langchain/libs/experimental/langchain_experimental/comprehend_moderation/pii.py

165 lines
6.3 KiB
Python
Raw Normal View History

Initial commit for comprehend moderator (#9665) This PR implements a custom chain that wraps Amazon Comprehend API calls. The custom chain is aimed to be used with LLM chains to provide moderation capability that let’s you detect and redact PII, Toxic and Intent content in the LLM prompt, or the LLM response. The implementation accepts a configuration object to control what checks will be performed on a LLM prompt and can be used in a variety of setups using the LangChain expression language to not only detect the configured info in chains, but also other constructs such as a retriever. The included sample notebook goes over the different configuration options and how to use it with other chains. ### Usage sample ```python from langchain_experimental.comprehend_moderation import BaseModerationActions, BaseModerationFilters moderation_config = { "filters":[ BaseModerationFilters.PII, BaseModerationFilters.TOXICITY, BaseModerationFilters.INTENT ], "pii":{ "action": BaseModerationActions.ALLOW, "threshold":0.5, "labels":["SSN"], "mask_character": "X" }, "toxicity":{ "action": BaseModerationActions.STOP, "threshold":0.5 }, "intent":{ "action": BaseModerationActions.STOP, "threshold":0.5 } } comp_moderation_with_config = AmazonComprehendModerationChain( moderation_config=moderation_config, #specify the configuration client=comprehend_client, #optionally pass the Boto3 Client verbose=True ) template = """Question: {question} Answer:""" prompt = PromptTemplate(template=template, input_variables=["question"]) responses = [ "Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like 323-22-9980. John Doe's phone number is (999)253-9876.", "Final Answer: This is a really shitty way of constructing a birdhouse. This is fucking insane to think that any birds would actually create their motherfucking nests here." ] llm = FakeListLLM(responses=responses) llm_chain = LLMChain(prompt=prompt, llm=llm) chain = ( prompt | comp_moderation_with_config | {llm_chain.input_keys[0]: lambda x: x['output'] } | llm_chain | { "input": lambda x: x['text'] } | comp_moderation_with_config ) response = chain.invoke({"question": "A sample SSN number looks like this 123-456-7890. Can you give me some more samples?"}) print(response['output']) ``` ### Output ``` > Entering new AmazonComprehendModerationChain chain... Running AmazonComprehendModerationChain... Running pii validation... Found PII content..stopping.. The prompt contains PII entities and cannot be processed ``` --------- Co-authored-by: Piyush Jain <piyushjain@duck.com> Co-authored-by: Anjan Biswas <anjanavb@amazon.com> Co-authored-by: Jha <nikjha@amazon.com> Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-25 22:11:27 +00:00
import asyncio
from typing import Any, Dict, Optional
from langchain_experimental.comprehend_moderation.base_moderation_exceptions import (
ModerationPiiError,
)
class ComprehendPII:
def __init__(
self,
client: Any,
callback: Optional[Any] = None,
unique_id: Optional[str] = None,
chain_id: Optional[str] = None,
) -> None:
self.client = client
self.moderation_beacon = {
"moderation_chain_id": chain_id,
"moderation_type": "PII",
"moderation_status": "LABELS_NOT_FOUND",
}
self.callback = callback
self.unique_id = unique_id
def validate(self, prompt_value: str, config: Any = None) -> str:
redact = config.get("redact")
return (
self._detect_pii(prompt_value=prompt_value, config=config)
if redact
else self._contains_pii(prompt_value=prompt_value, config=config)
Initial commit for comprehend moderator (#9665) This PR implements a custom chain that wraps Amazon Comprehend API calls. The custom chain is aimed to be used with LLM chains to provide moderation capability that let’s you detect and redact PII, Toxic and Intent content in the LLM prompt, or the LLM response. The implementation accepts a configuration object to control what checks will be performed on a LLM prompt and can be used in a variety of setups using the LangChain expression language to not only detect the configured info in chains, but also other constructs such as a retriever. The included sample notebook goes over the different configuration options and how to use it with other chains. ### Usage sample ```python from langchain_experimental.comprehend_moderation import BaseModerationActions, BaseModerationFilters moderation_config = { "filters":[ BaseModerationFilters.PII, BaseModerationFilters.TOXICITY, BaseModerationFilters.INTENT ], "pii":{ "action": BaseModerationActions.ALLOW, "threshold":0.5, "labels":["SSN"], "mask_character": "X" }, "toxicity":{ "action": BaseModerationActions.STOP, "threshold":0.5 }, "intent":{ "action": BaseModerationActions.STOP, "threshold":0.5 } } comp_moderation_with_config = AmazonComprehendModerationChain( moderation_config=moderation_config, #specify the configuration client=comprehend_client, #optionally pass the Boto3 Client verbose=True ) template = """Question: {question} Answer:""" prompt = PromptTemplate(template=template, input_variables=["question"]) responses = [ "Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like 323-22-9980. John Doe's phone number is (999)253-9876.", "Final Answer: This is a really shitty way of constructing a birdhouse. This is fucking insane to think that any birds would actually create their motherfucking nests here." ] llm = FakeListLLM(responses=responses) llm_chain = LLMChain(prompt=prompt, llm=llm) chain = ( prompt | comp_moderation_with_config | {llm_chain.input_keys[0]: lambda x: x['output'] } | llm_chain | { "input": lambda x: x['text'] } | comp_moderation_with_config ) response = chain.invoke({"question": "A sample SSN number looks like this 123-456-7890. Can you give me some more samples?"}) print(response['output']) ``` ### Output ``` > Entering new AmazonComprehendModerationChain chain... Running AmazonComprehendModerationChain... Running pii validation... Found PII content..stopping.. The prompt contains PII entities and cannot be processed ``` --------- Co-authored-by: Piyush Jain <piyushjain@duck.com> Co-authored-by: Anjan Biswas <anjanavb@amazon.com> Co-authored-by: Jha <nikjha@amazon.com> Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-25 22:11:27 +00:00
)
def _contains_pii(self, prompt_value: str, config: Any = None) -> str:
Initial commit for comprehend moderator (#9665) This PR implements a custom chain that wraps Amazon Comprehend API calls. The custom chain is aimed to be used with LLM chains to provide moderation capability that let’s you detect and redact PII, Toxic and Intent content in the LLM prompt, or the LLM response. The implementation accepts a configuration object to control what checks will be performed on a LLM prompt and can be used in a variety of setups using the LangChain expression language to not only detect the configured info in chains, but also other constructs such as a retriever. The included sample notebook goes over the different configuration options and how to use it with other chains. ### Usage sample ```python from langchain_experimental.comprehend_moderation import BaseModerationActions, BaseModerationFilters moderation_config = { "filters":[ BaseModerationFilters.PII, BaseModerationFilters.TOXICITY, BaseModerationFilters.INTENT ], "pii":{ "action": BaseModerationActions.ALLOW, "threshold":0.5, "labels":["SSN"], "mask_character": "X" }, "toxicity":{ "action": BaseModerationActions.STOP, "threshold":0.5 }, "intent":{ "action": BaseModerationActions.STOP, "threshold":0.5 } } comp_moderation_with_config = AmazonComprehendModerationChain( moderation_config=moderation_config, #specify the configuration client=comprehend_client, #optionally pass the Boto3 Client verbose=True ) template = """Question: {question} Answer:""" prompt = PromptTemplate(template=template, input_variables=["question"]) responses = [ "Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like 323-22-9980. John Doe's phone number is (999)253-9876.", "Final Answer: This is a really shitty way of constructing a birdhouse. This is fucking insane to think that any birds would actually create their motherfucking nests here." ] llm = FakeListLLM(responses=responses) llm_chain = LLMChain(prompt=prompt, llm=llm) chain = ( prompt | comp_moderation_with_config | {llm_chain.input_keys[0]: lambda x: x['output'] } | llm_chain | { "input": lambda x: x['text'] } | comp_moderation_with_config ) response = chain.invoke({"question": "A sample SSN number looks like this 123-456-7890. Can you give me some more samples?"}) print(response['output']) ``` ### Output ``` > Entering new AmazonComprehendModerationChain chain... Running AmazonComprehendModerationChain... Running pii validation... Found PII content..stopping.. The prompt contains PII entities and cannot be processed ``` --------- Co-authored-by: Piyush Jain <piyushjain@duck.com> Co-authored-by: Anjan Biswas <anjanavb@amazon.com> Co-authored-by: Jha <nikjha@amazon.com> Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-25 22:11:27 +00:00
"""
Checks for Personally Identifiable Information (PII) labels above a
specified threshold. Uses Amazon Comprehend Contains PII Entities API. See -
https://docs.aws.amazon.com/comprehend/latest/APIReference/API_ContainsPiiEntities.html
Initial commit for comprehend moderator (#9665) This PR implements a custom chain that wraps Amazon Comprehend API calls. The custom chain is aimed to be used with LLM chains to provide moderation capability that let’s you detect and redact PII, Toxic and Intent content in the LLM prompt, or the LLM response. The implementation accepts a configuration object to control what checks will be performed on a LLM prompt and can be used in a variety of setups using the LangChain expression language to not only detect the configured info in chains, but also other constructs such as a retriever. The included sample notebook goes over the different configuration options and how to use it with other chains. ### Usage sample ```python from langchain_experimental.comprehend_moderation import BaseModerationActions, BaseModerationFilters moderation_config = { "filters":[ BaseModerationFilters.PII, BaseModerationFilters.TOXICITY, BaseModerationFilters.INTENT ], "pii":{ "action": BaseModerationActions.ALLOW, "threshold":0.5, "labels":["SSN"], "mask_character": "X" }, "toxicity":{ "action": BaseModerationActions.STOP, "threshold":0.5 }, "intent":{ "action": BaseModerationActions.STOP, "threshold":0.5 } } comp_moderation_with_config = AmazonComprehendModerationChain( moderation_config=moderation_config, #specify the configuration client=comprehend_client, #optionally pass the Boto3 Client verbose=True ) template = """Question: {question} Answer:""" prompt = PromptTemplate(template=template, input_variables=["question"]) responses = [ "Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like 323-22-9980. John Doe's phone number is (999)253-9876.", "Final Answer: This is a really shitty way of constructing a birdhouse. This is fucking insane to think that any birds would actually create their motherfucking nests here." ] llm = FakeListLLM(responses=responses) llm_chain = LLMChain(prompt=prompt, llm=llm) chain = ( prompt | comp_moderation_with_config | {llm_chain.input_keys[0]: lambda x: x['output'] } | llm_chain | { "input": lambda x: x['text'] } | comp_moderation_with_config ) response = chain.invoke({"question": "A sample SSN number looks like this 123-456-7890. Can you give me some more samples?"}) print(response['output']) ``` ### Output ``` > Entering new AmazonComprehendModerationChain chain... Running AmazonComprehendModerationChain... Running pii validation... Found PII content..stopping.. The prompt contains PII entities and cannot be processed ``` --------- Co-authored-by: Piyush Jain <piyushjain@duck.com> Co-authored-by: Anjan Biswas <anjanavb@amazon.com> Co-authored-by: Jha <nikjha@amazon.com> Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-25 22:11:27 +00:00
Args:
prompt_value (str): The input text to be checked for PII labels.
config (Dict[str, Any]): Configuration for PII check and actions.
Returns:
str: the original prompt
Note:
- The provided client should be initialized with valid AWS credentials.
"""
pii_identified = self.client.contains_pii_entities(
Text=prompt_value, LanguageCode="en"
)
if self.callback and self.callback.pii_callback:
self.moderation_beacon["moderation_input"] = prompt_value
self.moderation_beacon["moderation_output"] = pii_identified
threshold = config.get("threshold")
pii_labels = config.get("labels")
Initial commit for comprehend moderator (#9665) This PR implements a custom chain that wraps Amazon Comprehend API calls. The custom chain is aimed to be used with LLM chains to provide moderation capability that let’s you detect and redact PII, Toxic and Intent content in the LLM prompt, or the LLM response. The implementation accepts a configuration object to control what checks will be performed on a LLM prompt and can be used in a variety of setups using the LangChain expression language to not only detect the configured info in chains, but also other constructs such as a retriever. The included sample notebook goes over the different configuration options and how to use it with other chains. ### Usage sample ```python from langchain_experimental.comprehend_moderation import BaseModerationActions, BaseModerationFilters moderation_config = { "filters":[ BaseModerationFilters.PII, BaseModerationFilters.TOXICITY, BaseModerationFilters.INTENT ], "pii":{ "action": BaseModerationActions.ALLOW, "threshold":0.5, "labels":["SSN"], "mask_character": "X" }, "toxicity":{ "action": BaseModerationActions.STOP, "threshold":0.5 }, "intent":{ "action": BaseModerationActions.STOP, "threshold":0.5 } } comp_moderation_with_config = AmazonComprehendModerationChain( moderation_config=moderation_config, #specify the configuration client=comprehend_client, #optionally pass the Boto3 Client verbose=True ) template = """Question: {question} Answer:""" prompt = PromptTemplate(template=template, input_variables=["question"]) responses = [ "Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like 323-22-9980. John Doe's phone number is (999)253-9876.", "Final Answer: This is a really shitty way of constructing a birdhouse. This is fucking insane to think that any birds would actually create their motherfucking nests here." ] llm = FakeListLLM(responses=responses) llm_chain = LLMChain(prompt=prompt, llm=llm) chain = ( prompt | comp_moderation_with_config | {llm_chain.input_keys[0]: lambda x: x['output'] } | llm_chain | { "input": lambda x: x['text'] } | comp_moderation_with_config ) response = chain.invoke({"question": "A sample SSN number looks like this 123-456-7890. Can you give me some more samples?"}) print(response['output']) ``` ### Output ``` > Entering new AmazonComprehendModerationChain chain... Running AmazonComprehendModerationChain... Running pii validation... Found PII content..stopping.. The prompt contains PII entities and cannot be processed ``` --------- Co-authored-by: Piyush Jain <piyushjain@duck.com> Co-authored-by: Anjan Biswas <anjanavb@amazon.com> Co-authored-by: Jha <nikjha@amazon.com> Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-25 22:11:27 +00:00
pii_found = False
for entity in pii_identified["Labels"]:
if (entity["Score"] >= threshold and entity["Name"] in pii_labels) or (
entity["Score"] >= threshold and not pii_labels
):
pii_found = True
break
if self.callback and self.callback.pii_callback:
if pii_found:
self.moderation_beacon["moderation_status"] = "LABELS_FOUND"
asyncio.create_task(
self.callback.on_after_pii(self.moderation_beacon, self.unique_id)
)
if pii_found:
raise ModerationPiiError
return prompt_value
def _detect_pii(self, prompt_value: str, config: Optional[Dict[str, Any]]) -> str:
"""
Detects and handles Personally Identifiable Information (PII) entities in the
given prompt text using Amazon Comprehend's detect_pii_entities API. The
function provides options to redact or stop processing based on the identified
PII entities and a provided configuration. Uses Amazon Comprehend Detect PII
Entities API.
Initial commit for comprehend moderator (#9665) This PR implements a custom chain that wraps Amazon Comprehend API calls. The custom chain is aimed to be used with LLM chains to provide moderation capability that let’s you detect and redact PII, Toxic and Intent content in the LLM prompt, or the LLM response. The implementation accepts a configuration object to control what checks will be performed on a LLM prompt and can be used in a variety of setups using the LangChain expression language to not only detect the configured info in chains, but also other constructs such as a retriever. The included sample notebook goes over the different configuration options and how to use it with other chains. ### Usage sample ```python from langchain_experimental.comprehend_moderation import BaseModerationActions, BaseModerationFilters moderation_config = { "filters":[ BaseModerationFilters.PII, BaseModerationFilters.TOXICITY, BaseModerationFilters.INTENT ], "pii":{ "action": BaseModerationActions.ALLOW, "threshold":0.5, "labels":["SSN"], "mask_character": "X" }, "toxicity":{ "action": BaseModerationActions.STOP, "threshold":0.5 }, "intent":{ "action": BaseModerationActions.STOP, "threshold":0.5 } } comp_moderation_with_config = AmazonComprehendModerationChain( moderation_config=moderation_config, #specify the configuration client=comprehend_client, #optionally pass the Boto3 Client verbose=True ) template = """Question: {question} Answer:""" prompt = PromptTemplate(template=template, input_variables=["question"]) responses = [ "Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like 323-22-9980. John Doe's phone number is (999)253-9876.", "Final Answer: This is a really shitty way of constructing a birdhouse. This is fucking insane to think that any birds would actually create their motherfucking nests here." ] llm = FakeListLLM(responses=responses) llm_chain = LLMChain(prompt=prompt, llm=llm) chain = ( prompt | comp_moderation_with_config | {llm_chain.input_keys[0]: lambda x: x['output'] } | llm_chain | { "input": lambda x: x['text'] } | comp_moderation_with_config ) response = chain.invoke({"question": "A sample SSN number looks like this 123-456-7890. Can you give me some more samples?"}) print(response['output']) ``` ### Output ``` > Entering new AmazonComprehendModerationChain chain... Running AmazonComprehendModerationChain... Running pii validation... Found PII content..stopping.. The prompt contains PII entities and cannot be processed ``` --------- Co-authored-by: Piyush Jain <piyushjain@duck.com> Co-authored-by: Anjan Biswas <anjanavb@amazon.com> Co-authored-by: Jha <nikjha@amazon.com> Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-25 22:11:27 +00:00
Args:
prompt_value (str): The input text to be checked for PII entities.
config (Dict[str, Any]): A configuration specifying how to handle
PII entities.
Returns:
str: The processed prompt text with redacted PII entities or raised
exceptions.
Raises:
ValueError: If the prompt contains configured PII entities for
stopping processing.
Note:
- If PII is not found in the prompt, the original prompt is returned.
- The client should be initialized with valid AWS credentials.
"""
pii_identified = self.client.detect_pii_entities(
Text=prompt_value, LanguageCode="en"
)
if self.callback and self.callback.pii_callback:
self.moderation_beacon["moderation_input"] = prompt_value
self.moderation_beacon["moderation_output"] = pii_identified
if (pii_identified["Entities"]) == []:
if self.callback and self.callback.pii_callback:
asyncio.create_task(
self.callback.on_after_pii(self.moderation_beacon, self.unique_id)
)
return prompt_value
pii_found = False
if not config and pii_identified["Entities"]:
for entity in pii_identified["Entities"]:
if entity["Score"] >= 0.5:
pii_found = True
break
if self.callback and self.callback.pii_callback:
if pii_found:
self.moderation_beacon["moderation_status"] = "LABELS_FOUND"
asyncio.create_task(
self.callback.on_after_pii(self.moderation_beacon, self.unique_id)
)
if pii_found:
raise ModerationPiiError
else:
threshold = config.get("threshold") # type: ignore
pii_labels = config.get("labels") # type: ignore
mask_marker = config.get("mask_character") # type: ignore
Initial commit for comprehend moderator (#9665) This PR implements a custom chain that wraps Amazon Comprehend API calls. The custom chain is aimed to be used with LLM chains to provide moderation capability that let’s you detect and redact PII, Toxic and Intent content in the LLM prompt, or the LLM response. The implementation accepts a configuration object to control what checks will be performed on a LLM prompt and can be used in a variety of setups using the LangChain expression language to not only detect the configured info in chains, but also other constructs such as a retriever. The included sample notebook goes over the different configuration options and how to use it with other chains. ### Usage sample ```python from langchain_experimental.comprehend_moderation import BaseModerationActions, BaseModerationFilters moderation_config = { "filters":[ BaseModerationFilters.PII, BaseModerationFilters.TOXICITY, BaseModerationFilters.INTENT ], "pii":{ "action": BaseModerationActions.ALLOW, "threshold":0.5, "labels":["SSN"], "mask_character": "X" }, "toxicity":{ "action": BaseModerationActions.STOP, "threshold":0.5 }, "intent":{ "action": BaseModerationActions.STOP, "threshold":0.5 } } comp_moderation_with_config = AmazonComprehendModerationChain( moderation_config=moderation_config, #specify the configuration client=comprehend_client, #optionally pass the Boto3 Client verbose=True ) template = """Question: {question} Answer:""" prompt = PromptTemplate(template=template, input_variables=["question"]) responses = [ "Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like 323-22-9980. John Doe's phone number is (999)253-9876.", "Final Answer: This is a really shitty way of constructing a birdhouse. This is fucking insane to think that any birds would actually create their motherfucking nests here." ] llm = FakeListLLM(responses=responses) llm_chain = LLMChain(prompt=prompt, llm=llm) chain = ( prompt | comp_moderation_with_config | {llm_chain.input_keys[0]: lambda x: x['output'] } | llm_chain | { "input": lambda x: x['text'] } | comp_moderation_with_config ) response = chain.invoke({"question": "A sample SSN number looks like this 123-456-7890. Can you give me some more samples?"}) print(response['output']) ``` ### Output ``` > Entering new AmazonComprehendModerationChain chain... Running AmazonComprehendModerationChain... Running pii validation... Found PII content..stopping.. The prompt contains PII entities and cannot be processed ``` --------- Co-authored-by: Piyush Jain <piyushjain@duck.com> Co-authored-by: Anjan Biswas <anjanavb@amazon.com> Co-authored-by: Jha <nikjha@amazon.com> Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-25 22:11:27 +00:00
pii_found = False
for entity in pii_identified["Entities"]:
if (
pii_labels
and entity["Type"] in pii_labels
and entity["Score"] >= threshold
) or (not pii_labels and entity["Score"] >= threshold):
pii_found = True
char_offset_begin = entity["BeginOffset"]
char_offset_end = entity["EndOffset"]
mask_length = char_offset_end - char_offset_begin + 1
masked_part = mask_marker * mask_length
Initial commit for comprehend moderator (#9665) This PR implements a custom chain that wraps Amazon Comprehend API calls. The custom chain is aimed to be used with LLM chains to provide moderation capability that let’s you detect and redact PII, Toxic and Intent content in the LLM prompt, or the LLM response. The implementation accepts a configuration object to control what checks will be performed on a LLM prompt and can be used in a variety of setups using the LangChain expression language to not only detect the configured info in chains, but also other constructs such as a retriever. The included sample notebook goes over the different configuration options and how to use it with other chains. ### Usage sample ```python from langchain_experimental.comprehend_moderation import BaseModerationActions, BaseModerationFilters moderation_config = { "filters":[ BaseModerationFilters.PII, BaseModerationFilters.TOXICITY, BaseModerationFilters.INTENT ], "pii":{ "action": BaseModerationActions.ALLOW, "threshold":0.5, "labels":["SSN"], "mask_character": "X" }, "toxicity":{ "action": BaseModerationActions.STOP, "threshold":0.5 }, "intent":{ "action": BaseModerationActions.STOP, "threshold":0.5 } } comp_moderation_with_config = AmazonComprehendModerationChain( moderation_config=moderation_config, #specify the configuration client=comprehend_client, #optionally pass the Boto3 Client verbose=True ) template = """Question: {question} Answer:""" prompt = PromptTemplate(template=template, input_variables=["question"]) responses = [ "Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like 323-22-9980. John Doe's phone number is (999)253-9876.", "Final Answer: This is a really shitty way of constructing a birdhouse. This is fucking insane to think that any birds would actually create their motherfucking nests here." ] llm = FakeListLLM(responses=responses) llm_chain = LLMChain(prompt=prompt, llm=llm) chain = ( prompt | comp_moderation_with_config | {llm_chain.input_keys[0]: lambda x: x['output'] } | llm_chain | { "input": lambda x: x['text'] } | comp_moderation_with_config ) response = chain.invoke({"question": "A sample SSN number looks like this 123-456-7890. Can you give me some more samples?"}) print(response['output']) ``` ### Output ``` > Entering new AmazonComprehendModerationChain chain... Running AmazonComprehendModerationChain... Running pii validation... Found PII content..stopping.. The prompt contains PII entities and cannot be processed ``` --------- Co-authored-by: Piyush Jain <piyushjain@duck.com> Co-authored-by: Anjan Biswas <anjanavb@amazon.com> Co-authored-by: Jha <nikjha@amazon.com> Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-25 22:11:27 +00:00
prompt_value = (
prompt_value[:char_offset_begin]
+ masked_part
+ prompt_value[char_offset_end + 1 :]
Initial commit for comprehend moderator (#9665) This PR implements a custom chain that wraps Amazon Comprehend API calls. The custom chain is aimed to be used with LLM chains to provide moderation capability that let’s you detect and redact PII, Toxic and Intent content in the LLM prompt, or the LLM response. The implementation accepts a configuration object to control what checks will be performed on a LLM prompt and can be used in a variety of setups using the LangChain expression language to not only detect the configured info in chains, but also other constructs such as a retriever. The included sample notebook goes over the different configuration options and how to use it with other chains. ### Usage sample ```python from langchain_experimental.comprehend_moderation import BaseModerationActions, BaseModerationFilters moderation_config = { "filters":[ BaseModerationFilters.PII, BaseModerationFilters.TOXICITY, BaseModerationFilters.INTENT ], "pii":{ "action": BaseModerationActions.ALLOW, "threshold":0.5, "labels":["SSN"], "mask_character": "X" }, "toxicity":{ "action": BaseModerationActions.STOP, "threshold":0.5 }, "intent":{ "action": BaseModerationActions.STOP, "threshold":0.5 } } comp_moderation_with_config = AmazonComprehendModerationChain( moderation_config=moderation_config, #specify the configuration client=comprehend_client, #optionally pass the Boto3 Client verbose=True ) template = """Question: {question} Answer:""" prompt = PromptTemplate(template=template, input_variables=["question"]) responses = [ "Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like 323-22-9980. John Doe's phone number is (999)253-9876.", "Final Answer: This is a really shitty way of constructing a birdhouse. This is fucking insane to think that any birds would actually create their motherfucking nests here." ] llm = FakeListLLM(responses=responses) llm_chain = LLMChain(prompt=prompt, llm=llm) chain = ( prompt | comp_moderation_with_config | {llm_chain.input_keys[0]: lambda x: x['output'] } | llm_chain | { "input": lambda x: x['text'] } | comp_moderation_with_config ) response = chain.invoke({"question": "A sample SSN number looks like this 123-456-7890. Can you give me some more samples?"}) print(response['output']) ``` ### Output ``` > Entering new AmazonComprehendModerationChain chain... Running AmazonComprehendModerationChain... Running pii validation... Found PII content..stopping.. The prompt contains PII entities and cannot be processed ``` --------- Co-authored-by: Piyush Jain <piyushjain@duck.com> Co-authored-by: Anjan Biswas <anjanavb@amazon.com> Co-authored-by: Jha <nikjha@amazon.com> Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-25 22:11:27 +00:00
)
if self.callback and self.callback.pii_callback:
if pii_found:
self.moderation_beacon["moderation_status"] = "LABELS_FOUND"
asyncio.create_task(
self.callback.on_after_pii(self.moderation_beacon, self.unique_id)
)
return prompt_value