langchain/libs/experimental/langchain_experimental/comprehend_moderation/prompt_safety.py

88 lines
3.0 KiB
Python
Raw Normal View History

Initial commit for comprehend moderator (#9665) This PR implements a custom chain that wraps Amazon Comprehend API calls. The custom chain is aimed to be used with LLM chains to provide moderation capability that let’s you detect and redact PII, Toxic and Intent content in the LLM prompt, or the LLM response. The implementation accepts a configuration object to control what checks will be performed on a LLM prompt and can be used in a variety of setups using the LangChain expression language to not only detect the configured info in chains, but also other constructs such as a retriever. The included sample notebook goes over the different configuration options and how to use it with other chains. ### Usage sample ```python from langchain_experimental.comprehend_moderation import BaseModerationActions, BaseModerationFilters moderation_config = { "filters":[ BaseModerationFilters.PII, BaseModerationFilters.TOXICITY, BaseModerationFilters.INTENT ], "pii":{ "action": BaseModerationActions.ALLOW, "threshold":0.5, "labels":["SSN"], "mask_character": "X" }, "toxicity":{ "action": BaseModerationActions.STOP, "threshold":0.5 }, "intent":{ "action": BaseModerationActions.STOP, "threshold":0.5 } } comp_moderation_with_config = AmazonComprehendModerationChain( moderation_config=moderation_config, #specify the configuration client=comprehend_client, #optionally pass the Boto3 Client verbose=True ) template = """Question: {question} Answer:""" prompt = PromptTemplate(template=template, input_variables=["question"]) responses = [ "Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like 323-22-9980. John Doe's phone number is (999)253-9876.", "Final Answer: This is a really shitty way of constructing a birdhouse. This is fucking insane to think that any birds would actually create their motherfucking nests here." ] llm = FakeListLLM(responses=responses) llm_chain = LLMChain(prompt=prompt, llm=llm) chain = ( prompt | comp_moderation_with_config | {llm_chain.input_keys[0]: lambda x: x['output'] } | llm_chain | { "input": lambda x: x['text'] } | comp_moderation_with_config ) response = chain.invoke({"question": "A sample SSN number looks like this 123-456-7890. Can you give me some more samples?"}) print(response['output']) ``` ### Output ``` > Entering new AmazonComprehendModerationChain chain... Running AmazonComprehendModerationChain... Running pii validation... Found PII content..stopping.. The prompt contains PII entities and cannot be processed ``` --------- Co-authored-by: Piyush Jain <piyushjain@duck.com> Co-authored-by: Anjan Biswas <anjanavb@amazon.com> Co-authored-by: Jha <nikjha@amazon.com> Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-25 22:11:27 +00:00
import asyncio
from typing import Any, Optional
Initial commit for comprehend moderator (#9665) This PR implements a custom chain that wraps Amazon Comprehend API calls. The custom chain is aimed to be used with LLM chains to provide moderation capability that let’s you detect and redact PII, Toxic and Intent content in the LLM prompt, or the LLM response. The implementation accepts a configuration object to control what checks will be performed on a LLM prompt and can be used in a variety of setups using the LangChain expression language to not only detect the configured info in chains, but also other constructs such as a retriever. The included sample notebook goes over the different configuration options and how to use it with other chains. ### Usage sample ```python from langchain_experimental.comprehend_moderation import BaseModerationActions, BaseModerationFilters moderation_config = { "filters":[ BaseModerationFilters.PII, BaseModerationFilters.TOXICITY, BaseModerationFilters.INTENT ], "pii":{ "action": BaseModerationActions.ALLOW, "threshold":0.5, "labels":["SSN"], "mask_character": "X" }, "toxicity":{ "action": BaseModerationActions.STOP, "threshold":0.5 }, "intent":{ "action": BaseModerationActions.STOP, "threshold":0.5 } } comp_moderation_with_config = AmazonComprehendModerationChain( moderation_config=moderation_config, #specify the configuration client=comprehend_client, #optionally pass the Boto3 Client verbose=True ) template = """Question: {question} Answer:""" prompt = PromptTemplate(template=template, input_variables=["question"]) responses = [ "Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like 323-22-9980. John Doe's phone number is (999)253-9876.", "Final Answer: This is a really shitty way of constructing a birdhouse. This is fucking insane to think that any birds would actually create their motherfucking nests here." ] llm = FakeListLLM(responses=responses) llm_chain = LLMChain(prompt=prompt, llm=llm) chain = ( prompt | comp_moderation_with_config | {llm_chain.input_keys[0]: lambda x: x['output'] } | llm_chain | { "input": lambda x: x['text'] } | comp_moderation_with_config ) response = chain.invoke({"question": "A sample SSN number looks like this 123-456-7890. Can you give me some more samples?"}) print(response['output']) ``` ### Output ``` > Entering new AmazonComprehendModerationChain chain... Running AmazonComprehendModerationChain... Running pii validation... Found PII content..stopping.. The prompt contains PII entities and cannot be processed ``` --------- Co-authored-by: Piyush Jain <piyushjain@duck.com> Co-authored-by: Anjan Biswas <anjanavb@amazon.com> Co-authored-by: Jha <nikjha@amazon.com> Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-25 22:11:27 +00:00
from langchain_experimental.comprehend_moderation.base_moderation_exceptions import (
Comprehend Moderation 0.2 (#11730) This PR replaces the previous `Intent` check with the new `Prompt Safety` check. The logic and steps to enable chain moderation via the Amazon Comprehend service, allowing you to detect and redact PII, Toxic, and Prompt Safety information in the LLM prompt or answer remains unchanged. This implementation updates the code and configuration types with respect to `Prompt Safety`. ### Usage sample ```python from langchain_experimental.comprehend_moderation import (BaseModerationConfig, ModerationPromptSafetyConfig, ModerationPiiConfig, ModerationToxicityConfig ) pii_config = ModerationPiiConfig( labels=["SSN"], redact=True, mask_character="X" ) toxicity_config = ModerationToxicityConfig( threshold=0.5 ) prompt_safety_config = ModerationPromptSafetyConfig( threshold=0.5 ) moderation_config = BaseModerationConfig( filters=[pii_config, toxicity_config, prompt_safety_config] ) comp_moderation_with_config = AmazonComprehendModerationChain( moderation_config=moderation_config, #specify the configuration client=comprehend_client, #optionally pass the Boto3 Client verbose=True ) template = """Question: {question} Answer:""" prompt = PromptTemplate(template=template, input_variables=["question"]) responses = [ "Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like 323-22-9980. John Doe's phone number is (999)253-9876.", "Final Answer: This is a really shitty way of constructing a birdhouse. This is fucking insane to think that any birds would actually create their motherfucking nests here." ] llm = FakeListLLM(responses=responses) llm_chain = LLMChain(prompt=prompt, llm=llm) chain = ( prompt | comp_moderation_with_config | {llm_chain.input_keys[0]: lambda x: x['output'] } | llm_chain | { "input": lambda x: x['text'] } | comp_moderation_with_config ) try: response = chain.invoke({"question": "A sample SSN number looks like this 123-456-7890. Can you give me some more samples?"}) except Exception as e: print(str(e)) else: print(response['output']) ``` ### Output ```python > Entering new AmazonComprehendModerationChain chain... Running AmazonComprehendModerationChain... Running pii Validation... Running toxicity Validation... Running prompt safety Validation... > Finished chain. > Entering new AmazonComprehendModerationChain chain... Running AmazonComprehendModerationChain... Running pii Validation... Running toxicity Validation... Running prompt safety Validation... > Finished chain. Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like XXXXXXXXXXXX John Doe's phone number is (999)253-9876. ``` --------- Co-authored-by: Jha <nikjha@amazon.com> Co-authored-by: Anjan Biswas <anjanavb@amazon.com> Co-authored-by: Anjan Biswas <84933469+anjanvb@users.noreply.github.com>
2023-10-26 16:42:18 +00:00
ModerationPromptSafetyError,
Initial commit for comprehend moderator (#9665) This PR implements a custom chain that wraps Amazon Comprehend API calls. The custom chain is aimed to be used with LLM chains to provide moderation capability that let’s you detect and redact PII, Toxic and Intent content in the LLM prompt, or the LLM response. The implementation accepts a configuration object to control what checks will be performed on a LLM prompt and can be used in a variety of setups using the LangChain expression language to not only detect the configured info in chains, but also other constructs such as a retriever. The included sample notebook goes over the different configuration options and how to use it with other chains. ### Usage sample ```python from langchain_experimental.comprehend_moderation import BaseModerationActions, BaseModerationFilters moderation_config = { "filters":[ BaseModerationFilters.PII, BaseModerationFilters.TOXICITY, BaseModerationFilters.INTENT ], "pii":{ "action": BaseModerationActions.ALLOW, "threshold":0.5, "labels":["SSN"], "mask_character": "X" }, "toxicity":{ "action": BaseModerationActions.STOP, "threshold":0.5 }, "intent":{ "action": BaseModerationActions.STOP, "threshold":0.5 } } comp_moderation_with_config = AmazonComprehendModerationChain( moderation_config=moderation_config, #specify the configuration client=comprehend_client, #optionally pass the Boto3 Client verbose=True ) template = """Question: {question} Answer:""" prompt = PromptTemplate(template=template, input_variables=["question"]) responses = [ "Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like 323-22-9980. John Doe's phone number is (999)253-9876.", "Final Answer: This is a really shitty way of constructing a birdhouse. This is fucking insane to think that any birds would actually create their motherfucking nests here." ] llm = FakeListLLM(responses=responses) llm_chain = LLMChain(prompt=prompt, llm=llm) chain = ( prompt | comp_moderation_with_config | {llm_chain.input_keys[0]: lambda x: x['output'] } | llm_chain | { "input": lambda x: x['text'] } | comp_moderation_with_config ) response = chain.invoke({"question": "A sample SSN number looks like this 123-456-7890. Can you give me some more samples?"}) print(response['output']) ``` ### Output ``` > Entering new AmazonComprehendModerationChain chain... Running AmazonComprehendModerationChain... Running pii validation... Found PII content..stopping.. The prompt contains PII entities and cannot be processed ``` --------- Co-authored-by: Piyush Jain <piyushjain@duck.com> Co-authored-by: Anjan Biswas <anjanavb@amazon.com> Co-authored-by: Jha <nikjha@amazon.com> Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-25 22:11:27 +00:00
)
Comprehend Moderation 0.2 (#11730) This PR replaces the previous `Intent` check with the new `Prompt Safety` check. The logic and steps to enable chain moderation via the Amazon Comprehend service, allowing you to detect and redact PII, Toxic, and Prompt Safety information in the LLM prompt or answer remains unchanged. This implementation updates the code and configuration types with respect to `Prompt Safety`. ### Usage sample ```python from langchain_experimental.comprehend_moderation import (BaseModerationConfig, ModerationPromptSafetyConfig, ModerationPiiConfig, ModerationToxicityConfig ) pii_config = ModerationPiiConfig( labels=["SSN"], redact=True, mask_character="X" ) toxicity_config = ModerationToxicityConfig( threshold=0.5 ) prompt_safety_config = ModerationPromptSafetyConfig( threshold=0.5 ) moderation_config = BaseModerationConfig( filters=[pii_config, toxicity_config, prompt_safety_config] ) comp_moderation_with_config = AmazonComprehendModerationChain( moderation_config=moderation_config, #specify the configuration client=comprehend_client, #optionally pass the Boto3 Client verbose=True ) template = """Question: {question} Answer:""" prompt = PromptTemplate(template=template, input_variables=["question"]) responses = [ "Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like 323-22-9980. John Doe's phone number is (999)253-9876.", "Final Answer: This is a really shitty way of constructing a birdhouse. This is fucking insane to think that any birds would actually create their motherfucking nests here." ] llm = FakeListLLM(responses=responses) llm_chain = LLMChain(prompt=prompt, llm=llm) chain = ( prompt | comp_moderation_with_config | {llm_chain.input_keys[0]: lambda x: x['output'] } | llm_chain | { "input": lambda x: x['text'] } | comp_moderation_with_config ) try: response = chain.invoke({"question": "A sample SSN number looks like this 123-456-7890. Can you give me some more samples?"}) except Exception as e: print(str(e)) else: print(response['output']) ``` ### Output ```python > Entering new AmazonComprehendModerationChain chain... Running AmazonComprehendModerationChain... Running pii Validation... Running toxicity Validation... Running prompt safety Validation... > Finished chain. > Entering new AmazonComprehendModerationChain chain... Running AmazonComprehendModerationChain... Running pii Validation... Running toxicity Validation... Running prompt safety Validation... > Finished chain. Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like XXXXXXXXXXXX John Doe's phone number is (999)253-9876. ``` --------- Co-authored-by: Jha <nikjha@amazon.com> Co-authored-by: Anjan Biswas <anjanavb@amazon.com> Co-authored-by: Anjan Biswas <84933469+anjanvb@users.noreply.github.com>
2023-10-26 16:42:18 +00:00
class ComprehendPromptSafety:
Initial commit for comprehend moderator (#9665) This PR implements a custom chain that wraps Amazon Comprehend API calls. The custom chain is aimed to be used with LLM chains to provide moderation capability that let’s you detect and redact PII, Toxic and Intent content in the LLM prompt, or the LLM response. The implementation accepts a configuration object to control what checks will be performed on a LLM prompt and can be used in a variety of setups using the LangChain expression language to not only detect the configured info in chains, but also other constructs such as a retriever. The included sample notebook goes over the different configuration options and how to use it with other chains. ### Usage sample ```python from langchain_experimental.comprehend_moderation import BaseModerationActions, BaseModerationFilters moderation_config = { "filters":[ BaseModerationFilters.PII, BaseModerationFilters.TOXICITY, BaseModerationFilters.INTENT ], "pii":{ "action": BaseModerationActions.ALLOW, "threshold":0.5, "labels":["SSN"], "mask_character": "X" }, "toxicity":{ "action": BaseModerationActions.STOP, "threshold":0.5 }, "intent":{ "action": BaseModerationActions.STOP, "threshold":0.5 } } comp_moderation_with_config = AmazonComprehendModerationChain( moderation_config=moderation_config, #specify the configuration client=comprehend_client, #optionally pass the Boto3 Client verbose=True ) template = """Question: {question} Answer:""" prompt = PromptTemplate(template=template, input_variables=["question"]) responses = [ "Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like 323-22-9980. John Doe's phone number is (999)253-9876.", "Final Answer: This is a really shitty way of constructing a birdhouse. This is fucking insane to think that any birds would actually create their motherfucking nests here." ] llm = FakeListLLM(responses=responses) llm_chain = LLMChain(prompt=prompt, llm=llm) chain = ( prompt | comp_moderation_with_config | {llm_chain.input_keys[0]: lambda x: x['output'] } | llm_chain | { "input": lambda x: x['text'] } | comp_moderation_with_config ) response = chain.invoke({"question": "A sample SSN number looks like this 123-456-7890. Can you give me some more samples?"}) print(response['output']) ``` ### Output ``` > Entering new AmazonComprehendModerationChain chain... Running AmazonComprehendModerationChain... Running pii validation... Found PII content..stopping.. The prompt contains PII entities and cannot be processed ``` --------- Co-authored-by: Piyush Jain <piyushjain@duck.com> Co-authored-by: Anjan Biswas <anjanavb@amazon.com> Co-authored-by: Jha <nikjha@amazon.com> Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-25 22:11:27 +00:00
def __init__(
self,
client: Any,
callback: Optional[Any] = None,
unique_id: Optional[str] = None,
chain_id: Optional[str] = None,
) -> None:
self.client = client
self.moderation_beacon = {
"moderation_chain_id": chain_id,
Comprehend Moderation 0.2 (#11730) This PR replaces the previous `Intent` check with the new `Prompt Safety` check. The logic and steps to enable chain moderation via the Amazon Comprehend service, allowing you to detect and redact PII, Toxic, and Prompt Safety information in the LLM prompt or answer remains unchanged. This implementation updates the code and configuration types with respect to `Prompt Safety`. ### Usage sample ```python from langchain_experimental.comprehend_moderation import (BaseModerationConfig, ModerationPromptSafetyConfig, ModerationPiiConfig, ModerationToxicityConfig ) pii_config = ModerationPiiConfig( labels=["SSN"], redact=True, mask_character="X" ) toxicity_config = ModerationToxicityConfig( threshold=0.5 ) prompt_safety_config = ModerationPromptSafetyConfig( threshold=0.5 ) moderation_config = BaseModerationConfig( filters=[pii_config, toxicity_config, prompt_safety_config] ) comp_moderation_with_config = AmazonComprehendModerationChain( moderation_config=moderation_config, #specify the configuration client=comprehend_client, #optionally pass the Boto3 Client verbose=True ) template = """Question: {question} Answer:""" prompt = PromptTemplate(template=template, input_variables=["question"]) responses = [ "Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like 323-22-9980. John Doe's phone number is (999)253-9876.", "Final Answer: This is a really shitty way of constructing a birdhouse. This is fucking insane to think that any birds would actually create their motherfucking nests here." ] llm = FakeListLLM(responses=responses) llm_chain = LLMChain(prompt=prompt, llm=llm) chain = ( prompt | comp_moderation_with_config | {llm_chain.input_keys[0]: lambda x: x['output'] } | llm_chain | { "input": lambda x: x['text'] } | comp_moderation_with_config ) try: response = chain.invoke({"question": "A sample SSN number looks like this 123-456-7890. Can you give me some more samples?"}) except Exception as e: print(str(e)) else: print(response['output']) ``` ### Output ```python > Entering new AmazonComprehendModerationChain chain... Running AmazonComprehendModerationChain... Running pii Validation... Running toxicity Validation... Running prompt safety Validation... > Finished chain. > Entering new AmazonComprehendModerationChain chain... Running AmazonComprehendModerationChain... Running pii Validation... Running toxicity Validation... Running prompt safety Validation... > Finished chain. Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like XXXXXXXXXXXX John Doe's phone number is (999)253-9876. ``` --------- Co-authored-by: Jha <nikjha@amazon.com> Co-authored-by: Anjan Biswas <anjanavb@amazon.com> Co-authored-by: Anjan Biswas <84933469+anjanvb@users.noreply.github.com>
2023-10-26 16:42:18 +00:00
"moderation_type": "PromptSafety",
Initial commit for comprehend moderator (#9665) This PR implements a custom chain that wraps Amazon Comprehend API calls. The custom chain is aimed to be used with LLM chains to provide moderation capability that let’s you detect and redact PII, Toxic and Intent content in the LLM prompt, or the LLM response. The implementation accepts a configuration object to control what checks will be performed on a LLM prompt and can be used in a variety of setups using the LangChain expression language to not only detect the configured info in chains, but also other constructs such as a retriever. The included sample notebook goes over the different configuration options and how to use it with other chains. ### Usage sample ```python from langchain_experimental.comprehend_moderation import BaseModerationActions, BaseModerationFilters moderation_config = { "filters":[ BaseModerationFilters.PII, BaseModerationFilters.TOXICITY, BaseModerationFilters.INTENT ], "pii":{ "action": BaseModerationActions.ALLOW, "threshold":0.5, "labels":["SSN"], "mask_character": "X" }, "toxicity":{ "action": BaseModerationActions.STOP, "threshold":0.5 }, "intent":{ "action": BaseModerationActions.STOP, "threshold":0.5 } } comp_moderation_with_config = AmazonComprehendModerationChain( moderation_config=moderation_config, #specify the configuration client=comprehend_client, #optionally pass the Boto3 Client verbose=True ) template = """Question: {question} Answer:""" prompt = PromptTemplate(template=template, input_variables=["question"]) responses = [ "Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like 323-22-9980. John Doe's phone number is (999)253-9876.", "Final Answer: This is a really shitty way of constructing a birdhouse. This is fucking insane to think that any birds would actually create their motherfucking nests here." ] llm = FakeListLLM(responses=responses) llm_chain = LLMChain(prompt=prompt, llm=llm) chain = ( prompt | comp_moderation_with_config | {llm_chain.input_keys[0]: lambda x: x['output'] } | llm_chain | { "input": lambda x: x['text'] } | comp_moderation_with_config ) response = chain.invoke({"question": "A sample SSN number looks like this 123-456-7890. Can you give me some more samples?"}) print(response['output']) ``` ### Output ``` > Entering new AmazonComprehendModerationChain chain... Running AmazonComprehendModerationChain... Running pii validation... Found PII content..stopping.. The prompt contains PII entities and cannot be processed ``` --------- Co-authored-by: Piyush Jain <piyushjain@duck.com> Co-authored-by: Anjan Biswas <anjanavb@amazon.com> Co-authored-by: Jha <nikjha@amazon.com> Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-25 22:11:27 +00:00
"moderation_status": "LABELS_NOT_FOUND",
}
self.callback = callback
self.unique_id = unique_id
def _get_arn(self) -> str:
region_name = self.client.meta.region_name
service = "comprehend"
Comprehend Moderation 0.2 (#11730) This PR replaces the previous `Intent` check with the new `Prompt Safety` check. The logic and steps to enable chain moderation via the Amazon Comprehend service, allowing you to detect and redact PII, Toxic, and Prompt Safety information in the LLM prompt or answer remains unchanged. This implementation updates the code and configuration types with respect to `Prompt Safety`. ### Usage sample ```python from langchain_experimental.comprehend_moderation import (BaseModerationConfig, ModerationPromptSafetyConfig, ModerationPiiConfig, ModerationToxicityConfig ) pii_config = ModerationPiiConfig( labels=["SSN"], redact=True, mask_character="X" ) toxicity_config = ModerationToxicityConfig( threshold=0.5 ) prompt_safety_config = ModerationPromptSafetyConfig( threshold=0.5 ) moderation_config = BaseModerationConfig( filters=[pii_config, toxicity_config, prompt_safety_config] ) comp_moderation_with_config = AmazonComprehendModerationChain( moderation_config=moderation_config, #specify the configuration client=comprehend_client, #optionally pass the Boto3 Client verbose=True ) template = """Question: {question} Answer:""" prompt = PromptTemplate(template=template, input_variables=["question"]) responses = [ "Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like 323-22-9980. John Doe's phone number is (999)253-9876.", "Final Answer: This is a really shitty way of constructing a birdhouse. This is fucking insane to think that any birds would actually create their motherfucking nests here." ] llm = FakeListLLM(responses=responses) llm_chain = LLMChain(prompt=prompt, llm=llm) chain = ( prompt | comp_moderation_with_config | {llm_chain.input_keys[0]: lambda x: x['output'] } | llm_chain | { "input": lambda x: x['text'] } | comp_moderation_with_config ) try: response = chain.invoke({"question": "A sample SSN number looks like this 123-456-7890. Can you give me some more samples?"}) except Exception as e: print(str(e)) else: print(response['output']) ``` ### Output ```python > Entering new AmazonComprehendModerationChain chain... Running AmazonComprehendModerationChain... Running pii Validation... Running toxicity Validation... Running prompt safety Validation... > Finished chain. > Entering new AmazonComprehendModerationChain chain... Running AmazonComprehendModerationChain... Running pii Validation... Running toxicity Validation... Running prompt safety Validation... > Finished chain. Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like XXXXXXXXXXXX John Doe's phone number is (999)253-9876. ``` --------- Co-authored-by: Jha <nikjha@amazon.com> Co-authored-by: Anjan Biswas <anjanavb@amazon.com> Co-authored-by: Anjan Biswas <84933469+anjanvb@users.noreply.github.com>
2023-10-26 16:42:18 +00:00
prompt_safety_endpoint = "document-classifier-endpoint/prompt-safety"
return f"arn:aws:{service}:{region_name}:aws:{prompt_safety_endpoint}"
Initial commit for comprehend moderator (#9665) This PR implements a custom chain that wraps Amazon Comprehend API calls. The custom chain is aimed to be used with LLM chains to provide moderation capability that let’s you detect and redact PII, Toxic and Intent content in the LLM prompt, or the LLM response. The implementation accepts a configuration object to control what checks will be performed on a LLM prompt and can be used in a variety of setups using the LangChain expression language to not only detect the configured info in chains, but also other constructs such as a retriever. The included sample notebook goes over the different configuration options and how to use it with other chains. ### Usage sample ```python from langchain_experimental.comprehend_moderation import BaseModerationActions, BaseModerationFilters moderation_config = { "filters":[ BaseModerationFilters.PII, BaseModerationFilters.TOXICITY, BaseModerationFilters.INTENT ], "pii":{ "action": BaseModerationActions.ALLOW, "threshold":0.5, "labels":["SSN"], "mask_character": "X" }, "toxicity":{ "action": BaseModerationActions.STOP, "threshold":0.5 }, "intent":{ "action": BaseModerationActions.STOP, "threshold":0.5 } } comp_moderation_with_config = AmazonComprehendModerationChain( moderation_config=moderation_config, #specify the configuration client=comprehend_client, #optionally pass the Boto3 Client verbose=True ) template = """Question: {question} Answer:""" prompt = PromptTemplate(template=template, input_variables=["question"]) responses = [ "Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like 323-22-9980. John Doe's phone number is (999)253-9876.", "Final Answer: This is a really shitty way of constructing a birdhouse. This is fucking insane to think that any birds would actually create their motherfucking nests here." ] llm = FakeListLLM(responses=responses) llm_chain = LLMChain(prompt=prompt, llm=llm) chain = ( prompt | comp_moderation_with_config | {llm_chain.input_keys[0]: lambda x: x['output'] } | llm_chain | { "input": lambda x: x['text'] } | comp_moderation_with_config ) response = chain.invoke({"question": "A sample SSN number looks like this 123-456-7890. Can you give me some more samples?"}) print(response['output']) ``` ### Output ``` > Entering new AmazonComprehendModerationChain chain... Running AmazonComprehendModerationChain... Running pii validation... Found PII content..stopping.. The prompt contains PII entities and cannot be processed ``` --------- Co-authored-by: Piyush Jain <piyushjain@duck.com> Co-authored-by: Anjan Biswas <anjanavb@amazon.com> Co-authored-by: Jha <nikjha@amazon.com> Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-25 22:11:27 +00:00
def validate(self, prompt_value: str, config: Any = None) -> str:
Initial commit for comprehend moderator (#9665) This PR implements a custom chain that wraps Amazon Comprehend API calls. The custom chain is aimed to be used with LLM chains to provide moderation capability that let’s you detect and redact PII, Toxic and Intent content in the LLM prompt, or the LLM response. The implementation accepts a configuration object to control what checks will be performed on a LLM prompt and can be used in a variety of setups using the LangChain expression language to not only detect the configured info in chains, but also other constructs such as a retriever. The included sample notebook goes over the different configuration options and how to use it with other chains. ### Usage sample ```python from langchain_experimental.comprehend_moderation import BaseModerationActions, BaseModerationFilters moderation_config = { "filters":[ BaseModerationFilters.PII, BaseModerationFilters.TOXICITY, BaseModerationFilters.INTENT ], "pii":{ "action": BaseModerationActions.ALLOW, "threshold":0.5, "labels":["SSN"], "mask_character": "X" }, "toxicity":{ "action": BaseModerationActions.STOP, "threshold":0.5 }, "intent":{ "action": BaseModerationActions.STOP, "threshold":0.5 } } comp_moderation_with_config = AmazonComprehendModerationChain( moderation_config=moderation_config, #specify the configuration client=comprehend_client, #optionally pass the Boto3 Client verbose=True ) template = """Question: {question} Answer:""" prompt = PromptTemplate(template=template, input_variables=["question"]) responses = [ "Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like 323-22-9980. John Doe's phone number is (999)253-9876.", "Final Answer: This is a really shitty way of constructing a birdhouse. This is fucking insane to think that any birds would actually create their motherfucking nests here." ] llm = FakeListLLM(responses=responses) llm_chain = LLMChain(prompt=prompt, llm=llm) chain = ( prompt | comp_moderation_with_config | {llm_chain.input_keys[0]: lambda x: x['output'] } | llm_chain | { "input": lambda x: x['text'] } | comp_moderation_with_config ) response = chain.invoke({"question": "A sample SSN number looks like this 123-456-7890. Can you give me some more samples?"}) print(response['output']) ``` ### Output ``` > Entering new AmazonComprehendModerationChain chain... Running AmazonComprehendModerationChain... Running pii validation... Found PII content..stopping.. The prompt contains PII entities and cannot be processed ``` --------- Co-authored-by: Piyush Jain <piyushjain@duck.com> Co-authored-by: Anjan Biswas <anjanavb@amazon.com> Co-authored-by: Jha <nikjha@amazon.com> Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-25 22:11:27 +00:00
"""
Comprehend Moderation 0.2 (#11730) This PR replaces the previous `Intent` check with the new `Prompt Safety` check. The logic and steps to enable chain moderation via the Amazon Comprehend service, allowing you to detect and redact PII, Toxic, and Prompt Safety information in the LLM prompt or answer remains unchanged. This implementation updates the code and configuration types with respect to `Prompt Safety`. ### Usage sample ```python from langchain_experimental.comprehend_moderation import (BaseModerationConfig, ModerationPromptSafetyConfig, ModerationPiiConfig, ModerationToxicityConfig ) pii_config = ModerationPiiConfig( labels=["SSN"], redact=True, mask_character="X" ) toxicity_config = ModerationToxicityConfig( threshold=0.5 ) prompt_safety_config = ModerationPromptSafetyConfig( threshold=0.5 ) moderation_config = BaseModerationConfig( filters=[pii_config, toxicity_config, prompt_safety_config] ) comp_moderation_with_config = AmazonComprehendModerationChain( moderation_config=moderation_config, #specify the configuration client=comprehend_client, #optionally pass the Boto3 Client verbose=True ) template = """Question: {question} Answer:""" prompt = PromptTemplate(template=template, input_variables=["question"]) responses = [ "Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like 323-22-9980. John Doe's phone number is (999)253-9876.", "Final Answer: This is a really shitty way of constructing a birdhouse. This is fucking insane to think that any birds would actually create their motherfucking nests here." ] llm = FakeListLLM(responses=responses) llm_chain = LLMChain(prompt=prompt, llm=llm) chain = ( prompt | comp_moderation_with_config | {llm_chain.input_keys[0]: lambda x: x['output'] } | llm_chain | { "input": lambda x: x['text'] } | comp_moderation_with_config ) try: response = chain.invoke({"question": "A sample SSN number looks like this 123-456-7890. Can you give me some more samples?"}) except Exception as e: print(str(e)) else: print(response['output']) ``` ### Output ```python > Entering new AmazonComprehendModerationChain chain... Running AmazonComprehendModerationChain... Running pii Validation... Running toxicity Validation... Running prompt safety Validation... > Finished chain. > Entering new AmazonComprehendModerationChain chain... Running AmazonComprehendModerationChain... Running pii Validation... Running toxicity Validation... Running prompt safety Validation... > Finished chain. Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like XXXXXXXXXXXX John Doe's phone number is (999)253-9876. ``` --------- Co-authored-by: Jha <nikjha@amazon.com> Co-authored-by: Anjan Biswas <anjanavb@amazon.com> Co-authored-by: Anjan Biswas <84933469+anjanvb@users.noreply.github.com>
2023-10-26 16:42:18 +00:00
Check and validate the safety of the given prompt text.
Initial commit for comprehend moderator (#9665) This PR implements a custom chain that wraps Amazon Comprehend API calls. The custom chain is aimed to be used with LLM chains to provide moderation capability that let’s you detect and redact PII, Toxic and Intent content in the LLM prompt, or the LLM response. The implementation accepts a configuration object to control what checks will be performed on a LLM prompt and can be used in a variety of setups using the LangChain expression language to not only detect the configured info in chains, but also other constructs such as a retriever. The included sample notebook goes over the different configuration options and how to use it with other chains. ### Usage sample ```python from langchain_experimental.comprehend_moderation import BaseModerationActions, BaseModerationFilters moderation_config = { "filters":[ BaseModerationFilters.PII, BaseModerationFilters.TOXICITY, BaseModerationFilters.INTENT ], "pii":{ "action": BaseModerationActions.ALLOW, "threshold":0.5, "labels":["SSN"], "mask_character": "X" }, "toxicity":{ "action": BaseModerationActions.STOP, "threshold":0.5 }, "intent":{ "action": BaseModerationActions.STOP, "threshold":0.5 } } comp_moderation_with_config = AmazonComprehendModerationChain( moderation_config=moderation_config, #specify the configuration client=comprehend_client, #optionally pass the Boto3 Client verbose=True ) template = """Question: {question} Answer:""" prompt = PromptTemplate(template=template, input_variables=["question"]) responses = [ "Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like 323-22-9980. John Doe's phone number is (999)253-9876.", "Final Answer: This is a really shitty way of constructing a birdhouse. This is fucking insane to think that any birds would actually create their motherfucking nests here." ] llm = FakeListLLM(responses=responses) llm_chain = LLMChain(prompt=prompt, llm=llm) chain = ( prompt | comp_moderation_with_config | {llm_chain.input_keys[0]: lambda x: x['output'] } | llm_chain | { "input": lambda x: x['text'] } | comp_moderation_with_config ) response = chain.invoke({"question": "A sample SSN number looks like this 123-456-7890. Can you give me some more samples?"}) print(response['output']) ``` ### Output ``` > Entering new AmazonComprehendModerationChain chain... Running AmazonComprehendModerationChain... Running pii validation... Found PII content..stopping.. The prompt contains PII entities and cannot be processed ``` --------- Co-authored-by: Piyush Jain <piyushjain@duck.com> Co-authored-by: Anjan Biswas <anjanavb@amazon.com> Co-authored-by: Jha <nikjha@amazon.com> Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-25 22:11:27 +00:00
Args:
Comprehend Moderation 0.2 (#11730) This PR replaces the previous `Intent` check with the new `Prompt Safety` check. The logic and steps to enable chain moderation via the Amazon Comprehend service, allowing you to detect and redact PII, Toxic, and Prompt Safety information in the LLM prompt or answer remains unchanged. This implementation updates the code and configuration types with respect to `Prompt Safety`. ### Usage sample ```python from langchain_experimental.comprehend_moderation import (BaseModerationConfig, ModerationPromptSafetyConfig, ModerationPiiConfig, ModerationToxicityConfig ) pii_config = ModerationPiiConfig( labels=["SSN"], redact=True, mask_character="X" ) toxicity_config = ModerationToxicityConfig( threshold=0.5 ) prompt_safety_config = ModerationPromptSafetyConfig( threshold=0.5 ) moderation_config = BaseModerationConfig( filters=[pii_config, toxicity_config, prompt_safety_config] ) comp_moderation_with_config = AmazonComprehendModerationChain( moderation_config=moderation_config, #specify the configuration client=comprehend_client, #optionally pass the Boto3 Client verbose=True ) template = """Question: {question} Answer:""" prompt = PromptTemplate(template=template, input_variables=["question"]) responses = [ "Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like 323-22-9980. John Doe's phone number is (999)253-9876.", "Final Answer: This is a really shitty way of constructing a birdhouse. This is fucking insane to think that any birds would actually create their motherfucking nests here." ] llm = FakeListLLM(responses=responses) llm_chain = LLMChain(prompt=prompt, llm=llm) chain = ( prompt | comp_moderation_with_config | {llm_chain.input_keys[0]: lambda x: x['output'] } | llm_chain | { "input": lambda x: x['text'] } | comp_moderation_with_config ) try: response = chain.invoke({"question": "A sample SSN number looks like this 123-456-7890. Can you give me some more samples?"}) except Exception as e: print(str(e)) else: print(response['output']) ``` ### Output ```python > Entering new AmazonComprehendModerationChain chain... Running AmazonComprehendModerationChain... Running pii Validation... Running toxicity Validation... Running prompt safety Validation... > Finished chain. > Entering new AmazonComprehendModerationChain chain... Running AmazonComprehendModerationChain... Running pii Validation... Running toxicity Validation... Running prompt safety Validation... > Finished chain. Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like XXXXXXXXXXXX John Doe's phone number is (999)253-9876. ``` --------- Co-authored-by: Jha <nikjha@amazon.com> Co-authored-by: Anjan Biswas <anjanavb@amazon.com> Co-authored-by: Anjan Biswas <84933469+anjanvb@users.noreply.github.com>
2023-10-26 16:42:18 +00:00
prompt_value (str): The input text to be checked for unsafe text.
config (Dict[str, Any]): Configuration settings for prompt safety checks.
Initial commit for comprehend moderator (#9665) This PR implements a custom chain that wraps Amazon Comprehend API calls. The custom chain is aimed to be used with LLM chains to provide moderation capability that let’s you detect and redact PII, Toxic and Intent content in the LLM prompt, or the LLM response. The implementation accepts a configuration object to control what checks will be performed on a LLM prompt and can be used in a variety of setups using the LangChain expression language to not only detect the configured info in chains, but also other constructs such as a retriever. The included sample notebook goes over the different configuration options and how to use it with other chains. ### Usage sample ```python from langchain_experimental.comprehend_moderation import BaseModerationActions, BaseModerationFilters moderation_config = { "filters":[ BaseModerationFilters.PII, BaseModerationFilters.TOXICITY, BaseModerationFilters.INTENT ], "pii":{ "action": BaseModerationActions.ALLOW, "threshold":0.5, "labels":["SSN"], "mask_character": "X" }, "toxicity":{ "action": BaseModerationActions.STOP, "threshold":0.5 }, "intent":{ "action": BaseModerationActions.STOP, "threshold":0.5 } } comp_moderation_with_config = AmazonComprehendModerationChain( moderation_config=moderation_config, #specify the configuration client=comprehend_client, #optionally pass the Boto3 Client verbose=True ) template = """Question: {question} Answer:""" prompt = PromptTemplate(template=template, input_variables=["question"]) responses = [ "Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like 323-22-9980. John Doe's phone number is (999)253-9876.", "Final Answer: This is a really shitty way of constructing a birdhouse. This is fucking insane to think that any birds would actually create their motherfucking nests here." ] llm = FakeListLLM(responses=responses) llm_chain = LLMChain(prompt=prompt, llm=llm) chain = ( prompt | comp_moderation_with_config | {llm_chain.input_keys[0]: lambda x: x['output'] } | llm_chain | { "input": lambda x: x['text'] } | comp_moderation_with_config ) response = chain.invoke({"question": "A sample SSN number looks like this 123-456-7890. Can you give me some more samples?"}) print(response['output']) ``` ### Output ``` > Entering new AmazonComprehendModerationChain chain... Running AmazonComprehendModerationChain... Running pii validation... Found PII content..stopping.. The prompt contains PII entities and cannot be processed ``` --------- Co-authored-by: Piyush Jain <piyushjain@duck.com> Co-authored-by: Anjan Biswas <anjanavb@amazon.com> Co-authored-by: Jha <nikjha@amazon.com> Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-25 22:11:27 +00:00
Raises:
Comprehend Moderation 0.2 (#11730) This PR replaces the previous `Intent` check with the new `Prompt Safety` check. The logic and steps to enable chain moderation via the Amazon Comprehend service, allowing you to detect and redact PII, Toxic, and Prompt Safety information in the LLM prompt or answer remains unchanged. This implementation updates the code and configuration types with respect to `Prompt Safety`. ### Usage sample ```python from langchain_experimental.comprehend_moderation import (BaseModerationConfig, ModerationPromptSafetyConfig, ModerationPiiConfig, ModerationToxicityConfig ) pii_config = ModerationPiiConfig( labels=["SSN"], redact=True, mask_character="X" ) toxicity_config = ModerationToxicityConfig( threshold=0.5 ) prompt_safety_config = ModerationPromptSafetyConfig( threshold=0.5 ) moderation_config = BaseModerationConfig( filters=[pii_config, toxicity_config, prompt_safety_config] ) comp_moderation_with_config = AmazonComprehendModerationChain( moderation_config=moderation_config, #specify the configuration client=comprehend_client, #optionally pass the Boto3 Client verbose=True ) template = """Question: {question} Answer:""" prompt = PromptTemplate(template=template, input_variables=["question"]) responses = [ "Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like 323-22-9980. John Doe's phone number is (999)253-9876.", "Final Answer: This is a really shitty way of constructing a birdhouse. This is fucking insane to think that any birds would actually create their motherfucking nests here." ] llm = FakeListLLM(responses=responses) llm_chain = LLMChain(prompt=prompt, llm=llm) chain = ( prompt | comp_moderation_with_config | {llm_chain.input_keys[0]: lambda x: x['output'] } | llm_chain | { "input": lambda x: x['text'] } | comp_moderation_with_config ) try: response = chain.invoke({"question": "A sample SSN number looks like this 123-456-7890. Can you give me some more samples?"}) except Exception as e: print(str(e)) else: print(response['output']) ``` ### Output ```python > Entering new AmazonComprehendModerationChain chain... Running AmazonComprehendModerationChain... Running pii Validation... Running toxicity Validation... Running prompt safety Validation... > Finished chain. > Entering new AmazonComprehendModerationChain chain... Running AmazonComprehendModerationChain... Running pii Validation... Running toxicity Validation... Running prompt safety Validation... > Finished chain. Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like XXXXXXXXXXXX John Doe's phone number is (999)253-9876. ``` --------- Co-authored-by: Jha <nikjha@amazon.com> Co-authored-by: Anjan Biswas <anjanavb@amazon.com> Co-authored-by: Anjan Biswas <84933469+anjanvb@users.noreply.github.com>
2023-10-26 16:42:18 +00:00
ValueError: If unsafe prompt is found in the prompt text based
on the specified threshold.
Initial commit for comprehend moderator (#9665) This PR implements a custom chain that wraps Amazon Comprehend API calls. The custom chain is aimed to be used with LLM chains to provide moderation capability that let’s you detect and redact PII, Toxic and Intent content in the LLM prompt, or the LLM response. The implementation accepts a configuration object to control what checks will be performed on a LLM prompt and can be used in a variety of setups using the LangChain expression language to not only detect the configured info in chains, but also other constructs such as a retriever. The included sample notebook goes over the different configuration options and how to use it with other chains. ### Usage sample ```python from langchain_experimental.comprehend_moderation import BaseModerationActions, BaseModerationFilters moderation_config = { "filters":[ BaseModerationFilters.PII, BaseModerationFilters.TOXICITY, BaseModerationFilters.INTENT ], "pii":{ "action": BaseModerationActions.ALLOW, "threshold":0.5, "labels":["SSN"], "mask_character": "X" }, "toxicity":{ "action": BaseModerationActions.STOP, "threshold":0.5 }, "intent":{ "action": BaseModerationActions.STOP, "threshold":0.5 } } comp_moderation_with_config = AmazonComprehendModerationChain( moderation_config=moderation_config, #specify the configuration client=comprehend_client, #optionally pass the Boto3 Client verbose=True ) template = """Question: {question} Answer:""" prompt = PromptTemplate(template=template, input_variables=["question"]) responses = [ "Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like 323-22-9980. John Doe's phone number is (999)253-9876.", "Final Answer: This is a really shitty way of constructing a birdhouse. This is fucking insane to think that any birds would actually create their motherfucking nests here." ] llm = FakeListLLM(responses=responses) llm_chain = LLMChain(prompt=prompt, llm=llm) chain = ( prompt | comp_moderation_with_config | {llm_chain.input_keys[0]: lambda x: x['output'] } | llm_chain | { "input": lambda x: x['text'] } | comp_moderation_with_config ) response = chain.invoke({"question": "A sample SSN number looks like this 123-456-7890. Can you give me some more samples?"}) print(response['output']) ``` ### Output ``` > Entering new AmazonComprehendModerationChain chain... Running AmazonComprehendModerationChain... Running pii validation... Found PII content..stopping.. The prompt contains PII entities and cannot be processed ``` --------- Co-authored-by: Piyush Jain <piyushjain@duck.com> Co-authored-by: Anjan Biswas <anjanavb@amazon.com> Co-authored-by: Jha <nikjha@amazon.com> Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-25 22:11:27 +00:00
Returns:
str: The input prompt_value.
Note:
Comprehend Moderation 0.2 (#11730) This PR replaces the previous `Intent` check with the new `Prompt Safety` check. The logic and steps to enable chain moderation via the Amazon Comprehend service, allowing you to detect and redact PII, Toxic, and Prompt Safety information in the LLM prompt or answer remains unchanged. This implementation updates the code and configuration types with respect to `Prompt Safety`. ### Usage sample ```python from langchain_experimental.comprehend_moderation import (BaseModerationConfig, ModerationPromptSafetyConfig, ModerationPiiConfig, ModerationToxicityConfig ) pii_config = ModerationPiiConfig( labels=["SSN"], redact=True, mask_character="X" ) toxicity_config = ModerationToxicityConfig( threshold=0.5 ) prompt_safety_config = ModerationPromptSafetyConfig( threshold=0.5 ) moderation_config = BaseModerationConfig( filters=[pii_config, toxicity_config, prompt_safety_config] ) comp_moderation_with_config = AmazonComprehendModerationChain( moderation_config=moderation_config, #specify the configuration client=comprehend_client, #optionally pass the Boto3 Client verbose=True ) template = """Question: {question} Answer:""" prompt = PromptTemplate(template=template, input_variables=["question"]) responses = [ "Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like 323-22-9980. John Doe's phone number is (999)253-9876.", "Final Answer: This is a really shitty way of constructing a birdhouse. This is fucking insane to think that any birds would actually create their motherfucking nests here." ] llm = FakeListLLM(responses=responses) llm_chain = LLMChain(prompt=prompt, llm=llm) chain = ( prompt | comp_moderation_with_config | {llm_chain.input_keys[0]: lambda x: x['output'] } | llm_chain | { "input": lambda x: x['text'] } | comp_moderation_with_config ) try: response = chain.invoke({"question": "A sample SSN number looks like this 123-456-7890. Can you give me some more samples?"}) except Exception as e: print(str(e)) else: print(response['output']) ``` ### Output ```python > Entering new AmazonComprehendModerationChain chain... Running AmazonComprehendModerationChain... Running pii Validation... Running toxicity Validation... Running prompt safety Validation... > Finished chain. > Entering new AmazonComprehendModerationChain chain... Running AmazonComprehendModerationChain... Running pii Validation... Running toxicity Validation... Running prompt safety Validation... > Finished chain. Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like XXXXXXXXXXXX John Doe's phone number is (999)253-9876. ``` --------- Co-authored-by: Jha <nikjha@amazon.com> Co-authored-by: Anjan Biswas <anjanavb@amazon.com> Co-authored-by: Anjan Biswas <84933469+anjanvb@users.noreply.github.com>
2023-10-26 16:42:18 +00:00
This function checks the safety of the provided prompt text using
Comprehend's classify_document API and raises an error if unsafe
text is detected with a score above the specified threshold.
Initial commit for comprehend moderator (#9665) This PR implements a custom chain that wraps Amazon Comprehend API calls. The custom chain is aimed to be used with LLM chains to provide moderation capability that let’s you detect and redact PII, Toxic and Intent content in the LLM prompt, or the LLM response. The implementation accepts a configuration object to control what checks will be performed on a LLM prompt and can be used in a variety of setups using the LangChain expression language to not only detect the configured info in chains, but also other constructs such as a retriever. The included sample notebook goes over the different configuration options and how to use it with other chains. ### Usage sample ```python from langchain_experimental.comprehend_moderation import BaseModerationActions, BaseModerationFilters moderation_config = { "filters":[ BaseModerationFilters.PII, BaseModerationFilters.TOXICITY, BaseModerationFilters.INTENT ], "pii":{ "action": BaseModerationActions.ALLOW, "threshold":0.5, "labels":["SSN"], "mask_character": "X" }, "toxicity":{ "action": BaseModerationActions.STOP, "threshold":0.5 }, "intent":{ "action": BaseModerationActions.STOP, "threshold":0.5 } } comp_moderation_with_config = AmazonComprehendModerationChain( moderation_config=moderation_config, #specify the configuration client=comprehend_client, #optionally pass the Boto3 Client verbose=True ) template = """Question: {question} Answer:""" prompt = PromptTemplate(template=template, input_variables=["question"]) responses = [ "Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like 323-22-9980. John Doe's phone number is (999)253-9876.", "Final Answer: This is a really shitty way of constructing a birdhouse. This is fucking insane to think that any birds would actually create their motherfucking nests here." ] llm = FakeListLLM(responses=responses) llm_chain = LLMChain(prompt=prompt, llm=llm) chain = ( prompt | comp_moderation_with_config | {llm_chain.input_keys[0]: lambda x: x['output'] } | llm_chain | { "input": lambda x: x['text'] } | comp_moderation_with_config ) response = chain.invoke({"question": "A sample SSN number looks like this 123-456-7890. Can you give me some more samples?"}) print(response['output']) ``` ### Output ``` > Entering new AmazonComprehendModerationChain chain... Running AmazonComprehendModerationChain... Running pii validation... Found PII content..stopping.. The prompt contains PII entities and cannot be processed ``` --------- Co-authored-by: Piyush Jain <piyushjain@duck.com> Co-authored-by: Anjan Biswas <anjanavb@amazon.com> Co-authored-by: Jha <nikjha@amazon.com> Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-25 22:11:27 +00:00
Example:
comprehend_client = boto3.client('comprehend')
prompt_text = "Please tell me your credit card information."
config = {"threshold": 0.7}
Comprehend Moderation 0.2 (#11730) This PR replaces the previous `Intent` check with the new `Prompt Safety` check. The logic and steps to enable chain moderation via the Amazon Comprehend service, allowing you to detect and redact PII, Toxic, and Prompt Safety information in the LLM prompt or answer remains unchanged. This implementation updates the code and configuration types with respect to `Prompt Safety`. ### Usage sample ```python from langchain_experimental.comprehend_moderation import (BaseModerationConfig, ModerationPromptSafetyConfig, ModerationPiiConfig, ModerationToxicityConfig ) pii_config = ModerationPiiConfig( labels=["SSN"], redact=True, mask_character="X" ) toxicity_config = ModerationToxicityConfig( threshold=0.5 ) prompt_safety_config = ModerationPromptSafetyConfig( threshold=0.5 ) moderation_config = BaseModerationConfig( filters=[pii_config, toxicity_config, prompt_safety_config] ) comp_moderation_with_config = AmazonComprehendModerationChain( moderation_config=moderation_config, #specify the configuration client=comprehend_client, #optionally pass the Boto3 Client verbose=True ) template = """Question: {question} Answer:""" prompt = PromptTemplate(template=template, input_variables=["question"]) responses = [ "Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like 323-22-9980. John Doe's phone number is (999)253-9876.", "Final Answer: This is a really shitty way of constructing a birdhouse. This is fucking insane to think that any birds would actually create their motherfucking nests here." ] llm = FakeListLLM(responses=responses) llm_chain = LLMChain(prompt=prompt, llm=llm) chain = ( prompt | comp_moderation_with_config | {llm_chain.input_keys[0]: lambda x: x['output'] } | llm_chain | { "input": lambda x: x['text'] } | comp_moderation_with_config ) try: response = chain.invoke({"question": "A sample SSN number looks like this 123-456-7890. Can you give me some more samples?"}) except Exception as e: print(str(e)) else: print(response['output']) ``` ### Output ```python > Entering new AmazonComprehendModerationChain chain... Running AmazonComprehendModerationChain... Running pii Validation... Running toxicity Validation... Running prompt safety Validation... > Finished chain. > Entering new AmazonComprehendModerationChain chain... Running AmazonComprehendModerationChain... Running pii Validation... Running toxicity Validation... Running prompt safety Validation... > Finished chain. Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like XXXXXXXXXXXX John Doe's phone number is (999)253-9876. ``` --------- Co-authored-by: Jha <nikjha@amazon.com> Co-authored-by: Anjan Biswas <anjanavb@amazon.com> Co-authored-by: Anjan Biswas <84933469+anjanvb@users.noreply.github.com>
2023-10-26 16:42:18 +00:00
checked_prompt = check_prompt_safety(comprehend_client, prompt_text, config)
Initial commit for comprehend moderator (#9665) This PR implements a custom chain that wraps Amazon Comprehend API calls. The custom chain is aimed to be used with LLM chains to provide moderation capability that let’s you detect and redact PII, Toxic and Intent content in the LLM prompt, or the LLM response. The implementation accepts a configuration object to control what checks will be performed on a LLM prompt and can be used in a variety of setups using the LangChain expression language to not only detect the configured info in chains, but also other constructs such as a retriever. The included sample notebook goes over the different configuration options and how to use it with other chains. ### Usage sample ```python from langchain_experimental.comprehend_moderation import BaseModerationActions, BaseModerationFilters moderation_config = { "filters":[ BaseModerationFilters.PII, BaseModerationFilters.TOXICITY, BaseModerationFilters.INTENT ], "pii":{ "action": BaseModerationActions.ALLOW, "threshold":0.5, "labels":["SSN"], "mask_character": "X" }, "toxicity":{ "action": BaseModerationActions.STOP, "threshold":0.5 }, "intent":{ "action": BaseModerationActions.STOP, "threshold":0.5 } } comp_moderation_with_config = AmazonComprehendModerationChain( moderation_config=moderation_config, #specify the configuration client=comprehend_client, #optionally pass the Boto3 Client verbose=True ) template = """Question: {question} Answer:""" prompt = PromptTemplate(template=template, input_variables=["question"]) responses = [ "Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like 323-22-9980. John Doe's phone number is (999)253-9876.", "Final Answer: This is a really shitty way of constructing a birdhouse. This is fucking insane to think that any birds would actually create their motherfucking nests here." ] llm = FakeListLLM(responses=responses) llm_chain = LLMChain(prompt=prompt, llm=llm) chain = ( prompt | comp_moderation_with_config | {llm_chain.input_keys[0]: lambda x: x['output'] } | llm_chain | { "input": lambda x: x['text'] } | comp_moderation_with_config ) response = chain.invoke({"question": "A sample SSN number looks like this 123-456-7890. Can you give me some more samples?"}) print(response['output']) ``` ### Output ``` > Entering new AmazonComprehendModerationChain chain... Running AmazonComprehendModerationChain... Running pii validation... Found PII content..stopping.. The prompt contains PII entities and cannot be processed ``` --------- Co-authored-by: Piyush Jain <piyushjain@duck.com> Co-authored-by: Anjan Biswas <anjanavb@amazon.com> Co-authored-by: Jha <nikjha@amazon.com> Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-25 22:11:27 +00:00
"""
threshold = config.get("threshold")
Comprehend Moderation 0.2 (#11730) This PR replaces the previous `Intent` check with the new `Prompt Safety` check. The logic and steps to enable chain moderation via the Amazon Comprehend service, allowing you to detect and redact PII, Toxic, and Prompt Safety information in the LLM prompt or answer remains unchanged. This implementation updates the code and configuration types with respect to `Prompt Safety`. ### Usage sample ```python from langchain_experimental.comprehend_moderation import (BaseModerationConfig, ModerationPromptSafetyConfig, ModerationPiiConfig, ModerationToxicityConfig ) pii_config = ModerationPiiConfig( labels=["SSN"], redact=True, mask_character="X" ) toxicity_config = ModerationToxicityConfig( threshold=0.5 ) prompt_safety_config = ModerationPromptSafetyConfig( threshold=0.5 ) moderation_config = BaseModerationConfig( filters=[pii_config, toxicity_config, prompt_safety_config] ) comp_moderation_with_config = AmazonComprehendModerationChain( moderation_config=moderation_config, #specify the configuration client=comprehend_client, #optionally pass the Boto3 Client verbose=True ) template = """Question: {question} Answer:""" prompt = PromptTemplate(template=template, input_variables=["question"]) responses = [ "Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like 323-22-9980. John Doe's phone number is (999)253-9876.", "Final Answer: This is a really shitty way of constructing a birdhouse. This is fucking insane to think that any birds would actually create their motherfucking nests here." ] llm = FakeListLLM(responses=responses) llm_chain = LLMChain(prompt=prompt, llm=llm) chain = ( prompt | comp_moderation_with_config | {llm_chain.input_keys[0]: lambda x: x['output'] } | llm_chain | { "input": lambda x: x['text'] } | comp_moderation_with_config ) try: response = chain.invoke({"question": "A sample SSN number looks like this 123-456-7890. Can you give me some more samples?"}) except Exception as e: print(str(e)) else: print(response['output']) ``` ### Output ```python > Entering new AmazonComprehendModerationChain chain... Running AmazonComprehendModerationChain... Running pii Validation... Running toxicity Validation... Running prompt safety Validation... > Finished chain. > Entering new AmazonComprehendModerationChain chain... Running AmazonComprehendModerationChain... Running pii Validation... Running toxicity Validation... Running prompt safety Validation... > Finished chain. Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like XXXXXXXXXXXX John Doe's phone number is (999)253-9876. ``` --------- Co-authored-by: Jha <nikjha@amazon.com> Co-authored-by: Anjan Biswas <anjanavb@amazon.com> Co-authored-by: Anjan Biswas <84933469+anjanvb@users.noreply.github.com>
2023-10-26 16:42:18 +00:00
unsafe_prompt = False
Initial commit for comprehend moderator (#9665) This PR implements a custom chain that wraps Amazon Comprehend API calls. The custom chain is aimed to be used with LLM chains to provide moderation capability that let’s you detect and redact PII, Toxic and Intent content in the LLM prompt, or the LLM response. The implementation accepts a configuration object to control what checks will be performed on a LLM prompt and can be used in a variety of setups using the LangChain expression language to not only detect the configured info in chains, but also other constructs such as a retriever. The included sample notebook goes over the different configuration options and how to use it with other chains. ### Usage sample ```python from langchain_experimental.comprehend_moderation import BaseModerationActions, BaseModerationFilters moderation_config = { "filters":[ BaseModerationFilters.PII, BaseModerationFilters.TOXICITY, BaseModerationFilters.INTENT ], "pii":{ "action": BaseModerationActions.ALLOW, "threshold":0.5, "labels":["SSN"], "mask_character": "X" }, "toxicity":{ "action": BaseModerationActions.STOP, "threshold":0.5 }, "intent":{ "action": BaseModerationActions.STOP, "threshold":0.5 } } comp_moderation_with_config = AmazonComprehendModerationChain( moderation_config=moderation_config, #specify the configuration client=comprehend_client, #optionally pass the Boto3 Client verbose=True ) template = """Question: {question} Answer:""" prompt = PromptTemplate(template=template, input_variables=["question"]) responses = [ "Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like 323-22-9980. John Doe's phone number is (999)253-9876.", "Final Answer: This is a really shitty way of constructing a birdhouse. This is fucking insane to think that any birds would actually create their motherfucking nests here." ] llm = FakeListLLM(responses=responses) llm_chain = LLMChain(prompt=prompt, llm=llm) chain = ( prompt | comp_moderation_with_config | {llm_chain.input_keys[0]: lambda x: x['output'] } | llm_chain | { "input": lambda x: x['text'] } | comp_moderation_with_config ) response = chain.invoke({"question": "A sample SSN number looks like this 123-456-7890. Can you give me some more samples?"}) print(response['output']) ``` ### Output ``` > Entering new AmazonComprehendModerationChain chain... Running AmazonComprehendModerationChain... Running pii validation... Found PII content..stopping.. The prompt contains PII entities and cannot be processed ``` --------- Co-authored-by: Piyush Jain <piyushjain@duck.com> Co-authored-by: Anjan Biswas <anjanavb@amazon.com> Co-authored-by: Jha <nikjha@amazon.com> Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-25 22:11:27 +00:00
endpoint_arn = self._get_arn()
response = self.client.classify_document(
Text=prompt_value, EndpointArn=endpoint_arn
)
Comprehend Moderation 0.2 (#11730) This PR replaces the previous `Intent` check with the new `Prompt Safety` check. The logic and steps to enable chain moderation via the Amazon Comprehend service, allowing you to detect and redact PII, Toxic, and Prompt Safety information in the LLM prompt or answer remains unchanged. This implementation updates the code and configuration types with respect to `Prompt Safety`. ### Usage sample ```python from langchain_experimental.comprehend_moderation import (BaseModerationConfig, ModerationPromptSafetyConfig, ModerationPiiConfig, ModerationToxicityConfig ) pii_config = ModerationPiiConfig( labels=["SSN"], redact=True, mask_character="X" ) toxicity_config = ModerationToxicityConfig( threshold=0.5 ) prompt_safety_config = ModerationPromptSafetyConfig( threshold=0.5 ) moderation_config = BaseModerationConfig( filters=[pii_config, toxicity_config, prompt_safety_config] ) comp_moderation_with_config = AmazonComprehendModerationChain( moderation_config=moderation_config, #specify the configuration client=comprehend_client, #optionally pass the Boto3 Client verbose=True ) template = """Question: {question} Answer:""" prompt = PromptTemplate(template=template, input_variables=["question"]) responses = [ "Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like 323-22-9980. John Doe's phone number is (999)253-9876.", "Final Answer: This is a really shitty way of constructing a birdhouse. This is fucking insane to think that any birds would actually create their motherfucking nests here." ] llm = FakeListLLM(responses=responses) llm_chain = LLMChain(prompt=prompt, llm=llm) chain = ( prompt | comp_moderation_with_config | {llm_chain.input_keys[0]: lambda x: x['output'] } | llm_chain | { "input": lambda x: x['text'] } | comp_moderation_with_config ) try: response = chain.invoke({"question": "A sample SSN number looks like this 123-456-7890. Can you give me some more samples?"}) except Exception as e: print(str(e)) else: print(response['output']) ``` ### Output ```python > Entering new AmazonComprehendModerationChain chain... Running AmazonComprehendModerationChain... Running pii Validation... Running toxicity Validation... Running prompt safety Validation... > Finished chain. > Entering new AmazonComprehendModerationChain chain... Running AmazonComprehendModerationChain... Running pii Validation... Running toxicity Validation... Running prompt safety Validation... > Finished chain. Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like XXXXXXXXXXXX John Doe's phone number is (999)253-9876. ``` --------- Co-authored-by: Jha <nikjha@amazon.com> Co-authored-by: Anjan Biswas <anjanavb@amazon.com> Co-authored-by: Anjan Biswas <84933469+anjanvb@users.noreply.github.com>
2023-10-26 16:42:18 +00:00
if self.callback and self.callback.prompt_safety_callback:
Initial commit for comprehend moderator (#9665) This PR implements a custom chain that wraps Amazon Comprehend API calls. The custom chain is aimed to be used with LLM chains to provide moderation capability that let’s you detect and redact PII, Toxic and Intent content in the LLM prompt, or the LLM response. The implementation accepts a configuration object to control what checks will be performed on a LLM prompt and can be used in a variety of setups using the LangChain expression language to not only detect the configured info in chains, but also other constructs such as a retriever. The included sample notebook goes over the different configuration options and how to use it with other chains. ### Usage sample ```python from langchain_experimental.comprehend_moderation import BaseModerationActions, BaseModerationFilters moderation_config = { "filters":[ BaseModerationFilters.PII, BaseModerationFilters.TOXICITY, BaseModerationFilters.INTENT ], "pii":{ "action": BaseModerationActions.ALLOW, "threshold":0.5, "labels":["SSN"], "mask_character": "X" }, "toxicity":{ "action": BaseModerationActions.STOP, "threshold":0.5 }, "intent":{ "action": BaseModerationActions.STOP, "threshold":0.5 } } comp_moderation_with_config = AmazonComprehendModerationChain( moderation_config=moderation_config, #specify the configuration client=comprehend_client, #optionally pass the Boto3 Client verbose=True ) template = """Question: {question} Answer:""" prompt = PromptTemplate(template=template, input_variables=["question"]) responses = [ "Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like 323-22-9980. John Doe's phone number is (999)253-9876.", "Final Answer: This is a really shitty way of constructing a birdhouse. This is fucking insane to think that any birds would actually create their motherfucking nests here." ] llm = FakeListLLM(responses=responses) llm_chain = LLMChain(prompt=prompt, llm=llm) chain = ( prompt | comp_moderation_with_config | {llm_chain.input_keys[0]: lambda x: x['output'] } | llm_chain | { "input": lambda x: x['text'] } | comp_moderation_with_config ) response = chain.invoke({"question": "A sample SSN number looks like this 123-456-7890. Can you give me some more samples?"}) print(response['output']) ``` ### Output ``` > Entering new AmazonComprehendModerationChain chain... Running AmazonComprehendModerationChain... Running pii validation... Found PII content..stopping.. The prompt contains PII entities and cannot be processed ``` --------- Co-authored-by: Piyush Jain <piyushjain@duck.com> Co-authored-by: Anjan Biswas <anjanavb@amazon.com> Co-authored-by: Jha <nikjha@amazon.com> Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-25 22:11:27 +00:00
self.moderation_beacon["moderation_input"] = prompt_value
self.moderation_beacon["moderation_output"] = response
for class_result in response["Classes"]:
if (
class_result["Score"] >= threshold
Comprehend Moderation 0.2 (#11730) This PR replaces the previous `Intent` check with the new `Prompt Safety` check. The logic and steps to enable chain moderation via the Amazon Comprehend service, allowing you to detect and redact PII, Toxic, and Prompt Safety information in the LLM prompt or answer remains unchanged. This implementation updates the code and configuration types with respect to `Prompt Safety`. ### Usage sample ```python from langchain_experimental.comprehend_moderation import (BaseModerationConfig, ModerationPromptSafetyConfig, ModerationPiiConfig, ModerationToxicityConfig ) pii_config = ModerationPiiConfig( labels=["SSN"], redact=True, mask_character="X" ) toxicity_config = ModerationToxicityConfig( threshold=0.5 ) prompt_safety_config = ModerationPromptSafetyConfig( threshold=0.5 ) moderation_config = BaseModerationConfig( filters=[pii_config, toxicity_config, prompt_safety_config] ) comp_moderation_with_config = AmazonComprehendModerationChain( moderation_config=moderation_config, #specify the configuration client=comprehend_client, #optionally pass the Boto3 Client verbose=True ) template = """Question: {question} Answer:""" prompt = PromptTemplate(template=template, input_variables=["question"]) responses = [ "Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like 323-22-9980. John Doe's phone number is (999)253-9876.", "Final Answer: This is a really shitty way of constructing a birdhouse. This is fucking insane to think that any birds would actually create their motherfucking nests here." ] llm = FakeListLLM(responses=responses) llm_chain = LLMChain(prompt=prompt, llm=llm) chain = ( prompt | comp_moderation_with_config | {llm_chain.input_keys[0]: lambda x: x['output'] } | llm_chain | { "input": lambda x: x['text'] } | comp_moderation_with_config ) try: response = chain.invoke({"question": "A sample SSN number looks like this 123-456-7890. Can you give me some more samples?"}) except Exception as e: print(str(e)) else: print(response['output']) ``` ### Output ```python > Entering new AmazonComprehendModerationChain chain... Running AmazonComprehendModerationChain... Running pii Validation... Running toxicity Validation... Running prompt safety Validation... > Finished chain. > Entering new AmazonComprehendModerationChain chain... Running AmazonComprehendModerationChain... Running pii Validation... Running toxicity Validation... Running prompt safety Validation... > Finished chain. Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like XXXXXXXXXXXX John Doe's phone number is (999)253-9876. ``` --------- Co-authored-by: Jha <nikjha@amazon.com> Co-authored-by: Anjan Biswas <anjanavb@amazon.com> Co-authored-by: Anjan Biswas <84933469+anjanvb@users.noreply.github.com>
2023-10-26 16:42:18 +00:00
and class_result["Name"] == "UNSAFE_PROMPT"
Initial commit for comprehend moderator (#9665) This PR implements a custom chain that wraps Amazon Comprehend API calls. The custom chain is aimed to be used with LLM chains to provide moderation capability that let’s you detect and redact PII, Toxic and Intent content in the LLM prompt, or the LLM response. The implementation accepts a configuration object to control what checks will be performed on a LLM prompt and can be used in a variety of setups using the LangChain expression language to not only detect the configured info in chains, but also other constructs such as a retriever. The included sample notebook goes over the different configuration options and how to use it with other chains. ### Usage sample ```python from langchain_experimental.comprehend_moderation import BaseModerationActions, BaseModerationFilters moderation_config = { "filters":[ BaseModerationFilters.PII, BaseModerationFilters.TOXICITY, BaseModerationFilters.INTENT ], "pii":{ "action": BaseModerationActions.ALLOW, "threshold":0.5, "labels":["SSN"], "mask_character": "X" }, "toxicity":{ "action": BaseModerationActions.STOP, "threshold":0.5 }, "intent":{ "action": BaseModerationActions.STOP, "threshold":0.5 } } comp_moderation_with_config = AmazonComprehendModerationChain( moderation_config=moderation_config, #specify the configuration client=comprehend_client, #optionally pass the Boto3 Client verbose=True ) template = """Question: {question} Answer:""" prompt = PromptTemplate(template=template, input_variables=["question"]) responses = [ "Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like 323-22-9980. John Doe's phone number is (999)253-9876.", "Final Answer: This is a really shitty way of constructing a birdhouse. This is fucking insane to think that any birds would actually create their motherfucking nests here." ] llm = FakeListLLM(responses=responses) llm_chain = LLMChain(prompt=prompt, llm=llm) chain = ( prompt | comp_moderation_with_config | {llm_chain.input_keys[0]: lambda x: x['output'] } | llm_chain | { "input": lambda x: x['text'] } | comp_moderation_with_config ) response = chain.invoke({"question": "A sample SSN number looks like this 123-456-7890. Can you give me some more samples?"}) print(response['output']) ``` ### Output ``` > Entering new AmazonComprehendModerationChain chain... Running AmazonComprehendModerationChain... Running pii validation... Found PII content..stopping.. The prompt contains PII entities and cannot be processed ``` --------- Co-authored-by: Piyush Jain <piyushjain@duck.com> Co-authored-by: Anjan Biswas <anjanavb@amazon.com> Co-authored-by: Jha <nikjha@amazon.com> Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-25 22:11:27 +00:00
):
Comprehend Moderation 0.2 (#11730) This PR replaces the previous `Intent` check with the new `Prompt Safety` check. The logic and steps to enable chain moderation via the Amazon Comprehend service, allowing you to detect and redact PII, Toxic, and Prompt Safety information in the LLM prompt or answer remains unchanged. This implementation updates the code and configuration types with respect to `Prompt Safety`. ### Usage sample ```python from langchain_experimental.comprehend_moderation import (BaseModerationConfig, ModerationPromptSafetyConfig, ModerationPiiConfig, ModerationToxicityConfig ) pii_config = ModerationPiiConfig( labels=["SSN"], redact=True, mask_character="X" ) toxicity_config = ModerationToxicityConfig( threshold=0.5 ) prompt_safety_config = ModerationPromptSafetyConfig( threshold=0.5 ) moderation_config = BaseModerationConfig( filters=[pii_config, toxicity_config, prompt_safety_config] ) comp_moderation_with_config = AmazonComprehendModerationChain( moderation_config=moderation_config, #specify the configuration client=comprehend_client, #optionally pass the Boto3 Client verbose=True ) template = """Question: {question} Answer:""" prompt = PromptTemplate(template=template, input_variables=["question"]) responses = [ "Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like 323-22-9980. John Doe's phone number is (999)253-9876.", "Final Answer: This is a really shitty way of constructing a birdhouse. This is fucking insane to think that any birds would actually create their motherfucking nests here." ] llm = FakeListLLM(responses=responses) llm_chain = LLMChain(prompt=prompt, llm=llm) chain = ( prompt | comp_moderation_with_config | {llm_chain.input_keys[0]: lambda x: x['output'] } | llm_chain | { "input": lambda x: x['text'] } | comp_moderation_with_config ) try: response = chain.invoke({"question": "A sample SSN number looks like this 123-456-7890. Can you give me some more samples?"}) except Exception as e: print(str(e)) else: print(response['output']) ``` ### Output ```python > Entering new AmazonComprehendModerationChain chain... Running AmazonComprehendModerationChain... Running pii Validation... Running toxicity Validation... Running prompt safety Validation... > Finished chain. > Entering new AmazonComprehendModerationChain chain... Running AmazonComprehendModerationChain... Running pii Validation... Running toxicity Validation... Running prompt safety Validation... > Finished chain. Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like XXXXXXXXXXXX John Doe's phone number is (999)253-9876. ``` --------- Co-authored-by: Jha <nikjha@amazon.com> Co-authored-by: Anjan Biswas <anjanavb@amazon.com> Co-authored-by: Anjan Biswas <84933469+anjanvb@users.noreply.github.com>
2023-10-26 16:42:18 +00:00
unsafe_prompt = True
Initial commit for comprehend moderator (#9665) This PR implements a custom chain that wraps Amazon Comprehend API calls. The custom chain is aimed to be used with LLM chains to provide moderation capability that let’s you detect and redact PII, Toxic and Intent content in the LLM prompt, or the LLM response. The implementation accepts a configuration object to control what checks will be performed on a LLM prompt and can be used in a variety of setups using the LangChain expression language to not only detect the configured info in chains, but also other constructs such as a retriever. The included sample notebook goes over the different configuration options and how to use it with other chains. ### Usage sample ```python from langchain_experimental.comprehend_moderation import BaseModerationActions, BaseModerationFilters moderation_config = { "filters":[ BaseModerationFilters.PII, BaseModerationFilters.TOXICITY, BaseModerationFilters.INTENT ], "pii":{ "action": BaseModerationActions.ALLOW, "threshold":0.5, "labels":["SSN"], "mask_character": "X" }, "toxicity":{ "action": BaseModerationActions.STOP, "threshold":0.5 }, "intent":{ "action": BaseModerationActions.STOP, "threshold":0.5 } } comp_moderation_with_config = AmazonComprehendModerationChain( moderation_config=moderation_config, #specify the configuration client=comprehend_client, #optionally pass the Boto3 Client verbose=True ) template = """Question: {question} Answer:""" prompt = PromptTemplate(template=template, input_variables=["question"]) responses = [ "Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like 323-22-9980. John Doe's phone number is (999)253-9876.", "Final Answer: This is a really shitty way of constructing a birdhouse. This is fucking insane to think that any birds would actually create their motherfucking nests here." ] llm = FakeListLLM(responses=responses) llm_chain = LLMChain(prompt=prompt, llm=llm) chain = ( prompt | comp_moderation_with_config | {llm_chain.input_keys[0]: lambda x: x['output'] } | llm_chain | { "input": lambda x: x['text'] } | comp_moderation_with_config ) response = chain.invoke({"question": "A sample SSN number looks like this 123-456-7890. Can you give me some more samples?"}) print(response['output']) ``` ### Output ``` > Entering new AmazonComprehendModerationChain chain... Running AmazonComprehendModerationChain... Running pii validation... Found PII content..stopping.. The prompt contains PII entities and cannot be processed ``` --------- Co-authored-by: Piyush Jain <piyushjain@duck.com> Co-authored-by: Anjan Biswas <anjanavb@amazon.com> Co-authored-by: Jha <nikjha@amazon.com> Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-25 22:11:27 +00:00
break
if self.callback and self.callback.intent_callback:
Comprehend Moderation 0.2 (#11730) This PR replaces the previous `Intent` check with the new `Prompt Safety` check. The logic and steps to enable chain moderation via the Amazon Comprehend service, allowing you to detect and redact PII, Toxic, and Prompt Safety information in the LLM prompt or answer remains unchanged. This implementation updates the code and configuration types with respect to `Prompt Safety`. ### Usage sample ```python from langchain_experimental.comprehend_moderation import (BaseModerationConfig, ModerationPromptSafetyConfig, ModerationPiiConfig, ModerationToxicityConfig ) pii_config = ModerationPiiConfig( labels=["SSN"], redact=True, mask_character="X" ) toxicity_config = ModerationToxicityConfig( threshold=0.5 ) prompt_safety_config = ModerationPromptSafetyConfig( threshold=0.5 ) moderation_config = BaseModerationConfig( filters=[pii_config, toxicity_config, prompt_safety_config] ) comp_moderation_with_config = AmazonComprehendModerationChain( moderation_config=moderation_config, #specify the configuration client=comprehend_client, #optionally pass the Boto3 Client verbose=True ) template = """Question: {question} Answer:""" prompt = PromptTemplate(template=template, input_variables=["question"]) responses = [ "Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like 323-22-9980. John Doe's phone number is (999)253-9876.", "Final Answer: This is a really shitty way of constructing a birdhouse. This is fucking insane to think that any birds would actually create their motherfucking nests here." ] llm = FakeListLLM(responses=responses) llm_chain = LLMChain(prompt=prompt, llm=llm) chain = ( prompt | comp_moderation_with_config | {llm_chain.input_keys[0]: lambda x: x['output'] } | llm_chain | { "input": lambda x: x['text'] } | comp_moderation_with_config ) try: response = chain.invoke({"question": "A sample SSN number looks like this 123-456-7890. Can you give me some more samples?"}) except Exception as e: print(str(e)) else: print(response['output']) ``` ### Output ```python > Entering new AmazonComprehendModerationChain chain... Running AmazonComprehendModerationChain... Running pii Validation... Running toxicity Validation... Running prompt safety Validation... > Finished chain. > Entering new AmazonComprehendModerationChain chain... Running AmazonComprehendModerationChain... Running pii Validation... Running toxicity Validation... Running prompt safety Validation... > Finished chain. Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like XXXXXXXXXXXX John Doe's phone number is (999)253-9876. ``` --------- Co-authored-by: Jha <nikjha@amazon.com> Co-authored-by: Anjan Biswas <anjanavb@amazon.com> Co-authored-by: Anjan Biswas <84933469+anjanvb@users.noreply.github.com>
2023-10-26 16:42:18 +00:00
if unsafe_prompt:
Initial commit for comprehend moderator (#9665) This PR implements a custom chain that wraps Amazon Comprehend API calls. The custom chain is aimed to be used with LLM chains to provide moderation capability that let’s you detect and redact PII, Toxic and Intent content in the LLM prompt, or the LLM response. The implementation accepts a configuration object to control what checks will be performed on a LLM prompt and can be used in a variety of setups using the LangChain expression language to not only detect the configured info in chains, but also other constructs such as a retriever. The included sample notebook goes over the different configuration options and how to use it with other chains. ### Usage sample ```python from langchain_experimental.comprehend_moderation import BaseModerationActions, BaseModerationFilters moderation_config = { "filters":[ BaseModerationFilters.PII, BaseModerationFilters.TOXICITY, BaseModerationFilters.INTENT ], "pii":{ "action": BaseModerationActions.ALLOW, "threshold":0.5, "labels":["SSN"], "mask_character": "X" }, "toxicity":{ "action": BaseModerationActions.STOP, "threshold":0.5 }, "intent":{ "action": BaseModerationActions.STOP, "threshold":0.5 } } comp_moderation_with_config = AmazonComprehendModerationChain( moderation_config=moderation_config, #specify the configuration client=comprehend_client, #optionally pass the Boto3 Client verbose=True ) template = """Question: {question} Answer:""" prompt = PromptTemplate(template=template, input_variables=["question"]) responses = [ "Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like 323-22-9980. John Doe's phone number is (999)253-9876.", "Final Answer: This is a really shitty way of constructing a birdhouse. This is fucking insane to think that any birds would actually create their motherfucking nests here." ] llm = FakeListLLM(responses=responses) llm_chain = LLMChain(prompt=prompt, llm=llm) chain = ( prompt | comp_moderation_with_config | {llm_chain.input_keys[0]: lambda x: x['output'] } | llm_chain | { "input": lambda x: x['text'] } | comp_moderation_with_config ) response = chain.invoke({"question": "A sample SSN number looks like this 123-456-7890. Can you give me some more samples?"}) print(response['output']) ``` ### Output ``` > Entering new AmazonComprehendModerationChain chain... Running AmazonComprehendModerationChain... Running pii validation... Found PII content..stopping.. The prompt contains PII entities and cannot be processed ``` --------- Co-authored-by: Piyush Jain <piyushjain@duck.com> Co-authored-by: Anjan Biswas <anjanavb@amazon.com> Co-authored-by: Jha <nikjha@amazon.com> Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-25 22:11:27 +00:00
self.moderation_beacon["moderation_status"] = "LABELS_FOUND"
asyncio.create_task(
self.callback.on_after_intent(self.moderation_beacon, self.unique_id)
)
Comprehend Moderation 0.2 (#11730) This PR replaces the previous `Intent` check with the new `Prompt Safety` check. The logic and steps to enable chain moderation via the Amazon Comprehend service, allowing you to detect and redact PII, Toxic, and Prompt Safety information in the LLM prompt or answer remains unchanged. This implementation updates the code and configuration types with respect to `Prompt Safety`. ### Usage sample ```python from langchain_experimental.comprehend_moderation import (BaseModerationConfig, ModerationPromptSafetyConfig, ModerationPiiConfig, ModerationToxicityConfig ) pii_config = ModerationPiiConfig( labels=["SSN"], redact=True, mask_character="X" ) toxicity_config = ModerationToxicityConfig( threshold=0.5 ) prompt_safety_config = ModerationPromptSafetyConfig( threshold=0.5 ) moderation_config = BaseModerationConfig( filters=[pii_config, toxicity_config, prompt_safety_config] ) comp_moderation_with_config = AmazonComprehendModerationChain( moderation_config=moderation_config, #specify the configuration client=comprehend_client, #optionally pass the Boto3 Client verbose=True ) template = """Question: {question} Answer:""" prompt = PromptTemplate(template=template, input_variables=["question"]) responses = [ "Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like 323-22-9980. John Doe's phone number is (999)253-9876.", "Final Answer: This is a really shitty way of constructing a birdhouse. This is fucking insane to think that any birds would actually create their motherfucking nests here." ] llm = FakeListLLM(responses=responses) llm_chain = LLMChain(prompt=prompt, llm=llm) chain = ( prompt | comp_moderation_with_config | {llm_chain.input_keys[0]: lambda x: x['output'] } | llm_chain | { "input": lambda x: x['text'] } | comp_moderation_with_config ) try: response = chain.invoke({"question": "A sample SSN number looks like this 123-456-7890. Can you give me some more samples?"}) except Exception as e: print(str(e)) else: print(response['output']) ``` ### Output ```python > Entering new AmazonComprehendModerationChain chain... Running AmazonComprehendModerationChain... Running pii Validation... Running toxicity Validation... Running prompt safety Validation... > Finished chain. > Entering new AmazonComprehendModerationChain chain... Running AmazonComprehendModerationChain... Running pii Validation... Running toxicity Validation... Running prompt safety Validation... > Finished chain. Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like XXXXXXXXXXXX John Doe's phone number is (999)253-9876. ``` --------- Co-authored-by: Jha <nikjha@amazon.com> Co-authored-by: Anjan Biswas <anjanavb@amazon.com> Co-authored-by: Anjan Biswas <84933469+anjanvb@users.noreply.github.com>
2023-10-26 16:42:18 +00:00
if unsafe_prompt:
raise ModerationPromptSafetyError
Initial commit for comprehend moderator (#9665) This PR implements a custom chain that wraps Amazon Comprehend API calls. The custom chain is aimed to be used with LLM chains to provide moderation capability that let’s you detect and redact PII, Toxic and Intent content in the LLM prompt, or the LLM response. The implementation accepts a configuration object to control what checks will be performed on a LLM prompt and can be used in a variety of setups using the LangChain expression language to not only detect the configured info in chains, but also other constructs such as a retriever. The included sample notebook goes over the different configuration options and how to use it with other chains. ### Usage sample ```python from langchain_experimental.comprehend_moderation import BaseModerationActions, BaseModerationFilters moderation_config = { "filters":[ BaseModerationFilters.PII, BaseModerationFilters.TOXICITY, BaseModerationFilters.INTENT ], "pii":{ "action": BaseModerationActions.ALLOW, "threshold":0.5, "labels":["SSN"], "mask_character": "X" }, "toxicity":{ "action": BaseModerationActions.STOP, "threshold":0.5 }, "intent":{ "action": BaseModerationActions.STOP, "threshold":0.5 } } comp_moderation_with_config = AmazonComprehendModerationChain( moderation_config=moderation_config, #specify the configuration client=comprehend_client, #optionally pass the Boto3 Client verbose=True ) template = """Question: {question} Answer:""" prompt = PromptTemplate(template=template, input_variables=["question"]) responses = [ "Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like 323-22-9980. John Doe's phone number is (999)253-9876.", "Final Answer: This is a really shitty way of constructing a birdhouse. This is fucking insane to think that any birds would actually create their motherfucking nests here." ] llm = FakeListLLM(responses=responses) llm_chain = LLMChain(prompt=prompt, llm=llm) chain = ( prompt | comp_moderation_with_config | {llm_chain.input_keys[0]: lambda x: x['output'] } | llm_chain | { "input": lambda x: x['text'] } | comp_moderation_with_config ) response = chain.invoke({"question": "A sample SSN number looks like this 123-456-7890. Can you give me some more samples?"}) print(response['output']) ``` ### Output ``` > Entering new AmazonComprehendModerationChain chain... Running AmazonComprehendModerationChain... Running pii validation... Found PII content..stopping.. The prompt contains PII entities and cannot be processed ``` --------- Co-authored-by: Piyush Jain <piyushjain@duck.com> Co-authored-by: Anjan Biswas <anjanavb@amazon.com> Co-authored-by: Jha <nikjha@amazon.com> Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-25 22:11:27 +00:00
return prompt_value