mirror of
https://github.com/hwchase17/langchain
synced 2024-10-29 17:07:25 +00:00
177 lines
4.6 KiB
Plaintext
177 lines
4.6 KiB
Plaintext
|
{
|
||
|
"cells": [
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"# Xorbits Inference (Xinference)\n",
|
||
|
"\n",
|
||
|
"[Xinference](https://github.com/xorbitsai/inference) is a powerful and versatile library designed to serve LLMs, \n",
|
||
|
"speech recognition models, and multimodal models, even on your laptop. It supports a variety of models compatible with GGML, such as chatglm, baichuan, whisper, vicuna, orca, and many others. This notebook demonstrates how to use Xinference with LangChain."
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"## Installation\n",
|
||
|
"\n",
|
||
|
"Install `Xinference` through PyPI:"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"%pip install \"xinference[all]\""
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"## Deploy Xinference Locally or in a Distributed Cluster.\n",
|
||
|
"\n",
|
||
|
"For local deployment, run `xinference`. \n",
|
||
|
"\n",
|
||
|
"To deploy Xinference in a cluster, first start an Xinference supervisor using the `xinference-supervisor`. You can also use the option -p to specify the port and -H to specify the host. The default port is 9997.\n",
|
||
|
"\n",
|
||
|
"Then, start the Xinference workers using `xinference-worker` on each server you want to run them on. \n",
|
||
|
"\n",
|
||
|
"You can consult the README file from [Xinference](https://github.com/xorbitsai/inference) for more information.\n",
|
||
|
"## Wrapper\n",
|
||
|
"\n",
|
||
|
"To use Xinference with LangChain, you need to first launch a model. You can use command line interface (CLI) to do so:"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 13,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"name": "stdout",
|
||
|
"output_type": "stream",
|
||
|
"text": [
|
||
|
"Model uid: 7167b2b0-2a04-11ee-83f0-d29396a3f064\n"
|
||
|
]
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"!xinference launch -n vicuna-v1.3 -f ggmlv3 -q q4_0"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"A model UID is returned for you to use. Now you can use Xinference with LangChain:"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 14,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/plain": [
|
||
|
"' You can visit the Eiffel Tower, Notre-Dame Cathedral, the Louvre Museum, and many other historical sites in Paris, the capital of France.'"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 14,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"from langchain.llms import Xinference\n",
|
||
|
"\n",
|
||
|
"llm = Xinference(\n",
|
||
|
" server_url=\"http://0.0.0.0:9997\",\n",
|
||
|
" model_uid = \"7167b2b0-2a04-11ee-83f0-d29396a3f064\"\n",
|
||
|
")\n",
|
||
|
"\n",
|
||
|
"llm(\n",
|
||
|
" prompt=\"Q: where can we visit in the capital of France? A:\",\n",
|
||
|
" generate_config={\"max_tokens\": 1024, \"stream\": True},\n",
|
||
|
")"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"### Integrate with a LLMChain"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 16,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"name": "stdout",
|
||
|
"output_type": "stream",
|
||
|
"text": [
|
||
|
"\n",
|
||
|
"A: You can visit many places in Paris, such as the Eiffel Tower, the Louvre Museum, Notre-Dame Cathedral, the Champs-Elysées, Montmartre, Sacré-Cœur, and the Palace of Versailles.\n"
|
||
|
]
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"from langchain import PromptTemplate, LLMChain\n",
|
||
|
"\n",
|
||
|
"template = \"Where can we visit in the capital of {country}?\"\n",
|
||
|
"\n",
|
||
|
"prompt = PromptTemplate(template=template, input_variables=[\"country\"])\n",
|
||
|
"\n",
|
||
|
"llm_chain = LLMChain(prompt=prompt, llm=llm)\n",
|
||
|
"\n",
|
||
|
"generated = llm_chain.run(country=\"France\")\n",
|
||
|
"print(generated)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"Lastly, terminate the model when you do not need to use it:"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 17,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"!xinference terminate --model-uid \"7167b2b0-2a04-11ee-83f0-d29396a3f064\""
|
||
|
]
|
||
|
}
|
||
|
],
|
||
|
"metadata": {
|
||
|
"kernelspec": {
|
||
|
"display_name": "myenv3.9",
|
||
|
"language": "python",
|
||
|
"name": "python3"
|
||
|
},
|
||
|
"language_info": {
|
||
|
"codemirror_mode": {
|
||
|
"name": "ipython",
|
||
|
"version": 3
|
||
|
},
|
||
|
"file_extension": ".py",
|
||
|
"mimetype": "text/x-python",
|
||
|
"name": "python",
|
||
|
"nbconvert_exporter": "python",
|
||
|
"pygments_lexer": "ipython3",
|
||
|
"version": "3.10.11"
|
||
|
},
|
||
|
"orig_nbformat": 4
|
||
|
},
|
||
|
"nbformat": 4,
|
||
|
"nbformat_minor": 2
|
||
|
}
|