mirror of
https://github.com/hwchase17/langchain
synced 2024-11-04 06:00:26 +00:00
319 lines
10 KiB
Python
319 lines
10 KiB
Python
|
from __future__ import annotations
|
||
|
|
||
|
import json
|
||
|
from io import StringIO
|
||
|
from typing import Any, Dict, Iterator, List, Optional
|
||
|
|
||
|
import requests
|
||
|
from langchain_core.callbacks.manager import CallbackManagerForLLMRun
|
||
|
from langchain_core.language_models.llms import LLM
|
||
|
from langchain_core.outputs import GenerationChunk
|
||
|
from langchain_core.pydantic_v1 import Extra
|
||
|
from langchain_core.utils import get_pydantic_field_names
|
||
|
|
||
|
|
||
|
class Llamafile(LLM):
|
||
|
"""Llamafile lets you distribute and run large language models with a
|
||
|
single file.
|
||
|
|
||
|
To get started, see: https://github.com/Mozilla-Ocho/llamafile
|
||
|
|
||
|
To use this class, you will need to first:
|
||
|
|
||
|
1. Download a llamafile.
|
||
|
2. Make the downloaded file executable: `chmod +x path/to/model.llamafile`
|
||
|
3. Start the llamafile in server mode:
|
||
|
|
||
|
`./path/to/model.llamafile --server --nobrowser`
|
||
|
|
||
|
Example:
|
||
|
.. code-block:: python
|
||
|
|
||
|
from langchain_community.llms import Llamafile
|
||
|
llm = Llamafile()
|
||
|
llm.invoke("Tell me a joke.")
|
||
|
"""
|
||
|
|
||
|
base_url: str = "http://localhost:8080"
|
||
|
"""Base url where the llamafile server is listening."""
|
||
|
|
||
|
request_timeout: Optional[int] = None
|
||
|
"""Timeout for server requests"""
|
||
|
|
||
|
streaming: bool = False
|
||
|
"""Allows receiving each predicted token in real-time instead of
|
||
|
waiting for the completion to finish. To enable this, set to true."""
|
||
|
|
||
|
# Generation options
|
||
|
|
||
|
seed: int = -1
|
||
|
"""Random Number Generator (RNG) seed. A random seed is used if this is
|
||
|
less than zero. Default: -1"""
|
||
|
|
||
|
temperature: float = 0.8
|
||
|
"""Temperature. Default: 0.8"""
|
||
|
|
||
|
top_k: int = 40
|
||
|
"""Limit the next token selection to the K most probable tokens.
|
||
|
Default: 40."""
|
||
|
|
||
|
top_p: float = 0.95
|
||
|
"""Limit the next token selection to a subset of tokens with a cumulative
|
||
|
probability above a threshold P. Default: 0.95."""
|
||
|
|
||
|
min_p: float = 0.05
|
||
|
"""The minimum probability for a token to be considered, relative to
|
||
|
the probability of the most likely token. Default: 0.05."""
|
||
|
|
||
|
n_predict: int = -1
|
||
|
"""Set the maximum number of tokens to predict when generating text.
|
||
|
Note: May exceed the set limit slightly if the last token is a partial
|
||
|
multibyte character. When 0, no tokens will be generated but the prompt
|
||
|
is evaluated into the cache. Default: -1 = infinity."""
|
||
|
|
||
|
n_keep: int = 0
|
||
|
"""Specify the number of tokens from the prompt to retain when the
|
||
|
context size is exceeded and tokens need to be discarded. By default,
|
||
|
this value is set to 0 (meaning no tokens are kept). Use -1 to retain all
|
||
|
tokens from the prompt."""
|
||
|
|
||
|
tfs_z: float = 1.0
|
||
|
"""Enable tail free sampling with parameter z. Default: 1.0 = disabled."""
|
||
|
|
||
|
typical_p: float = 1.0
|
||
|
"""Enable locally typical sampling with parameter p.
|
||
|
Default: 1.0 = disabled."""
|
||
|
|
||
|
repeat_penalty: float = 1.1
|
||
|
"""Control the repetition of token sequences in the generated text.
|
||
|
Default: 1.1"""
|
||
|
|
||
|
repeat_last_n: int = 64
|
||
|
"""Last n tokens to consider for penalizing repetition. Default: 64,
|
||
|
0 = disabled, -1 = ctx-size."""
|
||
|
|
||
|
penalize_nl: bool = True
|
||
|
"""Penalize newline tokens when applying the repeat penalty.
|
||
|
Default: true."""
|
||
|
|
||
|
presence_penalty: float = 0.0
|
||
|
"""Repeat alpha presence penalty. Default: 0.0 = disabled."""
|
||
|
|
||
|
frequency_penalty: float = 0.0
|
||
|
"""Repeat alpha frequency penalty. Default: 0.0 = disabled"""
|
||
|
|
||
|
mirostat: int = 0
|
||
|
"""Enable Mirostat sampling, controlling perplexity during text
|
||
|
generation. 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0.
|
||
|
Default: disabled."""
|
||
|
|
||
|
mirostat_tau: float = 5.0
|
||
|
"""Set the Mirostat target entropy, parameter tau. Default: 5.0."""
|
||
|
|
||
|
mirostat_eta: float = 0.1
|
||
|
"""Set the Mirostat learning rate, parameter eta. Default: 0.1."""
|
||
|
|
||
|
class Config:
|
||
|
"""Configuration for this pydantic object."""
|
||
|
|
||
|
extra = Extra.forbid
|
||
|
|
||
|
@property
|
||
|
def _llm_type(self) -> str:
|
||
|
return "llamafile"
|
||
|
|
||
|
@property
|
||
|
def _param_fieldnames(self) -> List[str]:
|
||
|
# Return the list of fieldnames that will be passed as configurable
|
||
|
# generation options to the llamafile server. Exclude 'builtin' fields
|
||
|
# from the BaseLLM class like 'metadata' as well as fields that should
|
||
|
# not be passed in requests (base_url, request_timeout).
|
||
|
ignore_keys = [
|
||
|
"base_url",
|
||
|
"cache",
|
||
|
"callback_manager",
|
||
|
"callbacks",
|
||
|
"metadata",
|
||
|
"name",
|
||
|
"request_timeout",
|
||
|
"streaming",
|
||
|
"tags",
|
||
|
"verbose",
|
||
|
]
|
||
|
attrs = [
|
||
|
k for k in get_pydantic_field_names(self.__class__) if k not in ignore_keys
|
||
|
]
|
||
|
return attrs
|
||
|
|
||
|
@property
|
||
|
def _default_params(self) -> Dict[str, Any]:
|
||
|
params = {}
|
||
|
for fieldname in self._param_fieldnames:
|
||
|
params[fieldname] = getattr(self, fieldname)
|
||
|
return params
|
||
|
|
||
|
def _get_parameters(
|
||
|
self, stop: Optional[List[str]] = None, **kwargs: Any
|
||
|
) -> Dict[str, Any]:
|
||
|
params = self._default_params
|
||
|
|
||
|
# Only update keys that are already present in the default config.
|
||
|
# This way, we don't accidentally post unknown/unhandled key/values
|
||
|
# in the request to the llamafile server
|
||
|
for k, v in kwargs.items():
|
||
|
if k in params:
|
||
|
params[k] = v
|
||
|
|
||
|
if stop is not None and len(stop) > 0:
|
||
|
params["stop"] = stop
|
||
|
|
||
|
if self.streaming:
|
||
|
params["stream"] = True
|
||
|
|
||
|
return params
|
||
|
|
||
|
def _call(
|
||
|
self,
|
||
|
prompt: str,
|
||
|
stop: Optional[List[str]] = None,
|
||
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||
|
**kwargs: Any,
|
||
|
) -> str:
|
||
|
"""Request prompt completion from the llamafile server and return the
|
||
|
output.
|
||
|
|
||
|
Args:
|
||
|
prompt: The prompt to use for generation.
|
||
|
stop: A list of strings to stop generation when encountered.
|
||
|
run_manager:
|
||
|
**kwargs: Any additional options to pass as part of the
|
||
|
generation request.
|
||
|
|
||
|
Returns:
|
||
|
The string generated by the model.
|
||
|
|
||
|
"""
|
||
|
|
||
|
if self.streaming:
|
||
|
with StringIO() as buff:
|
||
|
for chunk in self._stream(
|
||
|
prompt, stop=stop, run_manager=run_manager, **kwargs
|
||
|
):
|
||
|
buff.write(chunk.text)
|
||
|
|
||
|
text = buff.getvalue()
|
||
|
|
||
|
return text
|
||
|
|
||
|
else:
|
||
|
params = self._get_parameters(stop=stop, **kwargs)
|
||
|
payload = {"prompt": prompt, **params}
|
||
|
|
||
|
try:
|
||
|
response = requests.post(
|
||
|
url=f"{self.base_url}/completion",
|
||
|
headers={
|
||
|
"Content-Type": "application/json",
|
||
|
},
|
||
|
json=payload,
|
||
|
stream=False,
|
||
|
timeout=self.request_timeout,
|
||
|
)
|
||
|
except requests.exceptions.ConnectionError:
|
||
|
raise requests.exceptions.ConnectionError(
|
||
|
f"Could not connect to Llamafile server. Please make sure "
|
||
|
f"that a server is running at {self.base_url}."
|
||
|
)
|
||
|
|
||
|
response.raise_for_status()
|
||
|
response.encoding = "utf-8"
|
||
|
|
||
|
text = response.json()["content"]
|
||
|
|
||
|
return text
|
||
|
|
||
|
def _stream(
|
||
|
self,
|
||
|
prompt: str,
|
||
|
stop: Optional[List[str]] = None,
|
||
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||
|
**kwargs: Any,
|
||
|
) -> Iterator[GenerationChunk]:
|
||
|
"""Yields results objects as they are generated in real time.
|
||
|
|
||
|
It also calls the callback manager's on_llm_new_token event with
|
||
|
similar parameters to the OpenAI LLM class method of the same name.
|
||
|
|
||
|
Args:
|
||
|
prompt: The prompts to pass into the model.
|
||
|
stop: Optional list of stop words to use when generating.
|
||
|
run_manager:
|
||
|
**kwargs: Any additional options to pass as part of the
|
||
|
generation request.
|
||
|
|
||
|
Returns:
|
||
|
A generator representing the stream of tokens being generated.
|
||
|
|
||
|
Yields:
|
||
|
Dictionary-like objects each containing a token
|
||
|
|
||
|
Example:
|
||
|
.. code-block:: python
|
||
|
|
||
|
from langchain_community.llms import Llamafile
|
||
|
llm = Llamafile(
|
||
|
temperature = 0.0
|
||
|
)
|
||
|
for chunk in llm.stream("Ask 'Hi, how are you?' like a pirate:'",
|
||
|
stop=["'","\n"]):
|
||
|
result = chunk["choices"][0]
|
||
|
print(result["text"], end='', flush=True)
|
||
|
|
||
|
"""
|
||
|
params = self._get_parameters(stop=stop, **kwargs)
|
||
|
if "stream" not in params:
|
||
|
params["stream"] = True
|
||
|
|
||
|
payload = {"prompt": prompt, **params}
|
||
|
|
||
|
try:
|
||
|
response = requests.post(
|
||
|
url=f"{self.base_url}/completion",
|
||
|
headers={
|
||
|
"Content-Type": "application/json",
|
||
|
},
|
||
|
json=payload,
|
||
|
stream=True,
|
||
|
timeout=self.request_timeout,
|
||
|
)
|
||
|
except requests.exceptions.ConnectionError:
|
||
|
raise requests.exceptions.ConnectionError(
|
||
|
f"Could not connect to Llamafile server. Please make sure "
|
||
|
f"that a server is running at {self.base_url}."
|
||
|
)
|
||
|
|
||
|
response.encoding = "utf8"
|
||
|
|
||
|
for raw_chunk in response.iter_lines(decode_unicode=True):
|
||
|
content = self._get_chunk_content(raw_chunk)
|
||
|
chunk = GenerationChunk(text=content)
|
||
|
yield chunk
|
||
|
if run_manager:
|
||
|
run_manager.on_llm_new_token(token=chunk.text)
|
||
|
|
||
|
def _get_chunk_content(self, chunk: str) -> str:
|
||
|
"""When streaming is turned on, llamafile server returns lines like:
|
||
|
|
||
|
'data: {"content":" They","multimodal":true,"slot_id":0,"stop":false}'
|
||
|
|
||
|
Here, we convert this to a dict and return the value of the 'content'
|
||
|
field
|
||
|
"""
|
||
|
|
||
|
if chunk.startswith("data:"):
|
||
|
cleaned = chunk.lstrip("data: ")
|
||
|
data = json.loads(cleaned)
|
||
|
return data["content"]
|
||
|
else:
|
||
|
return chunk
|