mirror of
https://github.com/hwchase17/langchain
synced 2024-11-10 01:10:59 +00:00
198 lines
5.9 KiB
Python
198 lines
5.9 KiB
Python
|
import dataclasses
|
||
|
import os
|
||
|
from typing import Any, Dict, List, Mapping, Optional, Union, cast
|
||
|
|
||
|
import requests
|
||
|
from langchain_core.callbacks import CallbackManagerForLLMRun
|
||
|
from langchain_core.language_models.llms import LLM
|
||
|
from langchain_core.pydantic_v1 import Extra, root_validator
|
||
|
from langchain_core.utils import get_from_dict_or_env
|
||
|
|
||
|
from langchain_community.llms.utils import enforce_stop_tokens
|
||
|
|
||
|
TIMEOUT = 60
|
||
|
|
||
|
|
||
|
@dataclasses.dataclass
|
||
|
class AviaryBackend:
|
||
|
"""Aviary backend.
|
||
|
|
||
|
Attributes:
|
||
|
backend_url: The URL for the Aviary backend.
|
||
|
bearer: The bearer token for the Aviary backend.
|
||
|
"""
|
||
|
|
||
|
backend_url: str
|
||
|
bearer: str
|
||
|
|
||
|
def __post_init__(self) -> None:
|
||
|
self.header = {"Authorization": self.bearer}
|
||
|
|
||
|
@classmethod
|
||
|
def from_env(cls) -> "AviaryBackend":
|
||
|
aviary_url = os.getenv("AVIARY_URL")
|
||
|
assert aviary_url, "AVIARY_URL must be set"
|
||
|
|
||
|
aviary_token = os.getenv("AVIARY_TOKEN", "")
|
||
|
|
||
|
bearer = f"Bearer {aviary_token}" if aviary_token else ""
|
||
|
aviary_url += "/" if not aviary_url.endswith("/") else ""
|
||
|
|
||
|
return cls(aviary_url, bearer)
|
||
|
|
||
|
|
||
|
def get_models() -> List[str]:
|
||
|
"""List available models"""
|
||
|
backend = AviaryBackend.from_env()
|
||
|
request_url = backend.backend_url + "-/routes"
|
||
|
response = requests.get(request_url, headers=backend.header, timeout=TIMEOUT)
|
||
|
try:
|
||
|
result = response.json()
|
||
|
except requests.JSONDecodeError as e:
|
||
|
raise RuntimeError(
|
||
|
f"Error decoding JSON from {request_url}. Text response: {response.text}"
|
||
|
) from e
|
||
|
result = sorted(
|
||
|
[k.lstrip("/").replace("--", "/") for k in result.keys() if "--" in k]
|
||
|
)
|
||
|
return result
|
||
|
|
||
|
|
||
|
def get_completions(
|
||
|
model: str,
|
||
|
prompt: str,
|
||
|
use_prompt_format: bool = True,
|
||
|
version: str = "",
|
||
|
) -> Dict[str, Union[str, float, int]]:
|
||
|
"""Get completions from Aviary models."""
|
||
|
|
||
|
backend = AviaryBackend.from_env()
|
||
|
url = backend.backend_url + model.replace("/", "--") + "/" + version + "query"
|
||
|
response = requests.post(
|
||
|
url,
|
||
|
headers=backend.header,
|
||
|
json={"prompt": prompt, "use_prompt_format": use_prompt_format},
|
||
|
timeout=TIMEOUT,
|
||
|
)
|
||
|
try:
|
||
|
return response.json()
|
||
|
except requests.JSONDecodeError as e:
|
||
|
raise RuntimeError(
|
||
|
f"Error decoding JSON from {url}. Text response: {response.text}"
|
||
|
) from e
|
||
|
|
||
|
|
||
|
class Aviary(LLM):
|
||
|
"""Aviary hosted models.
|
||
|
|
||
|
Aviary is a backend for hosted models. You can
|
||
|
find out more about aviary at
|
||
|
http://github.com/ray-project/aviary
|
||
|
|
||
|
To get a list of the models supported on an
|
||
|
aviary, follow the instructions on the website to
|
||
|
install the aviary CLI and then use:
|
||
|
`aviary models`
|
||
|
|
||
|
AVIARY_URL and AVIARY_TOKEN environment variables must be set.
|
||
|
|
||
|
Attributes:
|
||
|
model: The name of the model to use. Defaults to "amazon/LightGPT".
|
||
|
aviary_url: The URL for the Aviary backend. Defaults to None.
|
||
|
aviary_token: The bearer token for the Aviary backend. Defaults to None.
|
||
|
use_prompt_format: If True, the prompt template for the model will be ignored.
|
||
|
Defaults to True.
|
||
|
version: API version to use for Aviary. Defaults to None.
|
||
|
|
||
|
Example:
|
||
|
.. code-block:: python
|
||
|
|
||
|
from langchain_community.llms import Aviary
|
||
|
os.environ["AVIARY_URL"] = "<URL>"
|
||
|
os.environ["AVIARY_TOKEN"] = "<TOKEN>"
|
||
|
light = Aviary(model='amazon/LightGPT')
|
||
|
output = light('How do you make fried rice?')
|
||
|
"""
|
||
|
|
||
|
model: str = "amazon/LightGPT"
|
||
|
aviary_url: Optional[str] = None
|
||
|
aviary_token: Optional[str] = None
|
||
|
# If True the prompt template for the model will be ignored.
|
||
|
use_prompt_format: bool = True
|
||
|
# API version to use for Aviary
|
||
|
version: Optional[str] = None
|
||
|
|
||
|
class Config:
|
||
|
"""Configuration for this pydantic object."""
|
||
|
|
||
|
extra = Extra.forbid
|
||
|
|
||
|
@root_validator(pre=True)
|
||
|
def validate_environment(cls, values: Dict) -> Dict:
|
||
|
"""Validate that api key and python package exists in environment."""
|
||
|
aviary_url = get_from_dict_or_env(values, "aviary_url", "AVIARY_URL")
|
||
|
aviary_token = get_from_dict_or_env(values, "aviary_token", "AVIARY_TOKEN")
|
||
|
|
||
|
# Set env viarables for aviary sdk
|
||
|
os.environ["AVIARY_URL"] = aviary_url
|
||
|
os.environ["AVIARY_TOKEN"] = aviary_token
|
||
|
|
||
|
try:
|
||
|
aviary_models = get_models()
|
||
|
except requests.exceptions.RequestException as e:
|
||
|
raise ValueError(e)
|
||
|
|
||
|
model = values.get("model")
|
||
|
if model and model not in aviary_models:
|
||
|
raise ValueError(f"{aviary_url} does not support model {values['model']}.")
|
||
|
|
||
|
return values
|
||
|
|
||
|
@property
|
||
|
def _identifying_params(self) -> Mapping[str, Any]:
|
||
|
"""Get the identifying parameters."""
|
||
|
return {
|
||
|
"model_name": self.model,
|
||
|
"aviary_url": self.aviary_url,
|
||
|
}
|
||
|
|
||
|
@property
|
||
|
def _llm_type(self) -> str:
|
||
|
"""Return type of llm."""
|
||
|
return f"aviary-{self.model.replace('/', '-')}"
|
||
|
|
||
|
def _call(
|
||
|
self,
|
||
|
prompt: str,
|
||
|
stop: Optional[List[str]] = None,
|
||
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||
|
**kwargs: Any,
|
||
|
) -> str:
|
||
|
"""Call out to Aviary
|
||
|
Args:
|
||
|
prompt: The prompt to pass into the model.
|
||
|
|
||
|
Returns:
|
||
|
The string generated by the model.
|
||
|
|
||
|
Example:
|
||
|
.. code-block:: python
|
||
|
|
||
|
response = aviary("Tell me a joke.")
|
||
|
"""
|
||
|
kwargs = {"use_prompt_format": self.use_prompt_format}
|
||
|
if self.version:
|
||
|
kwargs["version"] = self.version
|
||
|
|
||
|
output = get_completions(
|
||
|
model=self.model,
|
||
|
prompt=prompt,
|
||
|
**kwargs,
|
||
|
)
|
||
|
|
||
|
text = cast(str, output["generated_text"])
|
||
|
if stop:
|
||
|
text = enforce_stop_tokens(text, stop)
|
||
|
|
||
|
return text
|