2024-01-02 20:32:16 +00:00
|
|
|
|
from langchain_community.chat_models import ChatOpenAI
|
docs[patch], templates[patch]: Import from core (#14575)
Update imports to use core for the low-hanging fruit changes. Ran
following
```bash
git grep -l 'langchain.schema.runnable' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.runnable/langchain_core.runnables/g'
git grep -l 'langchain.schema.output_parser' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.output_parser/langchain_core.output_parsers/g'
git grep -l 'langchain.schema.messages' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.messages/langchain_core.messages/g'
git grep -l 'langchain.schema.chat_histry' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.chat_history/langchain_core.chat_history/g'
git grep -l 'langchain.schema.prompt_template' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.prompt_template/langchain_core.prompts/g'
git grep -l 'from langchain.pydantic_v1' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.pydantic_v1/from langchain_core.pydantic_v1/g'
git grep -l 'from langchain.tools.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.tools\.base/from langchain_core.tools/g'
git grep -l 'from langchain.chat_models.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.chat_models.base/from langchain_core.language_models.chat_models/g'
git grep -l 'from langchain.llms.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.llms\.base\ /from langchain_core.language_models.llms\ /g'
git grep -l 'from langchain.embeddings.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.embeddings\.base/from langchain_core.embeddings/g'
git grep -l 'from langchain.vectorstores.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.vectorstores\.base/from langchain_core.vectorstores/g'
git grep -l 'from langchain.agents.tools' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.agents\.tools/from langchain_core.tools/g'
git grep -l 'from langchain.schema.output' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.output\ /from langchain_core.outputs\ /g'
git grep -l 'from langchain.schema.embeddings' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.embeddings/from langchain_core.embeddings/g'
git grep -l 'from langchain.schema.document' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.document/from langchain_core.documents/g'
git grep -l 'from langchain.schema.agent' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.agent/from langchain_core.agents/g'
git grep -l 'from langchain.schema.prompt ' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.prompt\ /from langchain_core.prompt_values /g'
git grep -l 'from langchain.schema.language_model' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.language_model/from langchain_core.language_models/g'
```
2023-12-12 00:49:10 +00:00
|
|
|
|
from langchain_core.output_parsers import StrOutputParser
|
2024-01-03 21:28:05 +00:00
|
|
|
|
from langchain_core.prompts import ChatPromptTemplate
|
docs[patch], templates[patch]: Import from core (#14575)
Update imports to use core for the low-hanging fruit changes. Ran
following
```bash
git grep -l 'langchain.schema.runnable' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.runnable/langchain_core.runnables/g'
git grep -l 'langchain.schema.output_parser' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.output_parser/langchain_core.output_parsers/g'
git grep -l 'langchain.schema.messages' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.messages/langchain_core.messages/g'
git grep -l 'langchain.schema.chat_histry' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.chat_history/langchain_core.chat_history/g'
git grep -l 'langchain.schema.prompt_template' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.prompt_template/langchain_core.prompts/g'
git grep -l 'from langchain.pydantic_v1' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.pydantic_v1/from langchain_core.pydantic_v1/g'
git grep -l 'from langchain.tools.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.tools\.base/from langchain_core.tools/g'
git grep -l 'from langchain.chat_models.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.chat_models.base/from langchain_core.language_models.chat_models/g'
git grep -l 'from langchain.llms.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.llms\.base\ /from langchain_core.language_models.llms\ /g'
git grep -l 'from langchain.embeddings.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.embeddings\.base/from langchain_core.embeddings/g'
git grep -l 'from langchain.vectorstores.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.vectorstores\.base/from langchain_core.vectorstores/g'
git grep -l 'from langchain.agents.tools' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.agents\.tools/from langchain_core.tools/g'
git grep -l 'from langchain.schema.output' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.output\ /from langchain_core.outputs\ /g'
git grep -l 'from langchain.schema.embeddings' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.embeddings/from langchain_core.embeddings/g'
git grep -l 'from langchain.schema.document' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.document/from langchain_core.documents/g'
git grep -l 'from langchain.schema.agent' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.agent/from langchain_core.agents/g'
git grep -l 'from langchain.schema.prompt ' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.prompt\ /from langchain_core.prompt_values /g'
git grep -l 'from langchain.schema.language_model' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.language_model/from langchain_core.language_models/g'
```
2023-12-12 00:49:10 +00:00
|
|
|
|
from langchain_core.pydantic_v1 import BaseModel
|
|
|
|
|
from langchain_core.runnables import RunnablePassthrough
|
2023-11-27 00:31:41 +00:00
|
|
|
|
|
|
|
|
|
skeleton_generator_template = """[User:] You’re an organizer responsible for only \
|
|
|
|
|
giving the skeleton (not the full content) for answering the question.
|
|
|
|
|
Provide the skeleton in a list of points (numbered 1., 2., 3., etc.) to answer \
|
|
|
|
|
the question. \
|
|
|
|
|
Instead of writing a full sentence, each skeleton point should be very short \
|
|
|
|
|
with only 3∼5 words. \
|
|
|
|
|
Generally, the skeleton should have 3∼10 points. Now, please provide the skeleton \
|
|
|
|
|
for the following question.
|
|
|
|
|
{question}
|
|
|
|
|
Skeleton:
|
|
|
|
|
[Assistant:] 1."""
|
|
|
|
|
|
|
|
|
|
skeleton_generator_prompt = ChatPromptTemplate.from_template(
|
|
|
|
|
skeleton_generator_template
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
skeleton_generator_chain = (
|
|
|
|
|
skeleton_generator_prompt | ChatOpenAI() | StrOutputParser() | (lambda x: "1. " + x)
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
point_expander_template = """[User:] You’re responsible for continuing \
|
|
|
|
|
the writing of one and only one point in the overall answer to the following question.
|
|
|
|
|
{question}
|
|
|
|
|
The skeleton of the answer is
|
|
|
|
|
{skeleton}
|
|
|
|
|
Continue and only continue the writing of point {point_index}. \
|
|
|
|
|
Write it **very shortly** in 1∼2 sentence and do not continue with other points!
|
|
|
|
|
[Assistant:] {point_index}. {point_skeleton}"""
|
|
|
|
|
|
|
|
|
|
point_expander_prompt = ChatPromptTemplate.from_template(point_expander_template)
|
|
|
|
|
|
|
|
|
|
point_expander_chain = RunnablePassthrough.assign(
|
|
|
|
|
continuation=point_expander_prompt | ChatOpenAI() | StrOutputParser()
|
|
|
|
|
) | (lambda x: x["point_skeleton"].strip() + " " + x["continuation"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def parse_numbered_list(input_str):
|
|
|
|
|
"""Parses a numbered list into a list of dictionaries
|
|
|
|
|
|
|
|
|
|
Each element having two keys:
|
|
|
|
|
'index' for the index in the numbered list, and 'point' for the content.
|
|
|
|
|
"""
|
|
|
|
|
# Split the input string into lines
|
|
|
|
|
lines = input_str.split("\n")
|
|
|
|
|
|
|
|
|
|
# Initialize an empty list to store the parsed items
|
|
|
|
|
parsed_list = []
|
|
|
|
|
|
|
|
|
|
for line in lines:
|
|
|
|
|
# Split each line at the first period to separate the index from the content
|
|
|
|
|
parts = line.split(". ", 1)
|
|
|
|
|
|
|
|
|
|
if len(parts) == 2:
|
|
|
|
|
# Convert the index part to an integer
|
|
|
|
|
# and strip any whitespace from the content
|
|
|
|
|
index = int(parts[0])
|
|
|
|
|
point = parts[1].strip()
|
|
|
|
|
|
|
|
|
|
# Add a dictionary to the parsed list
|
|
|
|
|
parsed_list.append({"point_index": index, "point_skeleton": point})
|
|
|
|
|
|
|
|
|
|
return parsed_list
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def create_list_elements(_input):
|
|
|
|
|
skeleton = _input["skeleton"]
|
|
|
|
|
numbered_list = parse_numbered_list(skeleton)
|
|
|
|
|
for el in numbered_list:
|
|
|
|
|
el["skeleton"] = skeleton
|
|
|
|
|
el["question"] = _input["question"]
|
|
|
|
|
return numbered_list
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_final_answer(expanded_list):
|
|
|
|
|
final_answer_str = "Here's a comprehensive answer:\n\n"
|
|
|
|
|
for i, el in enumerate(expanded_list):
|
|
|
|
|
final_answer_str += f"{i+1}. {el}\n\n"
|
|
|
|
|
return final_answer_str
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class ChainInput(BaseModel):
|
|
|
|
|
question: str
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
chain = (
|
|
|
|
|
RunnablePassthrough.assign(skeleton=skeleton_generator_chain)
|
|
|
|
|
| create_list_elements
|
|
|
|
|
| point_expander_chain.map()
|
|
|
|
|
| get_final_answer
|
|
|
|
|
).with_types(input_type=ChainInput)
|