict[str, str]) -> None:\n",
|
||
|
" \"\"\"Add new example to store for a key.\"\"\"\n",
|
||
|
" self.examples.append(example)\n",
|
||
|
"\n",
|
||
|
" def select_examples(self, input_variables: Dict[str, str]) -> List[dict]:\n",
|
||
|
" \"\"\"Select which examples to use based on the inputs.\"\"\"\n",
|
||
|
" return np.random.choice(self.examples, size=2, replace=False)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 3,
|
||
|
"id": "242d3213",
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"examples = [{\"foo\": \"1\"}, {\"foo\": \"2\"}, {\"foo\": \"3\"}]\n",
|
||
|
"example_selector = CustomExampleSelector(examples)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"id": "2a038065",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"Let's now try it out! We can select some examples and try adding examples."
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 4,
|
||
|
"id": "74fbbef5",
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/plain": [
|
||
|
"array([{'foo': '2'}, {'foo': '3'}], dtype=object)"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 4,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"example_selector.select_examples({\"foo\": \"foo\"})"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 5,
|
||
|
"id": "9bbb5421",
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"example_selector.add_example({\"foo\": \"4\"})"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 6,
|
||
|
"id": "c0eb9f22",
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/plain": [
|
||
|
"[{'foo': '1'}, {'foo': '2'}, {'foo': '3'}, {'foo': '4'}]"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 6,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"example_selector.examples"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 7,
|
||
|
"id": "cc39b1e3",
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/plain": [
|
||
|
"array([{'foo': '1'}, {'foo': '4'}], dtype=object)"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 7,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"example_selector.select_examples({\"foo\": \"foo\"})"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"id": "1739dd96",
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": []
|
||
|
}
|
||
|
],
|
||
|
"metadata": {
|
||
|
"kernelspec": {
|
||
|
"display_name": "Python 3 (ipykernel)",
|
||
|
"language": "python",
|
||
|
"name": "python3"
|
||
|
},
|
||
|
"language_info": {
|
||
|
"codemirror_mode": {
|
||
|
"name": "ipython",
|
||
|
"version": 3
|
||
|
},
|
||
|
"file_extension": ".py",
|
||
|
"mimetype": "text/x-python",
|
||
|
"name": "python",
|
||
|
"nbconvert_exporter": "python",
|
||
|
"pygments_lexer": "ipython3",
|
||
|
"version": "3.7.6"
|
||
|
}
|
||
|
},
|
||
|
"nbformat": 4,
|
||
|
"nbformat_minor": 5
|
||
|
}
|