langchain/libs/community/langchain_community/chat_models/kinetica.py

602 lines
20 KiB
Python
Raw Normal View History

##
# Copyright (c) 2024, Chad Juliano, Kinetica DB Inc.
##
"""Kinetica SQL generation LLM API."""
import json
import logging
import os
import re
from importlib.metadata import version
from pathlib import Path
from typing import TYPE_CHECKING, Any, Dict, List, Optional, cast
if TYPE_CHECKING:
import gpudb
from langchain_core.callbacks import CallbackManagerForLLMRun
from langchain_core.language_models.chat_models import BaseChatModel
from langchain_core.messages import (
AIMessage,
BaseMessage,
HumanMessage,
SystemMessage,
)
from langchain_core.output_parsers.transform import BaseOutputParser
from langchain_core.outputs import ChatGeneration, ChatResult, Generation
from langchain_core.pydantic_v1 import BaseModel, Field, root_validator
LOG = logging.getLogger(__name__)
# Kinetica pydantic API datatypes
class _KdtSuggestContext(BaseModel):
"""pydantic API request type"""
table: Optional[str] = Field(default=None, title="Name of table")
description: Optional[str] = Field(default=None, title="Table description")
columns: List[str] = Field(default=None, title="Table columns list")
rules: Optional[List[str]] = Field(
default=None, title="Rules that apply to the table."
)
samples: Optional[Dict] = Field(
default=None, title="Samples that apply to the entire context."
)
def to_system_str(self) -> str:
lines = []
lines.append(f"CREATE TABLE {self.table} AS")
lines.append("(")
if not self.columns or len(self.columns) == 0:
ValueError(detail="columns list can't be null.") # type: ignore
columns = []
for column in self.columns:
column = column.replace('"', "").strip()
columns.append(f" {column}")
lines.append(",\n".join(columns))
lines.append(");")
if self.description:
lines.append(f"COMMENT ON TABLE {self.table} IS '{self.description}';")
if self.rules and len(self.rules) > 0:
lines.append(
f"-- When querying table {self.table} the following rules apply:"
)
for rule in self.rules:
lines.append(f"-- * {rule}")
result = "\n".join(lines)
return result
class _KdtSuggestPayload(BaseModel):
"""pydantic API request type"""
question: Optional[str]
context: List[_KdtSuggestContext]
def get_system_str(self) -> str:
lines = []
for table_context in self.context:
if table_context.table is None:
continue
context_str = table_context.to_system_str()
lines.append(context_str)
return "\n\n".join(lines)
def get_messages(self) -> List[Dict]:
messages = []
for context in self.context:
if context.samples is None:
continue
for question, answer in context.samples.items():
# unescape double quotes
answer = answer.replace("''", "'")
messages.append(dict(role="user", content=question or ""))
messages.append(dict(role="assistant", content=answer))
return messages
def to_completion(self) -> Dict:
messages = []
messages.append(dict(role="system", content=self.get_system_str()))
messages.extend(self.get_messages())
messages.append(dict(role="user", content=self.question or ""))
response = dict(messages=messages)
return response
class _KdtoSuggestRequest(BaseModel):
"""pydantic API request type"""
payload: _KdtSuggestPayload
class _KdtMessage(BaseModel):
"""pydantic API response type"""
role: str = Field(default=None, title="One of [user|assistant|system]")
content: str
class _KdtChoice(BaseModel):
"""pydantic API response type"""
index: int
message: _KdtMessage = Field(default=None, title="The generated SQL")
finish_reason: str
class _KdtUsage(BaseModel):
"""pydantic API response type"""
prompt_tokens: int
completion_tokens: int
total_tokens: int
class _KdtSqlResponse(BaseModel):
"""pydantic API response type"""
id: str
object: str
created: int
model: str
choices: List[_KdtChoice]
usage: _KdtUsage
prompt: str = Field(default=None, title="The input question")
class _KdtCompletionResponse(BaseModel):
"""pydantic API response type"""
status: str
data: _KdtSqlResponse
class _KineticaLlmFileContextParser:
"""Parser for Kinetica LLM context datafiles."""
# parse line into a dict containing role and content
PARSER = re.compile(r"^<\|(?P<role>\w+)\|>\W*(?P<content>.*)$", re.DOTALL)
@classmethod
def _removesuffix(cls, text: str, suffix: str) -> str:
if suffix and text.endswith(suffix):
return text[: -len(suffix)]
return text
@classmethod
def parse_dialogue_file(cls, input_file: os.PathLike) -> Dict:
path = Path(input_file)
# schema = path.name.removesuffix(".txt") python 3.9
schema = cls._removesuffix(path.name, ".txt")
lines = open(input_file).read()
return cls.parse_dialogue(lines, schema)
@classmethod
def parse_dialogue(cls, text: str, schema: str) -> Dict:
messages = []
system = None
lines = text.split("<|end|>")
user_message = None
for idx, line in enumerate(lines):
line = line.strip()
if len(line) == 0:
continue
match = cls.PARSER.match(line)
if match is None:
raise ValueError(f"Could not find starting token in: {line}")
groupdict = match.groupdict()
role = groupdict["role"]
if role == "system":
if system is not None:
raise ValueError(f"Only one system token allowed in: {line}")
system = groupdict["content"]
elif role == "user":
if user_message is not None:
raise ValueError(
f"Found user token without assistant token: {line}"
)
user_message = groupdict
elif role == "assistant":
if user_message is None:
raise Exception(f"Found assistant token without user token: {line}")
messages.append(user_message)
messages.append(groupdict)
user_message = None
else:
raise ValueError(f"Unknown token: {role}")
return {"schema": schema, "system": system, "messages": messages}
class KineticaUtil:
"""Kinetica utility functions."""
@classmethod
def create_kdbc(
cls,
url: Optional[str] = None,
user: Optional[str] = None,
passwd: Optional[str] = None,
) -> "gpudb.GPUdb":
"""Create a connectica connection object and verify connectivity.
If None is passed for one or more of the parameters then an attempt will be made
to retrieve the value from the related environment variable.
Args:
url: The Kinetica URL or ``KINETICA_URL`` if None.
user: The Kinetica user or ``KINETICA_USER`` if None.
passwd: The Kinetica password or ``KINETICA_PASSWD`` if None.
Returns:
The Kinetica connection object.
"""
try:
import gpudb
except ModuleNotFoundError:
raise ImportError(
"Could not import Kinetica python package. "
"Please install it with `pip install gpudb`."
)
url = cls._get_env("KINETICA_URL", url)
user = cls._get_env("KINETICA_USER", user)
passwd = cls._get_env("KINETICA_PASSWD", passwd)
options = gpudb.GPUdb.Options()
options.username = user
options.password = passwd
options.skip_ssl_cert_verification = True
options.disable_failover = True
options.logging_level = "INFO"
kdbc = gpudb.GPUdb(host=url, options=options)
LOG.info(
"Connected to Kinetica: {}. (api={}, server={})".format(
kdbc.get_url(), version("gpudb"), kdbc.server_version
)
)
return kdbc
@classmethod
def _get_env(cls, name: str, default: Optional[str]) -> str:
"""Get an environment variable or use a default."""
if default is not None:
return default
result = os.getenv(name)
if result is not None:
return result
raise ValueError(
f"Parameter was not passed and not found in the environment: {name}"
)
class ChatKinetica(BaseChatModel):
"""Kinetica LLM Chat Model API.
Prerequisites for using this API:
* The ``gpudb`` and ``typeguard`` packages installed.
* A Kinetica DB instance.
* Kinetica host specified in ``KINETICA_URL``
* Kinetica login specified ``KINETICA_USER``, and ``KINETICA_PASSWD``.
* An LLM context that specifies the tables and samples to use for inferencing.
This API is intended to interact with the Kinetica SqlAssist LLM that supports
generation of SQL from natural language.
In the Kinetica LLM workflow you create an LLM context in the database that provides
information needed for infefencing that includes tables, annotations, rules, and
samples. Invoking ``load_messages_from_context()`` will retrieve the contxt
information from the database so that it can be used to create a chat prompt.
The chat prompt consists of a ``SystemMessage`` and pairs of
``HumanMessage``/``AIMessage`` that contain the samples which are question/SQL
pairs. You can append pairs samples to this list but it is not intended to
facilitate a typical natural language conversation.
When you create a chain from the chat prompt and execute it, the Kinetica LLM will
generate SQL from the input. Optionally you can use ``KineticaSqlOutputParser`` to
execute the SQL and return the result as a dataframe.
The following example creates an LLM using the environment variables for the
Kinetica connection. This will fail if the API is unable to connect to the database.
Example:
.. code-block:: python
from langchain_community.chat_models.kinetica import KineticaChatLLM
kinetica_llm = KineticaChatLLM()
If you prefer to pass connection information directly then you can create a
connection using ``KineticaUtil.create_kdbc()``.
Example:
.. code-block:: python
from langchain_community.chat_models.kinetica import (
KineticaChatLLM, KineticaUtil)
kdbc = KineticaUtil._create_kdbc(url=url, user=user, passwd=passwd)
kinetica_llm = KineticaChatLLM(kdbc=kdbc)
"""
kdbc: Any = Field(exclude=True)
""" Kinetica DB connection. """
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Pydantic object validator."""
kdbc = values.get("kdbc", None)
if kdbc is None:
kdbc = KineticaUtil.create_kdbc()
values["kdbc"] = kdbc
return values
@property
def _llm_type(self) -> str:
return "kinetica-sqlassist"
@property
def _identifying_params(self) -> Dict[str, Any]:
return dict(
kinetica_version=str(self.kdbc.server_version), api_version=version("gpudb")
)
def _generate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> ChatResult:
if stop is not None:
raise ValueError("stop kwargs are not permitted.")
dict_messages = [self._convert_message_to_dict(m) for m in messages]
sql_response = self._submit_completion(dict_messages)
response_message = sql_response.choices[0].message
# generated_dict = response_message.model_dump() # pydantic v2
generated_dict = response_message.dict()
generated_message = self._convert_message_from_dict(generated_dict)
llm_output = dict(
input_tokens=sql_response.usage.prompt_tokens,
output_tokens=sql_response.usage.completion_tokens,
model_name=sql_response.model,
)
return ChatResult(
generations=[ChatGeneration(message=generated_message)],
llm_output=llm_output,
)
def load_messages_from_context(self, context_name: str) -> List:
"""Load a lanchain prompt from a Kinetica context.
A Kinetica Context is an object created with the Kinetica Workbench UI or with
SQL syntax. This function will convert the data in the context to a list of
messages that can be used as a prompt. The messages will contain a
``SystemMessage`` followed by pairs of ``HumanMessage``/``AIMessage`` that
contain the samples.
Args:
context_name: The name of an LLM context in the database.
Returns:
A list of messages containing the information from the context.
"""
# query kinetica for the prompt
sql = f"GENERATE PROMPT WITH OPTIONS (CONTEXT_NAMES = '{context_name}')"
result = self._execute_sql(sql)
prompt = result["Prompt"]
prompt_json = json.loads(prompt)
# convert the prompt to messages
# request = SuggestRequest.model_validate(prompt_json) # pydantic v2
request = _KdtoSuggestRequest.parse_obj(prompt_json)
payload = request.payload
dict_messages = []
dict_messages.append(dict(role="system", content=payload.get_system_str()))
dict_messages.extend(payload.get_messages())
messages = [self._convert_message_from_dict(m) for m in dict_messages]
return messages
def _submit_completion(self, messages: List[Dict]) -> _KdtSqlResponse:
"""Submit a /chat/completions request to Kinetica."""
request = dict(messages=messages)
request_json = json.dumps(request)
response_raw = self.kdbc._GPUdb__submit_request_json(
"/chat/completions", request_json
)
response_json = json.loads(response_raw)
status = response_json["status"]
if status != "OK":
message = response_json["message"]
match_resp = re.compile(r"response:({.*})")
result = match_resp.search(message)
if result is not None:
response = result.group(1)
response_json = json.loads(response)
message = response_json["message"]
raise ValueError(message)
data = response_json["data"]
# response = CompletionResponse.model_validate(data) # pydantic v2
response = _KdtCompletionResponse.parse_obj(data)
if response.status != "OK":
raise ValueError("SQL Generation failed")
return response.data
def _execute_sql(self, sql: str) -> Dict:
"""Execute an SQL query and return the result."""
response = self.kdbc.execute_sql_and_decode(
sql, limit=1, get_column_major=False
)
status_info = response["status_info"]
if status_info["status"] != "OK":
message = status_info["message"]
raise ValueError(message)
records = response["records"]
if len(records) != 1:
raise ValueError("No records returned.")
record = records[0]
response_dict = {}
for col, val in record.items():
response_dict[col] = val
return response_dict
@classmethod
def load_messages_from_datafile(cls, sa_datafile: Path) -> List[BaseMessage]:
"""Load a lanchain prompt from a Kinetica context datafile."""
datafile_dict = _KineticaLlmFileContextParser.parse_dialogue_file(sa_datafile)
messages = cls._convert_dict_to_messages(datafile_dict)
return messages
@classmethod
def _convert_message_to_dict(cls, message: BaseMessage) -> Dict:
"""Convert a single message to a BaseMessage."""
content = cast(str, message.content)
if isinstance(message, HumanMessage):
role = "user"
elif isinstance(message, AIMessage):
role = "assistant"
elif isinstance(message, SystemMessage):
role = "system"
else:
raise ValueError(f"Got unsupported message type: {message}")
result_message = dict(role=role, content=content)
return result_message
@classmethod
def _convert_message_from_dict(cls, message: Dict) -> BaseMessage:
"""Convert a single message from a BaseMessage."""
role = message["role"]
content = message["content"]
if role == "user":
return HumanMessage(content=content)
elif role == "assistant":
return AIMessage(content=content)
elif role == "system":
return SystemMessage(content=content)
else:
raise ValueError(f"Got unsupported role: {role}")
@classmethod
def _convert_dict_to_messages(cls, sa_data: Dict) -> List[BaseMessage]:
"""Convert a dict to a list of BaseMessages."""
schema = sa_data["schema"]
system = sa_data["system"]
messages = sa_data["messages"]
LOG.info(f"Importing prompt for schema: {schema}")
result_list: List[BaseMessage] = []
result_list.append(SystemMessage(content=system))
result_list.extend([cls._convert_message_from_dict(m) for m in messages])
return result_list
class KineticaSqlResponse(BaseModel):
"""Response containing SQL and the fetched data.
This object is returned by a chain with ``KineticaSqlOutputParser`` and it contains
the generated SQL and related Pandas Dataframe fetched from the database.
"""
sql: str = Field(default=None)
"""The generated SQL."""
# dataframe: "pd.DataFrame" = Field(default=None)
dataframe: Any = Field(default=None)
"""The Pandas dataframe containing the fetched data."""
class Config:
"""Configuration for this pydantic object."""
arbitrary_types_allowed = True
class KineticaSqlOutputParser(BaseOutputParser[KineticaSqlResponse]):
"""Fetch and return data from the Kinetica LLM.
This object is used as the last element of a chain to execute generated SQL and it
will output a ``KineticaSqlResponse`` containing the SQL and a pandas dataframe with
the fetched data.
Example:
.. code-block:: python
from langchain_community.chat_models.kinetica import (
KineticaChatLLM, KineticaSqlOutputParser)
kinetica_llm = KineticaChatLLM()
# create chain
ctx_messages = kinetica_llm.load_messages_from_context(self.context_name)
ctx_messages.append(("human", "{input}"))
prompt_template = ChatPromptTemplate.from_messages(ctx_messages)
chain = (
prompt_template
| kinetica_llm
| KineticaSqlOutputParser(kdbc=kinetica_llm.kdbc)
)
sql_response: KineticaSqlResponse = chain.invoke(
{"input": "What are the female users ordered by username?"}
)
assert isinstance(sql_response, KineticaSqlResponse)
LOG.info(f"SQL Response: {sql_response.sql}")
assert isinstance(sql_response.dataframe, pd.DataFrame)
"""
kdbc: Any = Field(exclude=True)
""" Kinetica DB connection. """
class Config:
"""Configuration for this pydantic object."""
arbitrary_types_allowed = True
def parse(self, text: str) -> KineticaSqlResponse:
df = self.kdbc.to_df(text)
return KineticaSqlResponse(sql=text, dataframe=df)
def parse_result(
self, result: List[Generation], *, partial: bool = False
) -> KineticaSqlResponse:
return self.parse(result[0].text)
@property
def _type(self) -> str:
return "kinetica_sql_output_parser"