2023-08-11 22:44:27 +00:00
|
|
|
"""Chain for applying self-critique using the SmartGPT workflow."""
|
|
|
|
from typing import Any, Dict, List, Optional, Tuple, Type
|
|
|
|
|
|
|
|
from langchain.base_language import BaseLanguageModel
|
|
|
|
from langchain.callbacks.manager import CallbackManagerForChainRun
|
|
|
|
from langchain.chains.base import Chain
|
|
|
|
from langchain.input import get_colored_text
|
|
|
|
from langchain.prompts.base import BasePromptTemplate
|
|
|
|
from langchain.prompts.chat import (
|
|
|
|
AIMessagePromptTemplate,
|
|
|
|
BaseMessagePromptTemplate,
|
|
|
|
ChatPromptTemplate,
|
|
|
|
HumanMessagePromptTemplate,
|
|
|
|
)
|
|
|
|
from langchain.schema import LLMResult, PromptValue
|
Use a submodule for pydantic v1 compat (#9371)
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. These live is docs/extras
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17, @rlancemartin.
-->
2023-08-17 15:35:49 +00:00
|
|
|
|
|
|
|
from langchain_experimental.pydantic_v1 import Extra, root_validator
|
2023-08-11 22:44:27 +00:00
|
|
|
|
|
|
|
|
|
|
|
class SmartLLMChain(Chain):
|
|
|
|
"""
|
|
|
|
Generalized implementation of SmartGPT (origin: https://youtu.be/wVzuvf9D9BU)
|
|
|
|
|
|
|
|
A SmartLLMChain is an LLMChain that instead of simply passing the prompt to the LLM
|
|
|
|
performs these 3 steps:
|
|
|
|
1. Ideate: Pass the user prompt to an ideation LLM n_ideas times,
|
|
|
|
each result is an "idea"
|
|
|
|
2. Critique: Pass the ideas to a critique LLM which looks for flaws in the ideas
|
|
|
|
& picks the best one
|
|
|
|
3. Resolve: Pass the critique to a resolver LLM which improves upon the best idea
|
|
|
|
& outputs only the (improved version of) the best output
|
|
|
|
|
|
|
|
In total, SmartLLMChain pass will use n_ideas+2 LLM calls
|
|
|
|
|
|
|
|
Note that SmartLLMChain will only improve results (compared to a basic LLMChain),
|
|
|
|
when the underlying models have the capability for reflection, which smaller models
|
|
|
|
often don't.
|
|
|
|
|
|
|
|
Finally, a SmartLLMChain assumes that each underlying LLM outputs exactly 1 result.
|
|
|
|
"""
|
|
|
|
|
|
|
|
class SmartLLMChainHistory:
|
|
|
|
question: str = ""
|
|
|
|
ideas: List[str] = []
|
|
|
|
critique: str = ""
|
|
|
|
|
|
|
|
@property
|
|
|
|
def n_ideas(self) -> int:
|
|
|
|
return len(self.ideas)
|
|
|
|
|
|
|
|
def ideation_prompt_inputs(self) -> Dict[str, Any]:
|
|
|
|
return {"question": self.question}
|
|
|
|
|
|
|
|
def critique_prompt_inputs(self) -> Dict[str, Any]:
|
|
|
|
return {
|
|
|
|
"question": self.question,
|
|
|
|
**{f"idea_{i+1}": idea for i, idea in enumerate(self.ideas)},
|
|
|
|
}
|
|
|
|
|
|
|
|
def resolve_prompt_inputs(self) -> Dict[str, Any]:
|
|
|
|
return {
|
|
|
|
"question": self.question,
|
|
|
|
**{f"idea_{i+1}": idea for i, idea in enumerate(self.ideas)},
|
|
|
|
"critique": self.critique,
|
|
|
|
}
|
|
|
|
|
|
|
|
prompt: BasePromptTemplate
|
|
|
|
"""Prompt object to use."""
|
|
|
|
ideation_llm: Optional[BaseLanguageModel] = None
|
|
|
|
"""LLM to use in ideation step. If None given, 'llm' will be used."""
|
|
|
|
critique_llm: Optional[BaseLanguageModel] = None
|
|
|
|
"""LLM to use in critique step. If None given, 'llm' will be used."""
|
|
|
|
resolver_llm: Optional[BaseLanguageModel] = None
|
|
|
|
"""LLM to use in resolve step. If None given, 'llm' will be used."""
|
|
|
|
llm: Optional[BaseLanguageModel] = None
|
|
|
|
"""LLM to use for each steps, if no specific llm for that step is given. """
|
|
|
|
n_ideas: int = 3
|
|
|
|
"""Number of ideas to generate in idea step"""
|
|
|
|
return_intermediate_steps: bool = False
|
|
|
|
"""Whether to return ideas and critique, in addition to resolution."""
|
|
|
|
history: SmartLLMChainHistory = SmartLLMChainHistory()
|
|
|
|
|
|
|
|
class Config:
|
|
|
|
extra = Extra.forbid
|
|
|
|
|
2023-10-17 01:13:31 +00:00
|
|
|
# TODO: move away from `root_validator` since it is deprecated in pydantic v2
|
|
|
|
# and causes mypy type-checking failures (hence the `type: ignore`)
|
|
|
|
@root_validator # type: ignore[call-overload]
|
2023-08-11 22:44:27 +00:00
|
|
|
@classmethod
|
|
|
|
def validate_inputs(cls, values: Dict[str, Any]) -> Dict[str, Any]:
|
|
|
|
"""Ensure we have an LLM for each step."""
|
|
|
|
llm = values.get("llm")
|
|
|
|
ideation_llm = values.get("ideation_llm")
|
|
|
|
critique_llm = values.get("critique_llm")
|
|
|
|
resolver_llm = values.get("resolver_llm")
|
|
|
|
|
|
|
|
if not llm and not ideation_llm:
|
|
|
|
raise ValueError(
|
|
|
|
"Either ideation_llm or llm needs to be given. Pass llm, "
|
|
|
|
"if you want to use the same llm for all steps, or pass "
|
|
|
|
"ideation_llm, critique_llm and resolver_llm if you want "
|
|
|
|
"to use different llms for each step."
|
|
|
|
)
|
|
|
|
if not llm and not critique_llm:
|
|
|
|
raise ValueError(
|
|
|
|
"Either critique_llm or llm needs to be given. Pass llm, "
|
|
|
|
"if you want to use the same llm for all steps, or pass "
|
|
|
|
"ideation_llm, critique_llm and resolver_llm if you want "
|
|
|
|
"to use different llms for each step."
|
|
|
|
)
|
|
|
|
if not llm and not resolver_llm:
|
|
|
|
raise ValueError(
|
|
|
|
"Either resolve_llm or llm needs to be given. Pass llm, "
|
|
|
|
"if you want to use the same llm for all steps, or pass "
|
|
|
|
"ideation_llm, critique_llm and resolver_llm if you want "
|
|
|
|
"to use different llms for each step."
|
|
|
|
)
|
|
|
|
if llm and ideation_llm and critique_llm and resolver_llm:
|
|
|
|
raise ValueError(
|
|
|
|
"LLMs are given for each step (ideation_llm, critique_llm,"
|
|
|
|
" resolver_llm), but backup LLM (llm) is also given, which"
|
|
|
|
" would not be used."
|
|
|
|
)
|
|
|
|
return values
|
|
|
|
|
|
|
|
@property
|
|
|
|
def input_keys(self) -> List[str]:
|
|
|
|
"""Defines the input keys."""
|
|
|
|
return self.prompt.input_variables
|
|
|
|
|
|
|
|
@property
|
|
|
|
def output_keys(self) -> List[str]:
|
|
|
|
"""Defines the output keys."""
|
|
|
|
if self.return_intermediate_steps:
|
|
|
|
return ["ideas", "critique", "resolution"]
|
|
|
|
return ["resolution"]
|
|
|
|
|
|
|
|
def prep_prompts(
|
|
|
|
self,
|
|
|
|
inputs: Dict[str, Any],
|
|
|
|
run_manager: Optional[CallbackManagerForChainRun] = None,
|
|
|
|
) -> Tuple[PromptValue, Optional[List[str]]]:
|
|
|
|
"""Prepare prompts from inputs."""
|
|
|
|
stop = None
|
|
|
|
if "stop" in inputs:
|
|
|
|
stop = inputs["stop"]
|
|
|
|
selected_inputs = {k: inputs[k] for k in self.prompt.input_variables}
|
|
|
|
prompt = self.prompt.format_prompt(**selected_inputs)
|
|
|
|
_colored_text = get_colored_text(prompt.to_string(), "green")
|
|
|
|
_text = "Prompt after formatting:\n" + _colored_text
|
|
|
|
if run_manager:
|
|
|
|
run_manager.on_text(_text, end="\n", verbose=self.verbose)
|
|
|
|
if "stop" in inputs and inputs["stop"] != stop:
|
|
|
|
raise ValueError(
|
|
|
|
"If `stop` is present in any inputs, should be present in all."
|
|
|
|
)
|
|
|
|
return prompt, stop
|
|
|
|
|
|
|
|
def _call(
|
|
|
|
self,
|
|
|
|
input_list: Dict[str, Any],
|
|
|
|
run_manager: Optional[CallbackManagerForChainRun] = None,
|
|
|
|
) -> Dict[str, Any]:
|
|
|
|
prompt, stop = self.prep_prompts(input_list, run_manager=run_manager)
|
|
|
|
self.history.question = prompt.to_string()
|
|
|
|
ideas = self._ideate(stop, run_manager)
|
|
|
|
self.history.ideas = ideas
|
|
|
|
critique = self._critique(stop, run_manager)
|
|
|
|
self.history.critique = critique
|
|
|
|
resolution = self._resolve(stop, run_manager)
|
|
|
|
if self.return_intermediate_steps:
|
|
|
|
return {"ideas": ideas, "critique": critique, "resolution": resolution}
|
|
|
|
return {"resolution": resolution}
|
|
|
|
|
|
|
|
def _get_text_from_llm_result(self, result: LLMResult, step: str) -> str:
|
|
|
|
"""Between steps, only the LLM result text is passed, not the LLMResult object.
|
|
|
|
This function extracts the text from an LLMResult."""
|
|
|
|
if len(result.generations) != 1:
|
|
|
|
raise ValueError(
|
|
|
|
f"In SmartLLM the LLM result in step {step} is not "
|
|
|
|
"exactly 1 element. This should never happen"
|
|
|
|
)
|
|
|
|
if len(result.generations[0]) != 1:
|
|
|
|
raise ValueError(
|
|
|
|
f"In SmartLLM the LLM in step {step} returned more than "
|
|
|
|
"1 output. SmartLLM only works with LLMs returning "
|
|
|
|
"exactly 1 output."
|
|
|
|
)
|
|
|
|
return result.generations[0][0].text
|
|
|
|
|
|
|
|
def get_prompt_strings(
|
|
|
|
self, stage: str
|
|
|
|
) -> List[Tuple[Type[BaseMessagePromptTemplate], str]]:
|
|
|
|
role_strings: List[Tuple[Type[BaseMessagePromptTemplate], str]] = []
|
|
|
|
role_strings.append(
|
|
|
|
(
|
|
|
|
HumanMessagePromptTemplate,
|
|
|
|
"Question: {question}\nAnswer: Let's work this out in a step by "
|
|
|
|
"step way to be sure we have the right answer:",
|
|
|
|
)
|
|
|
|
)
|
|
|
|
if stage == "ideation":
|
|
|
|
return role_strings
|
|
|
|
role_strings.extend(
|
|
|
|
[
|
|
|
|
*[
|
|
|
|
(
|
|
|
|
AIMessagePromptTemplate,
|
|
|
|
"Idea " + str(i + 1) + ": {idea_" + str(i + 1) + "}",
|
|
|
|
)
|
|
|
|
for i in range(self.n_ideas)
|
|
|
|
],
|
|
|
|
(
|
|
|
|
HumanMessagePromptTemplate,
|
|
|
|
"You are a researcher tasked with investigating the "
|
|
|
|
f"{self.n_ideas} response options provided. List the flaws and "
|
|
|
|
"faulty logic of each answer options. Let'w work this out in a step"
|
|
|
|
" by step way to be sure we have all the errors:",
|
|
|
|
),
|
|
|
|
]
|
|
|
|
)
|
|
|
|
if stage == "critique":
|
|
|
|
return role_strings
|
|
|
|
role_strings.extend(
|
|
|
|
[
|
|
|
|
(AIMessagePromptTemplate, "Critique: {critique}"),
|
|
|
|
(
|
|
|
|
HumanMessagePromptTemplate,
|
|
|
|
"You are a resolved tasked with 1) finding which of "
|
2023-09-15 00:43:36 +00:00
|
|
|
f"the {self.n_ideas} answer options the researcher thought was "
|
2023-08-11 22:44:27 +00:00
|
|
|
"best,2) improving that answer and 3) printing the answer in full. "
|
|
|
|
"Don't output anything for step 1 or 2, only the full answer in 3. "
|
|
|
|
"Let's work this out in a step by step way to be sure we have "
|
|
|
|
"the right answer:",
|
|
|
|
),
|
|
|
|
]
|
|
|
|
)
|
|
|
|
if stage == "resolve":
|
|
|
|
return role_strings
|
|
|
|
raise ValueError(
|
|
|
|
"stage should be either 'ideation', 'critique' or 'resolve',"
|
|
|
|
f" but it is '{stage}'. This should never happen."
|
|
|
|
)
|
|
|
|
|
|
|
|
def ideation_prompt(self) -> ChatPromptTemplate:
|
|
|
|
return ChatPromptTemplate.from_strings(self.get_prompt_strings("ideation"))
|
|
|
|
|
|
|
|
def critique_prompt(self) -> ChatPromptTemplate:
|
|
|
|
return ChatPromptTemplate.from_strings(self.get_prompt_strings("critique"))
|
|
|
|
|
|
|
|
def resolve_prompt(self) -> ChatPromptTemplate:
|
|
|
|
return ChatPromptTemplate.from_strings(self.get_prompt_strings("resolve"))
|
|
|
|
|
|
|
|
def _ideate(
|
|
|
|
self,
|
|
|
|
stop: Optional[List[str]] = None,
|
|
|
|
run_manager: Optional[CallbackManagerForChainRun] = None,
|
|
|
|
) -> List[str]:
|
|
|
|
"""Generate n_ideas ideas as response to user prompt."""
|
|
|
|
llm = self.ideation_llm if self.ideation_llm else self.llm
|
|
|
|
prompt = self.ideation_prompt().format_prompt(
|
|
|
|
**self.history.ideation_prompt_inputs()
|
|
|
|
)
|
|
|
|
callbacks = run_manager.get_child() if run_manager else None
|
|
|
|
if llm:
|
|
|
|
ideas = [
|
|
|
|
self._get_text_from_llm_result(
|
|
|
|
llm.generate_prompt([prompt], stop, callbacks),
|
|
|
|
step="ideate",
|
|
|
|
)
|
|
|
|
for _ in range(self.n_ideas)
|
|
|
|
]
|
|
|
|
for i, idea in enumerate(ideas):
|
|
|
|
_colored_text = get_colored_text(idea, "blue")
|
|
|
|
_text = f"Idea {i+1}:\n" + _colored_text
|
|
|
|
if run_manager:
|
|
|
|
run_manager.on_text(_text, end="\n", verbose=self.verbose)
|
|
|
|
return ideas
|
|
|
|
else:
|
|
|
|
raise ValueError("llm is none, which should never happen")
|
|
|
|
|
|
|
|
def _critique(
|
|
|
|
self,
|
|
|
|
stop: Optional[List[str]] = None,
|
|
|
|
run_manager: Optional[CallbackManagerForChainRun] = None,
|
|
|
|
) -> str:
|
|
|
|
"""Critique each of the ideas from ideation stage & select best one."""
|
|
|
|
llm = self.critique_llm if self.critique_llm else self.llm
|
|
|
|
prompt = self.critique_prompt().format_prompt(
|
|
|
|
**self.history.critique_prompt_inputs()
|
|
|
|
)
|
|
|
|
callbacks = run_manager.handlers if run_manager else None
|
|
|
|
if llm:
|
|
|
|
critique = self._get_text_from_llm_result(
|
|
|
|
llm.generate_prompt([prompt], stop, callbacks), step="critique"
|
|
|
|
)
|
|
|
|
_colored_text = get_colored_text(critique, "yellow")
|
|
|
|
_text = "Critique:\n" + _colored_text
|
|
|
|
if run_manager:
|
|
|
|
run_manager.on_text(_text, end="\n", verbose=self.verbose)
|
|
|
|
return critique
|
|
|
|
else:
|
|
|
|
raise ValueError("llm is none, which should never happen")
|
|
|
|
|
|
|
|
def _resolve(
|
|
|
|
self,
|
|
|
|
stop: Optional[List[str]] = None,
|
|
|
|
run_manager: Optional[CallbackManagerForChainRun] = None,
|
|
|
|
) -> str:
|
|
|
|
"""Improve upon the best idea as chosen in critique step & return it."""
|
|
|
|
llm = self.resolver_llm if self.resolver_llm else self.llm
|
|
|
|
prompt = self.resolve_prompt().format_prompt(
|
|
|
|
**self.history.resolve_prompt_inputs()
|
|
|
|
)
|
|
|
|
callbacks = run_manager.handlers if run_manager else None
|
|
|
|
if llm:
|
|
|
|
resolution = self._get_text_from_llm_result(
|
|
|
|
llm.generate_prompt([prompt], stop, callbacks), step="resolve"
|
|
|
|
)
|
|
|
|
_colored_text = get_colored_text(resolution, "green")
|
|
|
|
_text = "Resolution:\n" + _colored_text
|
|
|
|
if run_manager:
|
|
|
|
run_manager.on_text(_text, end="\n", verbose=self.verbose)
|
|
|
|
return resolution
|
|
|
|
else:
|
|
|
|
raise ValueError("llm is none, which should never happen")
|