langchain/libs/community/langchain_community/llms/llamafile.py

319 lines
10 KiB
Python
Raw Normal View History

from __future__ import annotations
import json
from io import StringIO
from typing import Any, Dict, Iterator, List, Optional
import requests
from langchain_core.callbacks.manager import CallbackManagerForLLMRun
from langchain_core.language_models.llms import LLM
from langchain_core.outputs import GenerationChunk
from langchain_core.pydantic_v1 import Extra
from langchain_core.utils import get_pydantic_field_names
class Llamafile(LLM):
"""Llamafile lets you distribute and run large language models with a
single file.
To get started, see: https://github.com/Mozilla-Ocho/llamafile
To use this class, you will need to first:
1. Download a llamafile.
2. Make the downloaded file executable: `chmod +x path/to/model.llamafile`
3. Start the llamafile in server mode:
`./path/to/model.llamafile --server --nobrowser`
Example:
.. code-block:: python
from langchain_community.llms import Llamafile
llm = Llamafile()
llm.invoke("Tell me a joke.")
"""
base_url: str = "http://localhost:8080"
"""Base url where the llamafile server is listening."""
request_timeout: Optional[int] = None
"""Timeout for server requests"""
streaming: bool = False
"""Allows receiving each predicted token in real-time instead of
waiting for the completion to finish. To enable this, set to true."""
# Generation options
seed: int = -1
"""Random Number Generator (RNG) seed. A random seed is used if this is
less than zero. Default: -1"""
temperature: float = 0.8
"""Temperature. Default: 0.8"""
top_k: int = 40
"""Limit the next token selection to the K most probable tokens.
Default: 40."""
top_p: float = 0.95
"""Limit the next token selection to a subset of tokens with a cumulative
probability above a threshold P. Default: 0.95."""
min_p: float = 0.05
"""The minimum probability for a token to be considered, relative to
the probability of the most likely token. Default: 0.05."""
n_predict: int = -1
"""Set the maximum number of tokens to predict when generating text.
Note: May exceed the set limit slightly if the last token is a partial
multibyte character. When 0, no tokens will be generated but the prompt
is evaluated into the cache. Default: -1 = infinity."""
n_keep: int = 0
"""Specify the number of tokens from the prompt to retain when the
context size is exceeded and tokens need to be discarded. By default,
this value is set to 0 (meaning no tokens are kept). Use -1 to retain all
tokens from the prompt."""
tfs_z: float = 1.0
"""Enable tail free sampling with parameter z. Default: 1.0 = disabled."""
typical_p: float = 1.0
"""Enable locally typical sampling with parameter p.
Default: 1.0 = disabled."""
repeat_penalty: float = 1.1
"""Control the repetition of token sequences in the generated text.
Default: 1.1"""
repeat_last_n: int = 64
"""Last n tokens to consider for penalizing repetition. Default: 64,
0 = disabled, -1 = ctx-size."""
penalize_nl: bool = True
"""Penalize newline tokens when applying the repeat penalty.
Default: true."""
presence_penalty: float = 0.0
"""Repeat alpha presence penalty. Default: 0.0 = disabled."""
frequency_penalty: float = 0.0
"""Repeat alpha frequency penalty. Default: 0.0 = disabled"""
mirostat: int = 0
"""Enable Mirostat sampling, controlling perplexity during text
generation. 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0.
Default: disabled."""
mirostat_tau: float = 5.0
"""Set the Mirostat target entropy, parameter tau. Default: 5.0."""
mirostat_eta: float = 0.1
"""Set the Mirostat learning rate, parameter eta. Default: 0.1."""
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
@property
def _llm_type(self) -> str:
return "llamafile"
@property
def _param_fieldnames(self) -> List[str]:
# Return the list of fieldnames that will be passed as configurable
# generation options to the llamafile server. Exclude 'builtin' fields
# from the BaseLLM class like 'metadata' as well as fields that should
# not be passed in requests (base_url, request_timeout).
ignore_keys = [
"base_url",
"cache",
"callback_manager",
"callbacks",
"metadata",
"name",
"request_timeout",
"streaming",
"tags",
"verbose",
]
attrs = [
k for k in get_pydantic_field_names(self.__class__) if k not in ignore_keys
]
return attrs
@property
def _default_params(self) -> Dict[str, Any]:
params = {}
for fieldname in self._param_fieldnames:
params[fieldname] = getattr(self, fieldname)
return params
def _get_parameters(
self, stop: Optional[List[str]] = None, **kwargs: Any
) -> Dict[str, Any]:
params = self._default_params
# Only update keys that are already present in the default config.
# This way, we don't accidentally post unknown/unhandled key/values
# in the request to the llamafile server
for k, v in kwargs.items():
if k in params:
params[k] = v
if stop is not None and len(stop) > 0:
params["stop"] = stop
if self.streaming:
params["stream"] = True
return params
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
"""Request prompt completion from the llamafile server and return the
output.
Args:
prompt: The prompt to use for generation.
stop: A list of strings to stop generation when encountered.
run_manager:
**kwargs: Any additional options to pass as part of the
generation request.
Returns:
The string generated by the model.
"""
if self.streaming:
with StringIO() as buff:
for chunk in self._stream(
prompt, stop=stop, run_manager=run_manager, **kwargs
):
buff.write(chunk.text)
text = buff.getvalue()
return text
else:
params = self._get_parameters(stop=stop, **kwargs)
payload = {"prompt": prompt, **params}
try:
response = requests.post(
url=f"{self.base_url}/completion",
headers={
"Content-Type": "application/json",
},
json=payload,
stream=False,
timeout=self.request_timeout,
)
except requests.exceptions.ConnectionError:
raise requests.exceptions.ConnectionError(
f"Could not connect to Llamafile server. Please make sure "
f"that a server is running at {self.base_url}."
)
response.raise_for_status()
response.encoding = "utf-8"
text = response.json()["content"]
return text
def _stream(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[GenerationChunk]:
"""Yields results objects as they are generated in real time.
It also calls the callback manager's on_llm_new_token event with
similar parameters to the OpenAI LLM class method of the same name.
Args:
prompt: The prompts to pass into the model.
stop: Optional list of stop words to use when generating.
run_manager:
**kwargs: Any additional options to pass as part of the
generation request.
Returns:
A generator representing the stream of tokens being generated.
Yields:
Dictionary-like objects each containing a token
Example:
.. code-block:: python
from langchain_community.llms import Llamafile
llm = Llamafile(
temperature = 0.0
)
for chunk in llm.stream("Ask 'Hi, how are you?' like a pirate:'",
stop=["'","\n"]):
result = chunk["choices"][0]
print(result["text"], end='', flush=True)
"""
params = self._get_parameters(stop=stop, **kwargs)
if "stream" not in params:
params["stream"] = True
payload = {"prompt": prompt, **params}
try:
response = requests.post(
url=f"{self.base_url}/completion",
headers={
"Content-Type": "application/json",
},
json=payload,
stream=True,
timeout=self.request_timeout,
)
except requests.exceptions.ConnectionError:
raise requests.exceptions.ConnectionError(
f"Could not connect to Llamafile server. Please make sure "
f"that a server is running at {self.base_url}."
)
response.encoding = "utf8"
for raw_chunk in response.iter_lines(decode_unicode=True):
content = self._get_chunk_content(raw_chunk)
chunk = GenerationChunk(text=content)
yield chunk
if run_manager:
run_manager.on_llm_new_token(token=chunk.text)
def _get_chunk_content(self, chunk: str) -> str:
"""When streaming is turned on, llamafile server returns lines like:
'data: {"content":" They","multimodal":true,"slot_id":0,"stop":false}'
Here, we convert this to a dict and return the value of the 'content'
field
"""
if chunk.startswith("data:"):
cleaned = chunk.lstrip("data: ")
data = json.loads(cleaned)
return data["content"]
else:
return chunk