langchain/tests/unit_tests/llms/fake_llm.py

63 lines
1.8 KiB
Python
Raw Normal View History

2022-10-24 21:51:15 +00:00
"""Fake LLM wrapper for testing purposes."""
from typing import Any, List, Mapping, Optional, cast
from pydantic import validator
2022-10-24 21:51:15 +00:00
from langchain.callbacks.manager import CallbackManagerForLLMRun
2022-10-24 21:51:15 +00:00
from langchain.llms.base import LLM
class FakeLLM(LLM):
2022-10-24 21:51:15 +00:00
"""Fake LLM wrapper for testing purposes."""
queries: Optional[Mapping] = None
sequential_responses: Optional[bool] = False
response_index: int = 0
@validator("queries", always=True)
def check_queries_required(
cls, queries: Optional[Mapping], values: Mapping[str, Any]
) -> Optional[Mapping]:
if values.get("sequential_response") and not queries:
raise ValueError(
"queries is required when sequential_response is set to True"
)
return queries
def get_num_tokens(self, text: str) -> int:
"""Return number of tokens."""
return len(text.split())
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "fake"
2022-10-24 21:51:15 +00:00
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
2023-06-11 17:09:22 +00:00
**kwargs: Any,
) -> str:
if self.sequential_responses:
return self._get_next_response_in_sequence
if self.queries is not None:
return self.queries[prompt]
2022-10-24 21:51:15 +00:00
if stop is None:
return "foo"
else:
return "bar"
2022-11-09 06:17:10 +00:00
@property
def _identifying_params(self) -> Mapping[str, Any]:
return {}
@property
def _get_next_response_in_sequence(self) -> str:
queries = cast(Mapping, self.queries)
response = queries[list(queries.keys())[self.response_index]]
self.response_index = self.response_index + 1
return response