mirror of
https://github.com/hwchase17/langchain
synced 2024-11-10 01:10:59 +00:00
134 lines
4.2 KiB
Python
134 lines
4.2 KiB
Python
|
"""Loads .ipynb notebook files."""
|
||
|
import json
|
||
|
from pathlib import Path
|
||
|
from typing import Any, List
|
||
|
|
||
|
from langchain_core.documents import Document
|
||
|
|
||
|
from langchain_community.document_loaders.base import BaseLoader
|
||
|
|
||
|
|
||
|
def concatenate_cells(
|
||
|
cell: dict, include_outputs: bool, max_output_length: int, traceback: bool
|
||
|
) -> str:
|
||
|
"""Combine cells information in a readable format ready to be used.
|
||
|
|
||
|
Args:
|
||
|
cell: A dictionary
|
||
|
include_outputs: Whether to include the outputs of the cell.
|
||
|
max_output_length: Maximum length of the output to be displayed.
|
||
|
traceback: Whether to return a traceback of the error.
|
||
|
|
||
|
Returns:
|
||
|
A string with the cell information.
|
||
|
|
||
|
"""
|
||
|
cell_type = cell["cell_type"]
|
||
|
source = cell["source"]
|
||
|
output = cell["outputs"]
|
||
|
|
||
|
if include_outputs and cell_type == "code" and output:
|
||
|
if "ename" in output[0].keys():
|
||
|
error_name = output[0]["ename"]
|
||
|
error_value = output[0]["evalue"]
|
||
|
if traceback:
|
||
|
traceback = output[0]["traceback"]
|
||
|
return (
|
||
|
f"'{cell_type}' cell: '{source}'\n, gives error '{error_name}',"
|
||
|
f" with description '{error_value}'\n"
|
||
|
f"and traceback '{traceback}'\n\n"
|
||
|
)
|
||
|
else:
|
||
|
return (
|
||
|
f"'{cell_type}' cell: '{source}'\n, gives error '{error_name}',"
|
||
|
f"with description '{error_value}'\n\n"
|
||
|
)
|
||
|
elif output[0]["output_type"] == "stream":
|
||
|
output = output[0]["text"]
|
||
|
min_output = min(max_output_length, len(output))
|
||
|
return (
|
||
|
f"'{cell_type}' cell: '{source}'\n with "
|
||
|
f"output: '{output[:min_output]}'\n\n"
|
||
|
)
|
||
|
else:
|
||
|
return f"'{cell_type}' cell: '{source}'\n\n"
|
||
|
|
||
|
return ""
|
||
|
|
||
|
|
||
|
def remove_newlines(x: Any) -> Any:
|
||
|
"""Recursively remove newlines, no matter the data structure they are stored in."""
|
||
|
import pandas as pd
|
||
|
|
||
|
if isinstance(x, str):
|
||
|
return x.replace("\n", "")
|
||
|
elif isinstance(x, list):
|
||
|
return [remove_newlines(elem) for elem in x]
|
||
|
elif isinstance(x, pd.DataFrame):
|
||
|
return x.applymap(remove_newlines)
|
||
|
else:
|
||
|
return x
|
||
|
|
||
|
|
||
|
class NotebookLoader(BaseLoader):
|
||
|
"""Load `Jupyter notebook` (.ipynb) files."""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
path: str,
|
||
|
include_outputs: bool = False,
|
||
|
max_output_length: int = 10,
|
||
|
remove_newline: bool = False,
|
||
|
traceback: bool = False,
|
||
|
):
|
||
|
"""Initialize with a path.
|
||
|
|
||
|
Args:
|
||
|
path: The path to load the notebook from.
|
||
|
include_outputs: Whether to include the outputs of the cell.
|
||
|
Defaults to False.
|
||
|
max_output_length: Maximum length of the output to be displayed.
|
||
|
Defaults to 10.
|
||
|
remove_newline: Whether to remove newlines from the notebook.
|
||
|
Defaults to False.
|
||
|
traceback: Whether to return a traceback of the error.
|
||
|
Defaults to False.
|
||
|
"""
|
||
|
self.file_path = path
|
||
|
self.include_outputs = include_outputs
|
||
|
self.max_output_length = max_output_length
|
||
|
self.remove_newline = remove_newline
|
||
|
self.traceback = traceback
|
||
|
|
||
|
def load(
|
||
|
self,
|
||
|
) -> List[Document]:
|
||
|
"""Load documents."""
|
||
|
try:
|
||
|
import pandas as pd
|
||
|
except ImportError:
|
||
|
raise ImportError(
|
||
|
"pandas is needed for Notebook Loader, "
|
||
|
"please install with `pip install pandas`"
|
||
|
)
|
||
|
p = Path(self.file_path)
|
||
|
|
||
|
with open(p, encoding="utf8") as f:
|
||
|
d = json.load(f)
|
||
|
|
||
|
data = pd.json_normalize(d["cells"])
|
||
|
filtered_data = data[["cell_type", "source", "outputs"]]
|
||
|
if self.remove_newline:
|
||
|
filtered_data = filtered_data.applymap(remove_newlines)
|
||
|
|
||
|
text = filtered_data.apply(
|
||
|
lambda x: concatenate_cells(
|
||
|
x, self.include_outputs, self.max_output_length, self.traceback
|
||
|
),
|
||
|
axis=1,
|
||
|
).str.cat(sep=" ")
|
||
|
|
||
|
metadata = {"source": str(p)}
|
||
|
|
||
|
return [Document(page_content=text, metadata=metadata)]
|