2024-02-29 21:51:29 +00:00
# This file is automatically @generated by Poetry 1.7.1 and should not be changed by hand.
2023-12-11 21:53:30 +00:00
2024-03-15 17:10:47 +00:00
[ [ package ] ]
name = "aenum"
version = "3.1.15"
description = "Advanced Enumerations (compatible with Python's stdlib Enum), NamedTuples, and NamedConstants"
optional = true
python-versions = "*"
files = [
{ file = "aenum-3.1.15-py2-none-any.whl" , hash = "sha256:27b1710b9d084de6e2e695dab78fe9f269de924b51ae2850170ee7e1ca6288a5" } ,
{ file = "aenum-3.1.15-py3-none-any.whl" , hash = "sha256:e0dfaeea4c2bd362144b87377e2c61d91958c5ed0b4daf89cb6f45ae23af6288" } ,
{ file = "aenum-3.1.15.tar.gz" , hash = "sha256:8cbd76cd18c4f870ff39b24284d3ea028fbe8731a58df3aa581e434c575b9559" } ,
]
[ [ package ] ]
name = "aiodns"
version = "3.1.1"
description = "Simple DNS resolver for asyncio"
optional = true
python-versions = "*"
files = [
{ file = "aiodns-3.1.1-py3-none-any.whl" , hash = "sha256:a387b63da4ced6aad35b1dda2d09620ad608a1c7c0fb71efa07ebb4cd511928d" } ,
{ file = "aiodns-3.1.1.tar.gz" , hash = "sha256:1073eac48185f7a4150cad7f96a5192d6911f12b4fb894de80a088508c9b3a99" } ,
]
[ package . dependencies ]
pycares = ">=4.0.0"
2023-12-11 21:53:30 +00:00
[ [ package ] ]
name = "aiohttp"
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
version = "3.9.3"
2023-12-11 21:53:30 +00:00
description = "Async http client/server framework (asyncio)"
optional = false
python-versions = ">=3.8"
files = [
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
{ file = "aiohttp-3.9.3-cp310-cp310-macosx_10_9_universal2.whl" , hash = "sha256:939677b61f9d72a4fa2a042a5eee2a99a24001a67c13da113b2e30396567db54" } ,
{ file = "aiohttp-3.9.3-cp310-cp310-macosx_10_9_x86_64.whl" , hash = "sha256:1f5cd333fcf7590a18334c90f8c9147c837a6ec8a178e88d90a9b96ea03194cc" } ,
{ file = "aiohttp-3.9.3-cp310-cp310-macosx_11_0_arm64.whl" , hash = "sha256:82e6aa28dd46374f72093eda8bcd142f7771ee1eb9d1e223ff0fa7177a96b4a5" } ,
{ file = "aiohttp-3.9.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:f56455b0c2c7cc3b0c584815264461d07b177f903a04481dfc33e08a89f0c26b" } ,
{ file = "aiohttp-3.9.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:bca77a198bb6e69795ef2f09a5f4c12758487f83f33d63acde5f0d4919815768" } ,
{ file = "aiohttp-3.9.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:e083c285857b78ee21a96ba1eb1b5339733c3563f72980728ca2b08b53826ca5" } ,
{ file = "aiohttp-3.9.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:ab40e6251c3873d86ea9b30a1ac6d7478c09277b32e14745d0d3c6e76e3c7e29" } ,
{ file = "aiohttp-3.9.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:df822ee7feaaeffb99c1a9e5e608800bd8eda6e5f18f5cfb0dc7eeb2eaa6bbec" } ,
{ file = "aiohttp-3.9.3-cp310-cp310-musllinux_1_1_aarch64.whl" , hash = "sha256:acef0899fea7492145d2bbaaaec7b345c87753168589cc7faf0afec9afe9b747" } ,
{ file = "aiohttp-3.9.3-cp310-cp310-musllinux_1_1_i686.whl" , hash = "sha256:cd73265a9e5ea618014802ab01babf1940cecb90c9762d8b9e7d2cc1e1969ec6" } ,
{ file = "aiohttp-3.9.3-cp310-cp310-musllinux_1_1_ppc64le.whl" , hash = "sha256:a78ed8a53a1221393d9637c01870248a6f4ea5b214a59a92a36f18151739452c" } ,
{ file = "aiohttp-3.9.3-cp310-cp310-musllinux_1_1_s390x.whl" , hash = "sha256:6b0e029353361f1746bac2e4cc19b32f972ec03f0f943b390c4ab3371840aabf" } ,
{ file = "aiohttp-3.9.3-cp310-cp310-musllinux_1_1_x86_64.whl" , hash = "sha256:7cf5c9458e1e90e3c390c2639f1017a0379a99a94fdfad3a1fd966a2874bba52" } ,
{ file = "aiohttp-3.9.3-cp310-cp310-win32.whl" , hash = "sha256:3e59c23c52765951b69ec45ddbbc9403a8761ee6f57253250c6e1536cacc758b" } ,
{ file = "aiohttp-3.9.3-cp310-cp310-win_amd64.whl" , hash = "sha256:055ce4f74b82551678291473f66dc9fb9048a50d8324278751926ff0ae7715e5" } ,
{ file = "aiohttp-3.9.3-cp311-cp311-macosx_10_9_universal2.whl" , hash = "sha256:6b88f9386ff1ad91ace19d2a1c0225896e28815ee09fc6a8932fded8cda97c3d" } ,
{ file = "aiohttp-3.9.3-cp311-cp311-macosx_10_9_x86_64.whl" , hash = "sha256:c46956ed82961e31557b6857a5ca153c67e5476972e5f7190015018760938da2" } ,
{ file = "aiohttp-3.9.3-cp311-cp311-macosx_11_0_arm64.whl" , hash = "sha256:07b837ef0d2f252f96009e9b8435ec1fef68ef8b1461933253d318748ec1acdc" } ,
{ file = "aiohttp-3.9.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:dad46e6f620574b3b4801c68255492e0159d1712271cc99d8bdf35f2043ec266" } ,
{ file = "aiohttp-3.9.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:5ed3e046ea7b14938112ccd53d91c1539af3e6679b222f9469981e3dac7ba1ce" } ,
{ file = "aiohttp-3.9.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:039df344b45ae0b34ac885ab5b53940b174530d4dd8a14ed8b0e2155b9dddccb" } ,
{ file = "aiohttp-3.9.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:7943c414d3a8d9235f5f15c22ace69787c140c80b718dcd57caaade95f7cd93b" } ,
{ file = "aiohttp-3.9.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:84871a243359bb42c12728f04d181a389718710129b36b6aad0fc4655a7647d4" } ,
{ file = "aiohttp-3.9.3-cp311-cp311-musllinux_1_1_aarch64.whl" , hash = "sha256:5eafe2c065df5401ba06821b9a054d9cb2848867f3c59801b5d07a0be3a380ae" } ,
{ file = "aiohttp-3.9.3-cp311-cp311-musllinux_1_1_i686.whl" , hash = "sha256:9d3c9b50f19704552f23b4eaea1fc082fdd82c63429a6506446cbd8737823da3" } ,
{ file = "aiohttp-3.9.3-cp311-cp311-musllinux_1_1_ppc64le.whl" , hash = "sha256:f033d80bc6283092613882dfe40419c6a6a1527e04fc69350e87a9df02bbc283" } ,
{ file = "aiohttp-3.9.3-cp311-cp311-musllinux_1_1_s390x.whl" , hash = "sha256:2c895a656dd7e061b2fd6bb77d971cc38f2afc277229ce7dd3552de8313a483e" } ,
{ file = "aiohttp-3.9.3-cp311-cp311-musllinux_1_1_x86_64.whl" , hash = "sha256:1f5a71d25cd8106eab05f8704cd9167b6e5187bcdf8f090a66c6d88b634802b4" } ,
{ file = "aiohttp-3.9.3-cp311-cp311-win32.whl" , hash = "sha256:50fca156d718f8ced687a373f9e140c1bb765ca16e3d6f4fe116e3df7c05b2c5" } ,
{ file = "aiohttp-3.9.3-cp311-cp311-win_amd64.whl" , hash = "sha256:5fe9ce6c09668063b8447f85d43b8d1c4e5d3d7e92c63173e6180b2ac5d46dd8" } ,
{ file = "aiohttp-3.9.3-cp312-cp312-macosx_10_9_universal2.whl" , hash = "sha256:38a19bc3b686ad55804ae931012f78f7a534cce165d089a2059f658f6c91fa60" } ,
{ file = "aiohttp-3.9.3-cp312-cp312-macosx_10_9_x86_64.whl" , hash = "sha256:770d015888c2a598b377bd2f663adfd947d78c0124cfe7b959e1ef39f5b13869" } ,
{ file = "aiohttp-3.9.3-cp312-cp312-macosx_11_0_arm64.whl" , hash = "sha256:ee43080e75fc92bf36219926c8e6de497f9b247301bbf88c5c7593d931426679" } ,
{ file = "aiohttp-3.9.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:52df73f14ed99cee84865b95a3d9e044f226320a87af208f068ecc33e0c35b96" } ,
{ file = "aiohttp-3.9.3-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:dc9b311743a78043b26ffaeeb9715dc360335e5517832f5a8e339f8a43581e4d" } ,
{ file = "aiohttp-3.9.3-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:b955ed993491f1a5da7f92e98d5dad3c1e14dc175f74517c4e610b1f2456fb11" } ,
{ file = "aiohttp-3.9.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:504b6981675ace64c28bf4a05a508af5cde526e36492c98916127f5a02354d53" } ,
{ file = "aiohttp-3.9.3-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:a6fe5571784af92b6bc2fda8d1925cccdf24642d49546d3144948a6a1ed58ca5" } ,
{ file = "aiohttp-3.9.3-cp312-cp312-musllinux_1_1_aarch64.whl" , hash = "sha256:ba39e9c8627edc56544c8628cc180d88605df3892beeb2b94c9bc857774848ca" } ,
{ file = "aiohttp-3.9.3-cp312-cp312-musllinux_1_1_i686.whl" , hash = "sha256:e5e46b578c0e9db71d04c4b506a2121c0cb371dd89af17a0586ff6769d4c58c1" } ,
{ file = "aiohttp-3.9.3-cp312-cp312-musllinux_1_1_ppc64le.whl" , hash = "sha256:938a9653e1e0c592053f815f7028e41a3062e902095e5a7dc84617c87267ebd5" } ,
{ file = "aiohttp-3.9.3-cp312-cp312-musllinux_1_1_s390x.whl" , hash = "sha256:c3452ea726c76e92f3b9fae4b34a151981a9ec0a4847a627c43d71a15ac32aa6" } ,
{ file = "aiohttp-3.9.3-cp312-cp312-musllinux_1_1_x86_64.whl" , hash = "sha256:ff30218887e62209942f91ac1be902cc80cddb86bf00fbc6783b7a43b2bea26f" } ,
{ file = "aiohttp-3.9.3-cp312-cp312-win32.whl" , hash = "sha256:38f307b41e0bea3294a9a2a87833191e4bcf89bb0365e83a8be3a58b31fb7f38" } ,
{ file = "aiohttp-3.9.3-cp312-cp312-win_amd64.whl" , hash = "sha256:b791a3143681a520c0a17e26ae7465f1b6f99461a28019d1a2f425236e6eedb5" } ,
{ file = "aiohttp-3.9.3-cp38-cp38-macosx_10_9_universal2.whl" , hash = "sha256:0ed621426d961df79aa3b963ac7af0d40392956ffa9be022024cd16297b30c8c" } ,
{ file = "aiohttp-3.9.3-cp38-cp38-macosx_10_9_x86_64.whl" , hash = "sha256:7f46acd6a194287b7e41e87957bfe2ad1ad88318d447caf5b090012f2c5bb528" } ,
{ file = "aiohttp-3.9.3-cp38-cp38-macosx_11_0_arm64.whl" , hash = "sha256:feeb18a801aacb098220e2c3eea59a512362eb408d4afd0c242044c33ad6d542" } ,
{ file = "aiohttp-3.9.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:f734e38fd8666f53da904c52a23ce517f1b07722118d750405af7e4123933511" } ,
{ file = "aiohttp-3.9.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:b40670ec7e2156d8e57f70aec34a7216407848dfe6c693ef131ddf6e76feb672" } ,
{ file = "aiohttp-3.9.3-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:fdd215b7b7fd4a53994f238d0f46b7ba4ac4c0adb12452beee724ddd0743ae5d" } ,
{ file = "aiohttp-3.9.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:017a21b0df49039c8f46ca0971b3a7fdc1f56741ab1240cb90ca408049766168" } ,
{ file = "aiohttp-3.9.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:e99abf0bba688259a496f966211c49a514e65afa9b3073a1fcee08856e04425b" } ,
{ file = "aiohttp-3.9.3-cp38-cp38-musllinux_1_1_aarch64.whl" , hash = "sha256:648056db9a9fa565d3fa851880f99f45e3f9a771dd3ff3bb0c048ea83fb28194" } ,
{ file = "aiohttp-3.9.3-cp38-cp38-musllinux_1_1_i686.whl" , hash = "sha256:8aacb477dc26797ee089721536a292a664846489c49d3ef9725f992449eda5a8" } ,
{ file = "aiohttp-3.9.3-cp38-cp38-musllinux_1_1_ppc64le.whl" , hash = "sha256:522a11c934ea660ff8953eda090dcd2154d367dec1ae3c540aff9f8a5c109ab4" } ,
{ file = "aiohttp-3.9.3-cp38-cp38-musllinux_1_1_s390x.whl" , hash = "sha256:5bce0dc147ca85caa5d33debc4f4d65e8e8b5c97c7f9f660f215fa74fc49a321" } ,
{ file = "aiohttp-3.9.3-cp38-cp38-musllinux_1_1_x86_64.whl" , hash = "sha256:4b4af9f25b49a7be47c0972139e59ec0e8285c371049df1a63b6ca81fdd216a2" } ,
{ file = "aiohttp-3.9.3-cp38-cp38-win32.whl" , hash = "sha256:298abd678033b8571995650ccee753d9458dfa0377be4dba91e4491da3f2be63" } ,
{ file = "aiohttp-3.9.3-cp38-cp38-win_amd64.whl" , hash = "sha256:69361bfdca5468c0488d7017b9b1e5ce769d40b46a9f4a2eed26b78619e9396c" } ,
{ file = "aiohttp-3.9.3-cp39-cp39-macosx_10_9_universal2.whl" , hash = "sha256:0fa43c32d1643f518491d9d3a730f85f5bbaedcbd7fbcae27435bb8b7a061b29" } ,
{ file = "aiohttp-3.9.3-cp39-cp39-macosx_10_9_x86_64.whl" , hash = "sha256:835a55b7ca49468aaaac0b217092dfdff370e6c215c9224c52f30daaa735c1c1" } ,
{ file = "aiohttp-3.9.3-cp39-cp39-macosx_11_0_arm64.whl" , hash = "sha256:06a9b2c8837d9a94fae16c6223acc14b4dfdff216ab9b7202e07a9a09541168f" } ,
{ file = "aiohttp-3.9.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:abf151955990d23f84205286938796c55ff11bbfb4ccfada8c9c83ae6b3c89a3" } ,
{ file = "aiohttp-3.9.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:59c26c95975f26e662ca78fdf543d4eeaef70e533a672b4113dd888bd2423caa" } ,
{ file = "aiohttp-3.9.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:f95511dd5d0e05fd9728bac4096319f80615aaef4acbecb35a990afebe953b0e" } ,
{ file = "aiohttp-3.9.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:595f105710293e76b9dc09f52e0dd896bd064a79346234b521f6b968ffdd8e58" } ,
{ file = "aiohttp-3.9.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:c7c8b816c2b5af5c8a436df44ca08258fc1a13b449393a91484225fcb7545533" } ,
{ file = "aiohttp-3.9.3-cp39-cp39-musllinux_1_1_aarch64.whl" , hash = "sha256:f1088fa100bf46e7b398ffd9904f4808a0612e1d966b4aa43baa535d1b6341eb" } ,
{ file = "aiohttp-3.9.3-cp39-cp39-musllinux_1_1_i686.whl" , hash = "sha256:f59dfe57bb1ec82ac0698ebfcdb7bcd0e99c255bd637ff613760d5f33e7c81b3" } ,
{ file = "aiohttp-3.9.3-cp39-cp39-musllinux_1_1_ppc64le.whl" , hash = "sha256:361a1026c9dd4aba0109e4040e2aecf9884f5cfe1b1b1bd3d09419c205e2e53d" } ,
{ file = "aiohttp-3.9.3-cp39-cp39-musllinux_1_1_s390x.whl" , hash = "sha256:363afe77cfcbe3a36353d8ea133e904b108feea505aa4792dad6585a8192c55a" } ,
{ file = "aiohttp-3.9.3-cp39-cp39-musllinux_1_1_x86_64.whl" , hash = "sha256:8e2c45c208c62e955e8256949eb225bd8b66a4c9b6865729a786f2aa79b72e9d" } ,
{ file = "aiohttp-3.9.3-cp39-cp39-win32.whl" , hash = "sha256:f7217af2e14da0856e082e96ff637f14ae45c10a5714b63c77f26d8884cf1051" } ,
{ file = "aiohttp-3.9.3-cp39-cp39-win_amd64.whl" , hash = "sha256:27468897f628c627230dba07ec65dc8d0db566923c48f29e084ce382119802bc" } ,
{ file = "aiohttp-3.9.3.tar.gz" , hash = "sha256:90842933e5d1ff760fae6caca4b2b3edba53ba8f4b71e95dacf2818a2aca06f7" } ,
2023-12-11 21:53:30 +00:00
]
[ package . dependencies ]
aiosignal = ">=1.1.2"
async-timeout = { version = ">=4.0,<5.0" , markers = "python_version < \"3.11\"" }
attrs = ">=17.3.0"
frozenlist = ">=1.1.1"
multidict = ">=4.5,<7.0"
yarl = ">=1.0,<2.0"
[ package . extras ]
speedups = [ "Brotli" , "aiodns" , "brotlicffi" ]
2024-03-15 17:10:47 +00:00
[ [ package ] ]
name = "aiohttp-retry"
version = "2.8.3"
description = "Simple retry client for aiohttp"
optional = true
python-versions = ">=3.7"
files = [
{ file = "aiohttp_retry-2.8.3-py3-none-any.whl" , hash = "sha256:3aeeead8f6afe48272db93ced9440cf4eda8b6fd7ee2abb25357b7eb28525b45" } ,
{ file = "aiohttp_retry-2.8.3.tar.gz" , hash = "sha256:9a8e637e31682ad36e1ff9f8bcba912fcfc7d7041722bc901a4b948da4d71ea9" } ,
]
[ package . dependencies ]
aiohttp = "*"
2023-12-11 21:53:30 +00:00
[ [ package ] ]
name = "aiosignal"
version = "1.3.1"
description = "aiosignal: a list of registered asynchronous callbacks"
optional = false
python-versions = ">=3.7"
files = [
{ file = "aiosignal-1.3.1-py3-none-any.whl" , hash = "sha256:f8376fb07dd1e86a584e4fcdec80b36b7f81aac666ebc724e2c090300dd83b17" } ,
{ file = "aiosignal-1.3.1.tar.gz" , hash = "sha256:54cd96e15e1649b75d6c87526a6ff0b6c1b0dd3459f43d9ca11d48c339b68cfc" } ,
]
[ package . dependencies ]
frozenlist = ">=1.1.0"
2024-03-15 17:10:47 +00:00
[ [ package ] ]
name = "aiosqlite"
version = "0.19.0"
description = "asyncio bridge to the standard sqlite3 module"
optional = true
python-versions = ">=3.7"
files = [
{ file = "aiosqlite-0.19.0-py3-none-any.whl" , hash = "sha256:edba222e03453e094a3ce605db1b970c4b3376264e56f32e2a4959f948d66a96" } ,
{ file = "aiosqlite-0.19.0.tar.gz" , hash = "sha256:95ee77b91c8d2808bd08a59fbebf66270e9090c3d92ffbf260dc0db0b979577d" } ,
]
[ package . extras ]
dev = [ "aiounittest (==1.4.1)" , "attribution (==1.6.2)" , "black (==23.3.0)" , "coverage[toml] (==7.2.3)" , "flake8 (==5.0.4)" , "flake8-bugbear (==23.3.12)" , "flit (==3.7.1)" , "mypy (==1.2.0)" , "ufmt (==2.1.0)" , "usort (==1.0.6)" ]
docs = [ "sphinx (==6.1.3)" , "sphinx-mdinclude (==0.5.3)" ]
[ [ package ] ]
name = "aleph-alpha-client"
version = "2.17.0"
description = "python client to interact with Aleph Alpha api endpoints"
optional = true
python-versions = "*"
files = [
{ file = "aleph-alpha-client-2.17.0.tar.gz" , hash = "sha256:c2d664c7b829f4932306153bec45e11c08e03252f1dbfd9f48584c402d7050a3" } ,
{ file = "aleph_alpha_client-2.17.0-py3-none-any.whl" , hash = "sha256:9106a36a5e08dba6aea2b0b2a0de6ff0c3bb77926edc98226debae121b0925e2" } ,
]
[ package . dependencies ]
aiodns = ">=3.0.0"
aiohttp = ">=3.8.3"
aiohttp-retry = ">=2.8.3"
Pillow = ">=9.2.0"
requests = ">=2.28"
tokenizers = ">=0.13.2"
typing-extensions = ">=4.5.0"
urllib3 = ">=1.26"
[ package . extras ]
dev = [ "black" , "ipykernel" , "mypy" , "nbconvert" , "pytest" , "pytest-aiohttp" , "pytest-cov" , "pytest-dotenv" , "pytest-httpserver" , "types-Pillow" , "types-requests" ]
docs = [ "sphinx" , "sphinx-rtd-theme" ]
test = [ "pytest" , "pytest-aiohttp" , "pytest-cov" , "pytest-dotenv" , "pytest-httpserver" ]
types = [ "mypy" , "types-Pillow" , "types-requests" ]
[ [ package ] ]
name = "altair"
version = "5.2.0"
description = "Vega-Altair: A declarative statistical visualization library for Python."
optional = true
python-versions = ">=3.8"
files = [
{ file = "altair-5.2.0-py3-none-any.whl" , hash = "sha256:8c4888ad11db7c39f3f17aa7f4ea985775da389d79ac30a6c22856ab238df399" } ,
{ file = "altair-5.2.0.tar.gz" , hash = "sha256:2ad7f0c8010ebbc46319cc30febfb8e59ccf84969a201541c207bc3a4fa6cf81" } ,
]
[ package . dependencies ]
jinja2 = "*"
jsonschema = ">=3.0"
numpy = "*"
packaging = "*"
pandas = ">=0.25"
toolz = "*"
typing-extensions = { version = ">=4.0.1" , markers = "python_version < \"3.11\"" }
[ package . extras ]
dev = [ "anywidget" , "geopandas" , "hatch" , "ipython" , "m2r" , "mypy" , "pandas-stubs" , "pyarrow (>=11)" , "pytest" , "pytest-cov" , "ruff (>=0.1.3)" , "types-jsonschema" , "types-setuptools" , "vega-datasets" , "vegafusion[embed] (>=1.4.0)" , "vl-convert-python (>=1.1.0)" ]
doc = [ "docutils" , "jinja2" , "myst-parser" , "numpydoc" , "pillow (>=9,<10)" , "pydata-sphinx-theme (>=0.14.1)" , "scipy" , "sphinx" , "sphinx-copybutton" , "sphinx-design" , "sphinxext-altair" ]
2023-12-11 21:53:30 +00:00
[ [ package ] ]
name = "anthropic"
version = "0.3.11"
description = "Client library for the anthropic API"
optional = false
python-versions = ">=3.7,<4.0"
files = [
{ file = "anthropic-0.3.11-py3-none-any.whl" , hash = "sha256:5c81105cd9ee7388bff3fdb739aaddedc83bbae9b95d51c2d50c13b1ad106138" } ,
{ file = "anthropic-0.3.11.tar.gz" , hash = "sha256:2e0fa5351c9b368cbed0bbd7217deaa9409b82b56afaf244e2196e99eb4fe20e" } ,
]
[ package . dependencies ]
anyio = ">=3.5.0,<4"
distro = ">=1.7.0,<2"
httpx = ">=0.23.0,<1"
pydantic = ">=1.9.0,<3"
tokenizers = ">=0.13.0"
typing-extensions = ">=4.5,<5"
[ [ package ] ]
name = "anyio"
version = "3.7.1"
description = "High level compatibility layer for multiple asynchronous event loop implementations"
optional = false
python-versions = ">=3.7"
files = [
{ file = "anyio-3.7.1-py3-none-any.whl" , hash = "sha256:91dee416e570e92c64041bd18b900d1d6fa78dff7048769ce5ac5ddad004fbb5" } ,
{ file = "anyio-3.7.1.tar.gz" , hash = "sha256:44a3c9aba0f5defa43261a8b3efb97891f2bd7d804e0e1f56419befa1adfc780" } ,
]
[ package . dependencies ]
exceptiongroup = { version = "*" , markers = "python_version < \"3.11\"" }
idna = ">=2.8"
sniffio = ">=1.1"
[ package . extras ]
doc = [ "Sphinx" , "packaging" , "sphinx-autodoc-typehints (>=1.2.0)" , "sphinx-rtd-theme (>=1.2.2)" , "sphinxcontrib-jquery" ]
test = [ "anyio[trio]" , "coverage[toml] (>=4.5)" , "hypothesis (>=4.0)" , "mock (>=4)" , "psutil (>=5.9)" , "pytest (>=7.0)" , "pytest-mock (>=3.6.1)" , "trustme" , "uvloop (>=0.17)" ]
trio = [ "trio (<0.22)" ]
[ [ package ] ]
name = "appnope"
2024-02-06 21:40:00 +00:00
version = "0.1.4"
2023-12-11 21:53:30 +00:00
description = "Disable App Nap on macOS >= 10.9"
optional = false
2024-02-06 21:40:00 +00:00
python-versions = ">=3.6"
2023-12-11 21:53:30 +00:00
files = [
2024-02-06 21:40:00 +00:00
{ file = "appnope-0.1.4-py2.py3-none-any.whl" , hash = "sha256:502575ee11cd7a28c0205f379b525beefebab9d161b7c964670864014ed7213c" } ,
{ file = "appnope-0.1.4.tar.gz" , hash = "sha256:1de3860566df9caf38f01f86f65e0e13e379af54f9e4bee1e66b48f2efffd1ee" } ,
2023-12-11 21:53:30 +00:00
]
[ [ package ] ]
name = "argon2-cffi"
version = "23.1.0"
description = "Argon2 for Python"
optional = false
python-versions = ">=3.7"
files = [
{ file = "argon2_cffi-23.1.0-py3-none-any.whl" , hash = "sha256:c670642b78ba29641818ab2e68bd4e6a78ba53b7eff7b4c3815ae16abf91c7ea" } ,
{ file = "argon2_cffi-23.1.0.tar.gz" , hash = "sha256:879c3e79a2729ce768ebb7d36d4609e3a78a4ca2ec3a9f12286ca057e3d0db08" } ,
]
[ package . dependencies ]
argon2-cffi-bindings = "*"
[ package . extras ]
dev = [ "argon2-cffi[tests,typing]" , "tox (>4)" ]
docs = [ "furo" , "myst-parser" , "sphinx" , "sphinx-copybutton" , "sphinx-notfound-page" ]
tests = [ "hypothesis" , "pytest" ]
typing = [ "mypy" ]
[ [ package ] ]
name = "argon2-cffi-bindings"
version = "21.2.0"
description = "Low-level CFFI bindings for Argon2"
optional = false
python-versions = ">=3.6"
files = [
{ file = "argon2-cffi-bindings-21.2.0.tar.gz" , hash = "sha256:bb89ceffa6c791807d1305ceb77dbfacc5aa499891d2c55661c6459651fc39e3" } ,
{ file = "argon2_cffi_bindings-21.2.0-cp36-abi3-macosx_10_9_x86_64.whl" , hash = "sha256:ccb949252cb2ab3a08c02024acb77cfb179492d5701c7cbdbfd776124d4d2367" } ,
{ file = "argon2_cffi_bindings-21.2.0-cp36-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:9524464572e12979364b7d600abf96181d3541da11e23ddf565a32e70bd4dc0d" } ,
{ file = "argon2_cffi_bindings-21.2.0-cp36-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:b746dba803a79238e925d9046a63aa26bf86ab2a2fe74ce6b009a1c3f5c8f2ae" } ,
{ file = "argon2_cffi_bindings-21.2.0-cp36-abi3-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:58ed19212051f49a523abb1dbe954337dc82d947fb6e5a0da60f7c8471a8476c" } ,
{ file = "argon2_cffi_bindings-21.2.0-cp36-abi3-musllinux_1_1_aarch64.whl" , hash = "sha256:bd46088725ef7f58b5a1ef7ca06647ebaf0eb4baff7d1d0d177c6cc8744abd86" } ,
{ file = "argon2_cffi_bindings-21.2.0-cp36-abi3-musllinux_1_1_i686.whl" , hash = "sha256:8cd69c07dd875537a824deec19f978e0f2078fdda07fd5c42ac29668dda5f40f" } ,
{ file = "argon2_cffi_bindings-21.2.0-cp36-abi3-musllinux_1_1_x86_64.whl" , hash = "sha256:f1152ac548bd5b8bcecfb0b0371f082037e47128653df2e8ba6e914d384f3c3e" } ,
{ file = "argon2_cffi_bindings-21.2.0-cp36-abi3-win32.whl" , hash = "sha256:603ca0aba86b1349b147cab91ae970c63118a0f30444d4bc80355937c950c082" } ,
{ file = "argon2_cffi_bindings-21.2.0-cp36-abi3-win_amd64.whl" , hash = "sha256:b2ef1c30440dbbcba7a5dc3e319408b59676e2e039e2ae11a8775ecf482b192f" } ,
{ file = "argon2_cffi_bindings-21.2.0-cp38-abi3-macosx_10_9_universal2.whl" , hash = "sha256:e415e3f62c8d124ee16018e491a009937f8cf7ebf5eb430ffc5de21b900dad93" } ,
{ file = "argon2_cffi_bindings-21.2.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl" , hash = "sha256:3e385d1c39c520c08b53d63300c3ecc28622f076f4c2b0e6d7e796e9f6502194" } ,
{ file = "argon2_cffi_bindings-21.2.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:2c3e3cc67fdb7d82c4718f19b4e7a87123caf8a93fde7e23cf66ac0337d3cb3f" } ,
{ file = "argon2_cffi_bindings-21.2.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:6a22ad9800121b71099d0fb0a65323810a15f2e292f2ba450810a7316e128ee5" } ,
{ file = "argon2_cffi_bindings-21.2.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:f9f8b450ed0547e3d473fdc8612083fd08dd2120d6ac8f73828df9b7d45bb351" } ,
{ file = "argon2_cffi_bindings-21.2.0-pp37-pypy37_pp73-win_amd64.whl" , hash = "sha256:93f9bf70084f97245ba10ee36575f0c3f1e7d7724d67d8e5b08e61787c320ed7" } ,
{ file = "argon2_cffi_bindings-21.2.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl" , hash = "sha256:3b9ef65804859d335dc6b31582cad2c5166f0c3e7975f324d9ffaa34ee7e6583" } ,
{ file = "argon2_cffi_bindings-21.2.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:d4966ef5848d820776f5f562a7d45fdd70c2f330c961d0d745b784034bd9f48d" } ,
{ file = "argon2_cffi_bindings-21.2.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:20ef543a89dee4db46a1a6e206cd015360e5a75822f76df533845c3cbaf72670" } ,
{ file = "argon2_cffi_bindings-21.2.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:ed2937d286e2ad0cc79a7087d3c272832865f779430e0cc2b4f3718d3159b0cb" } ,
{ file = "argon2_cffi_bindings-21.2.0-pp38-pypy38_pp73-win_amd64.whl" , hash = "sha256:5e00316dabdaea0b2dd82d141cc66889ced0cdcbfa599e8b471cf22c620c329a" } ,
]
[ package . dependencies ]
cffi = ">=1.0.1"
[ package . extras ]
dev = [ "cogapp" , "pre-commit" , "pytest" , "wheel" ]
tests = [ "pytest" ]
[ [ package ] ]
name = "arrow"
version = "1.3.0"
description = "Better dates & times for Python"
optional = false
python-versions = ">=3.8"
files = [
{ file = "arrow-1.3.0-py3-none-any.whl" , hash = "sha256:c728b120ebc00eb84e01882a6f5e7927a53960aa990ce7dd2b10f39005a67f80" } ,
{ file = "arrow-1.3.0.tar.gz" , hash = "sha256:d4540617648cb5f895730f1ad8c82a65f2dad0166f57b75f3ca54759c4d67a85" } ,
]
[ package . dependencies ]
python-dateutil = ">=2.7.0"
types-python-dateutil = ">=2.8.10"
[ package . extras ]
doc = [ "doc8" , "sphinx (>=7.0.0)" , "sphinx-autobuild" , "sphinx-autodoc-typehints" , "sphinx_rtd_theme (>=1.3.0)" ]
test = [ "dateparser (==1.*)" , "pre-commit" , "pytest" , "pytest-cov" , "pytest-mock" , "pytz (==2021.1)" , "simplejson (==3.*)" ]
2024-03-15 17:10:47 +00:00
[ [ package ] ]
name = "arxiv"
version = "1.4.8"
description = "Python wrapper for the arXiv API: http://arxiv.org/help/api/"
optional = true
python-versions = ">=3.7"
files = [
{ file = "arxiv-1.4.8-py3-none-any.whl" , hash = "sha256:c3dbef0fb7ed85c9b4c2157b40a62f5a04ce0d2f63c3ff7caa7798abf6166378" } ,
{ file = "arxiv-1.4.8.tar.gz" , hash = "sha256:2a818ea749eaa62a6e24fc31d53b769b4d33ff55cfc5dda7c7b7d309a3b29373" } ,
]
[ package . dependencies ]
feedparser = "*"
[ [ package ] ]
name = "assemblyai"
version = "0.17.0"
description = "AssemblyAI Python SDK"
optional = true
python-versions = ">=3.8"
files = [
{ file = "assemblyai-0.17.0-py3-none-any.whl" , hash = "sha256:3bad8cc7545b5b831f243f1b2f01bc4cc0e8aad78babf44c8008f2293c540e36" } ,
{ file = "assemblyai-0.17.0.tar.gz" , hash = "sha256:6d5bbfbbaa626ed021c3d3dec0ca52b3ebf6e6ef277ac76a7a6aed52182d531e" } ,
]
[ package . dependencies ]
httpx = ">=0.19.0"
pydantic = ">=1.7.0,<1.10.7 || >1.10.7"
typing-extensions = ">=3.7"
websockets = ">=11.0"
[ package . extras ]
extras = [ "pyaudio (>=0.2.13)" ]
[ [ package ] ]
name = "asteval"
version = "0.9.32"
description = "Safe, minimalistic evaluator of python expression using ast module"
optional = true
python-versions = ">=3.8"
files = [
{ file = "asteval-0.9.32-py3-none-any.whl" , hash = "sha256:4d0da45a15f15eeb88bb53cf4c352591ccb00f00f81f74649fd7084519adc3fe" } ,
{ file = "asteval-0.9.32.tar.gz" , hash = "sha256:3bef25a973d378fda21c83a38c6292c4d0d94773f49f42073e69dbb19932bb74" } ,
]
[ package . extras ]
all = [ "Sphinx" , "build" , "coverage" , "pytest" , "pytest-cov" , "twine" ]
dev = [ "build" , "twine" ]
doc = [ "Sphinx" ]
test = [ "coverage" , "pytest" , "pytest-cov" ]
2023-12-11 21:53:30 +00:00
[ [ package ] ]
name = "asttokens"
version = "2.4.1"
description = "Annotate AST trees with source code positions"
optional = false
python-versions = "*"
files = [
{ file = "asttokens-2.4.1-py2.py3-none-any.whl" , hash = "sha256:051ed49c3dcae8913ea7cd08e46a606dba30b79993209636c4875bc1d637bc24" } ,
{ file = "asttokens-2.4.1.tar.gz" , hash = "sha256:b03869718ba9a6eb027e134bfdf69f38a236d681c83c160d510768af11254ba0" } ,
]
[ package . dependencies ]
six = ">=1.12.0"
[ package . extras ]
astroid = [ "astroid (>=1,<2)" , "astroid (>=2,<4)" ]
test = [ "astroid (>=1,<2)" , "astroid (>=2,<4)" , "pytest" ]
[ [ package ] ]
name = "async-lru"
version = "2.0.4"
description = "Simple LRU cache for asyncio"
optional = false
python-versions = ">=3.8"
files = [
{ file = "async-lru-2.0.4.tar.gz" , hash = "sha256:b8a59a5df60805ff63220b2a0c5b5393da5521b113cd5465a44eb037d81a5627" } ,
{ file = "async_lru-2.0.4-py3-none-any.whl" , hash = "sha256:ff02944ce3c288c5be660c42dbcca0742b32c3b279d6dceda655190240b99224" } ,
]
[ package . dependencies ]
typing-extensions = { version = ">=4.0.0" , markers = "python_version < \"3.11\"" }
[ [ package ] ]
name = "async-timeout"
version = "4.0.3"
description = "Timeout context manager for asyncio programs"
optional = false
python-versions = ">=3.7"
files = [
{ file = "async-timeout-4.0.3.tar.gz" , hash = "sha256:4640d96be84d82d02ed59ea2b7105a0f7b33abe8703703cd0ab0bf87c427522f" } ,
{ file = "async_timeout-4.0.3-py3-none-any.whl" , hash = "sha256:7405140ff1230c310e51dc27b3145b9092d659ce68ff733fb0cefe3ee42be028" } ,
]
2024-03-15 17:10:47 +00:00
[ [ package ] ]
name = "asyncpg"
version = "0.29.0"
description = "An asyncio PostgreSQL driver"
optional = true
python-versions = ">=3.8.0"
files = [
{ file = "asyncpg-0.29.0-cp310-cp310-macosx_10_9_x86_64.whl" , hash = "sha256:72fd0ef9f00aeed37179c62282a3d14262dbbafb74ec0ba16e1b1864d8a12169" } ,
{ file = "asyncpg-0.29.0-cp310-cp310-macosx_11_0_arm64.whl" , hash = "sha256:52e8f8f9ff6e21f9b39ca9f8e3e33a5fcdceaf5667a8c5c32bee158e313be385" } ,
{ file = "asyncpg-0.29.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:a9e6823a7012be8b68301342ba33b4740e5a166f6bbda0aee32bc01638491a22" } ,
{ file = "asyncpg-0.29.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:746e80d83ad5d5464cfbf94315eb6744222ab00aa4e522b704322fb182b83610" } ,
{ file = "asyncpg-0.29.0-cp310-cp310-musllinux_1_1_aarch64.whl" , hash = "sha256:ff8e8109cd6a46ff852a5e6bab8b0a047d7ea42fcb7ca5ae6eaae97d8eacf397" } ,
{ file = "asyncpg-0.29.0-cp310-cp310-musllinux_1_1_x86_64.whl" , hash = "sha256:97eb024685b1d7e72b1972863de527c11ff87960837919dac6e34754768098eb" } ,
{ file = "asyncpg-0.29.0-cp310-cp310-win32.whl" , hash = "sha256:5bbb7f2cafd8d1fa3e65431833de2642f4b2124be61a449fa064e1a08d27e449" } ,
{ file = "asyncpg-0.29.0-cp310-cp310-win_amd64.whl" , hash = "sha256:76c3ac6530904838a4b650b2880f8e7af938ee049e769ec2fba7cd66469d7772" } ,
{ file = "asyncpg-0.29.0-cp311-cp311-macosx_10_9_x86_64.whl" , hash = "sha256:d4900ee08e85af01adb207519bb4e14b1cae8fd21e0ccf80fac6aa60b6da37b4" } ,
{ file = "asyncpg-0.29.0-cp311-cp311-macosx_11_0_arm64.whl" , hash = "sha256:a65c1dcd820d5aea7c7d82a3fdcb70e096f8f70d1a8bf93eb458e49bfad036ac" } ,
{ file = "asyncpg-0.29.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:5b52e46f165585fd6af4863f268566668407c76b2c72d366bb8b522fa66f1870" } ,
{ file = "asyncpg-0.29.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:dc600ee8ef3dd38b8d67421359779f8ccec30b463e7aec7ed481c8346decf99f" } ,
{ file = "asyncpg-0.29.0-cp311-cp311-musllinux_1_1_aarch64.whl" , hash = "sha256:039a261af4f38f949095e1e780bae84a25ffe3e370175193174eb08d3cecab23" } ,
{ file = "asyncpg-0.29.0-cp311-cp311-musllinux_1_1_x86_64.whl" , hash = "sha256:6feaf2d8f9138d190e5ec4390c1715c3e87b37715cd69b2c3dfca616134efd2b" } ,
{ file = "asyncpg-0.29.0-cp311-cp311-win32.whl" , hash = "sha256:1e186427c88225ef730555f5fdda6c1812daa884064bfe6bc462fd3a71c4b675" } ,
{ file = "asyncpg-0.29.0-cp311-cp311-win_amd64.whl" , hash = "sha256:cfe73ffae35f518cfd6e4e5f5abb2618ceb5ef02a2365ce64f132601000587d3" } ,
{ file = "asyncpg-0.29.0-cp312-cp312-macosx_10_9_x86_64.whl" , hash = "sha256:6011b0dc29886ab424dc042bf9eeb507670a3b40aece3439944006aafe023178" } ,
{ file = "asyncpg-0.29.0-cp312-cp312-macosx_11_0_arm64.whl" , hash = "sha256:b544ffc66b039d5ec5a7454667f855f7fec08e0dfaf5a5490dfafbb7abbd2cfb" } ,
{ file = "asyncpg-0.29.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:d84156d5fb530b06c493f9e7635aa18f518fa1d1395ef240d211cb563c4e2364" } ,
{ file = "asyncpg-0.29.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:54858bc25b49d1114178d65a88e48ad50cb2b6f3e475caa0f0c092d5f527c106" } ,
{ file = "asyncpg-0.29.0-cp312-cp312-musllinux_1_1_aarch64.whl" , hash = "sha256:bde17a1861cf10d5afce80a36fca736a86769ab3579532c03e45f83ba8a09c59" } ,
{ file = "asyncpg-0.29.0-cp312-cp312-musllinux_1_1_x86_64.whl" , hash = "sha256:37a2ec1b9ff88d8773d3eb6d3784dc7e3fee7756a5317b67f923172a4748a175" } ,
{ file = "asyncpg-0.29.0-cp312-cp312-win32.whl" , hash = "sha256:bb1292d9fad43112a85e98ecdc2e051602bce97c199920586be83254d9dafc02" } ,
{ file = "asyncpg-0.29.0-cp312-cp312-win_amd64.whl" , hash = "sha256:2245be8ec5047a605e0b454c894e54bf2ec787ac04b1cb7e0d3c67aa1e32f0fe" } ,
{ file = "asyncpg-0.29.0-cp38-cp38-macosx_10_9_x86_64.whl" , hash = "sha256:0009a300cae37b8c525e5b449233d59cd9868fd35431abc470a3e364d2b85cb9" } ,
{ file = "asyncpg-0.29.0-cp38-cp38-macosx_11_0_arm64.whl" , hash = "sha256:5cad1324dbb33f3ca0cd2074d5114354ed3be2b94d48ddfd88af75ebda7c43cc" } ,
{ file = "asyncpg-0.29.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:012d01df61e009015944ac7543d6ee30c2dc1eb2f6b10b62a3f598beb6531548" } ,
{ file = "asyncpg-0.29.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:000c996c53c04770798053e1730d34e30cb645ad95a63265aec82da9093d88e7" } ,
{ file = "asyncpg-0.29.0-cp38-cp38-musllinux_1_1_aarch64.whl" , hash = "sha256:e0bfe9c4d3429706cf70d3249089de14d6a01192d617e9093a8e941fea8ee775" } ,
{ file = "asyncpg-0.29.0-cp38-cp38-musllinux_1_1_x86_64.whl" , hash = "sha256:642a36eb41b6313ffa328e8a5c5c2b5bea6ee138546c9c3cf1bffaad8ee36dd9" } ,
{ file = "asyncpg-0.29.0-cp38-cp38-win32.whl" , hash = "sha256:a921372bbd0aa3a5822dd0409da61b4cd50df89ae85150149f8c119f23e8c408" } ,
{ file = "asyncpg-0.29.0-cp38-cp38-win_amd64.whl" , hash = "sha256:103aad2b92d1506700cbf51cd8bb5441e7e72e87a7b3a2ca4e32c840f051a6a3" } ,
{ file = "asyncpg-0.29.0-cp39-cp39-macosx_10_9_x86_64.whl" , hash = "sha256:5340dd515d7e52f4c11ada32171d87c05570479dc01dc66d03ee3e150fb695da" } ,
{ file = "asyncpg-0.29.0-cp39-cp39-macosx_11_0_arm64.whl" , hash = "sha256:e17b52c6cf83e170d3d865571ba574577ab8e533e7361a2b8ce6157d02c665d3" } ,
{ file = "asyncpg-0.29.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:f100d23f273555f4b19b74a96840aa27b85e99ba4b1f18d4ebff0734e78dc090" } ,
{ file = "asyncpg-0.29.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:48e7c58b516057126b363cec8ca02b804644fd012ef8e6c7e23386b7d5e6ce83" } ,
{ file = "asyncpg-0.29.0-cp39-cp39-musllinux_1_1_aarch64.whl" , hash = "sha256:f9ea3f24eb4c49a615573724d88a48bd1b7821c890c2effe04f05382ed9e8810" } ,
{ file = "asyncpg-0.29.0-cp39-cp39-musllinux_1_1_x86_64.whl" , hash = "sha256:8d36c7f14a22ec9e928f15f92a48207546ffe68bc412f3be718eedccdf10dc5c" } ,
{ file = "asyncpg-0.29.0-cp39-cp39-win32.whl" , hash = "sha256:797ab8123ebaed304a1fad4d7576d5376c3a006a4100380fb9d517f0b59c1ab2" } ,
{ file = "asyncpg-0.29.0-cp39-cp39-win_amd64.whl" , hash = "sha256:cce08a178858b426ae1aa8409b5cc171def45d4293626e7aa6510696d46decd8" } ,
{ file = "asyncpg-0.29.0.tar.gz" , hash = "sha256:d1c49e1f44fffafd9a55e1a9b101590859d881d639ea2922516f5d9c512d354e" } ,
]
[ package . dependencies ]
async-timeout = { version = ">=4.0.3" , markers = "python_version < \"3.12.0\"" }
[ package . extras ]
docs = [ "Sphinx (>=5.3.0,<5.4.0)" , "sphinx-rtd-theme (>=1.2.2)" , "sphinxcontrib-asyncio (>=0.3.0,<0.4.0)" ]
test = [ "flake8 (>=6.1,<7.0)" , "uvloop (>=0.15.3)" ]
[ [ package ] ]
name = "atlassian-python-api"
version = "3.41.11"
description = "Python Atlassian REST API Wrapper"
optional = true
python-versions = "*"
files = [
{ file = "atlassian-python-api-3.41.11.tar.gz" , hash = "sha256:e6503b2bfeedf100fcabc1d541718a8ab5e6fd757164438fcf4948e6ecea12e4" } ,
{ file = "atlassian_python_api-3.41.11-py3-none-any.whl" , hash = "sha256:47ac76a171f08537cff64253d1b49a016dc6636dfbba324944c01397d755391c" } ,
]
[ package . dependencies ]
beautifulsoup4 = "*"
deprecated = "*"
jmespath = "*"
oauthlib = "*"
requests = "*"
requests-oauthlib = "*"
six = "*"
[ package . extras ]
kerberos = [ "requests-kerberos" ]
2023-12-11 21:53:30 +00:00
[ [ package ] ]
name = "attrs"
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
version = "23.2.0"
2023-12-11 21:53:30 +00:00
description = "Classes Without Boilerplate"
optional = false
python-versions = ">=3.7"
files = [
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
{ file = "attrs-23.2.0-py3-none-any.whl" , hash = "sha256:99b87a485a5820b23b879f04c2305b44b951b502fd64be915879d77a7e8fc6f1" } ,
{ file = "attrs-23.2.0.tar.gz" , hash = "sha256:935dc3b529c262f6cf76e50877d35a4bd3c1de194fd41f47a2b7ae8f19971f30" } ,
2023-12-11 21:53:30 +00:00
]
[ package . extras ]
cov = [ "attrs[tests]" , "coverage[toml] (>=5.3)" ]
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
dev = [ "attrs[tests]" , "pre-commit" ]
2023-12-11 21:53:30 +00:00
docs = [ "furo" , "myst-parser" , "sphinx" , "sphinx-notfound-page" , "sphinxcontrib-towncrier" , "towncrier" , "zope-interface" ]
tests = [ "attrs[tests-no-zope]" , "zope-interface" ]
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
tests-mypy = [ "mypy (>=1.6)" , "pytest-mypy-plugins" ]
tests-no-zope = [ "attrs[tests-mypy]" , "cloudpickle" , "hypothesis" , "pympler" , "pytest (>=4.3.0)" , "pytest-xdist[psutil]" ]
2023-12-11 21:53:30 +00:00
2024-03-15 17:10:47 +00:00
[ [ package ] ]
name = "azure-ai-documentintelligence"
version = "1.0.0b2"
description = "Microsoft Azure AI Document Intelligence Client Library for Python"
optional = true
python-versions = ">=3.8"
files = [
{ file = "azure-ai-documentintelligence-1.0.0b2.tar.gz" , hash = "sha256:9f79ee5a9785079836a888cec97cb068ddfbecbc51393abbd99b30bd814c712f" } ,
{ file = "azure_ai_documentintelligence-1.0.0b2-py3-none-any.whl" , hash = "sha256:021a883d90a6ec867646c634ae5bbffadf1142adf46c575669e806f8704fe7f6" } ,
]
[ package . dependencies ]
azure-core = ">=1.30.0,<2.0.0"
isodate = ">=0.6.1,<1.0.0"
typing-extensions = ">=4.6.0"
[ [ package ] ]
name = "azure-common"
version = "1.1.28"
description = "Microsoft Azure Client Library for Python (Common)"
optional = true
python-versions = "*"
files = [
{ file = "azure-common-1.1.28.zip" , hash = "sha256:4ac0cd3214e36b6a1b6a442686722a5d8cc449603aa833f3f0f40bda836704a3" } ,
{ file = "azure_common-1.1.28-py2.py3-none-any.whl" , hash = "sha256:5c12d3dcf4ec20599ca6b0d3e09e86e146353d443e7fcc050c9a19c1f9df20ad" } ,
]
[ [ package ] ]
name = "azure-core"
version = "1.30.1"
description = "Microsoft Azure Core Library for Python"
optional = true
python-versions = ">=3.7"
files = [
{ file = "azure-core-1.30.1.tar.gz" , hash = "sha256:26273a254131f84269e8ea4464f3560c731f29c0c1f69ac99010845f239c1a8f" } ,
{ file = "azure_core-1.30.1-py3-none-any.whl" , hash = "sha256:7c5ee397e48f281ec4dd773d67a0a47a0962ed6fa833036057f9ea067f688e74" } ,
]
[ package . dependencies ]
requests = ">=2.21.0"
six = ">=1.11.0"
typing-extensions = ">=4.6.0"
[ package . extras ]
aio = [ "aiohttp (>=3.0)" ]
[ [ package ] ]
name = "azure-mgmt-core"
version = "1.4.0"
description = "Microsoft Azure Management Core Library for Python"
optional = true
python-versions = ">=3.7"
files = [
{ file = "azure-mgmt-core-1.4.0.zip" , hash = "sha256:d195208340094f98e5a6661b781cde6f6a051e79ce317caabd8ff97030a9b3ae" } ,
{ file = "azure_mgmt_core-1.4.0-py3-none-any.whl" , hash = "sha256:81071675f186a585555ef01816f2774d49c1c9024cb76e5720c3c0f6b337bb7d" } ,
]
[ package . dependencies ]
azure-core = ">=1.26.2,<2.0.0"
[ [ package ] ]
name = "azure-mgmt-storage"
version = "20.1.0"
description = "Microsoft Azure Storage Management Client Library for Python"
optional = true
python-versions = ">=3.7"
files = [
{ file = "azure-mgmt-storage-20.1.0.zip" , hash = "sha256:214f3fde8c91e27d53f2e654a28d15003ad3f6f15c8438a8205f0c88a48d9451" } ,
{ file = "azure_mgmt_storage-20.1.0-py3-none-any.whl" , hash = "sha256:afdc830329c674d96a91c963fa03ac81a4e387dfbf9f5a4e823950dc1fe95659" } ,
]
[ package . dependencies ]
azure-common = ">=1.1,<2.0"
azure-mgmt-core = ">=1.3.1,<2.0.0"
msrest = ">=0.6.21"
[ [ package ] ]
name = "azure-storage-blob"
version = "12.19.1"
description = "Microsoft Azure Blob Storage Client Library for Python"
optional = true
python-versions = ">=3.7"
files = [
{ file = "azure-storage-blob-12.19.1.tar.gz" , hash = "sha256:13e16ba42fc54ac2c7e8f976062173a5c82b9ec0594728e134aac372965a11b0" } ,
{ file = "azure_storage_blob-12.19.1-py3-none-any.whl" , hash = "sha256:c5530dc51c21c9564e4eb706cd499befca8819b10dd89716d3fc90d747556243" } ,
]
[ package . dependencies ]
azure-core = ">=1.28.0,<2.0.0"
cryptography = ">=2.1.4"
isodate = ">=0.6.1"
typing-extensions = ">=4.3.0"
[ package . extras ]
aio = [ "azure-core[aio] (>=1.28.0,<2.0.0)" ]
2023-12-11 21:53:30 +00:00
[ [ package ] ]
name = "babel"
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
version = "2.14.0"
2023-12-11 21:53:30 +00:00
description = "Internationalization utilities"
optional = false
python-versions = ">=3.7"
files = [
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
{ file = "Babel-2.14.0-py3-none-any.whl" , hash = "sha256:efb1a25b7118e67ce3a259bed20545c29cb68be8ad2c784c83689981b7a57287" } ,
{ file = "Babel-2.14.0.tar.gz" , hash = "sha256:6919867db036398ba21eb5c7a0f6b28ab8cbc3ae7a73a44ebe34ae74a4e7d363" } ,
2023-12-11 21:53:30 +00:00
]
[ package . dependencies ]
pytz = { version = ">=2015.7" , markers = "python_version < \"3.9\"" }
[ package . extras ]
dev = [ "freezegun (>=1.0,<2.0)" , "pytest (>=6.0)" , "pytest-cov" ]
[ [ package ] ]
name = "backcall"
version = "0.2.0"
description = "Specifications for callback functions passed in to an API"
optional = false
python-versions = "*"
files = [
{ file = "backcall-0.2.0-py2.py3-none-any.whl" , hash = "sha256:fbbce6a29f263178a1f7915c1940bde0ec2b2a967566fe1c65c1dfb7422bd255" } ,
{ file = "backcall-0.2.0.tar.gz" , hash = "sha256:5cbdbf27be5e7cfadb448baf0aa95508f91f2bbc6c6437cd9cd06e2a4c215e1e" } ,
]
2024-03-15 17:10:47 +00:00
[ [ package ] ]
name = "backoff"
version = "2.2.1"
description = "Function decoration for backoff and retry"
optional = true
python-versions = ">=3.7,<4.0"
files = [
{ file = "backoff-2.2.1-py3-none-any.whl" , hash = "sha256:63579f9a0628e06278f7e47b7d7d5b6ce20dc65c5e96a6f3ca99a6adca0396e8" } ,
{ file = "backoff-2.2.1.tar.gz" , hash = "sha256:03f829f5bb1923180821643f8753b0502c3b682293992485b0eef2807afa5cba" } ,
]
2023-12-11 21:53:30 +00:00
[ [ package ] ]
name = "beautifulsoup4"
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
version = "4.12.3"
2023-12-11 21:53:30 +00:00
description = "Screen-scraping library"
optional = false
python-versions = ">=3.6.0"
files = [
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
{ file = "beautifulsoup4-4.12.3-py3-none-any.whl" , hash = "sha256:b80878c9f40111313e55da8ba20bdba06d8fa3969fc68304167741bbf9e082ed" } ,
{ file = "beautifulsoup4-4.12.3.tar.gz" , hash = "sha256:74e3d1928edc070d21748185c46e3fb33490f22f52a3addee9aee0f4f7781051" } ,
2023-12-11 21:53:30 +00:00
]
[ package . dependencies ]
soupsieve = ">1.2"
[ package . extras ]
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
cchardet = [ "cchardet" ]
chardet = [ "chardet" ]
charset-normalizer = [ "charset-normalizer" ]
2023-12-11 21:53:30 +00:00
html5lib = [ "html5lib" ]
lxml = [ "lxml" ]
2024-03-15 17:10:47 +00:00
[ [ package ] ]
name = "bibtexparser"
version = "1.4.1"
description = "Bibtex parser for python 3"
optional = true
python-versions = "*"
files = [
{ file = "bibtexparser-1.4.1.tar.gz" , hash = "sha256:e00e29e24676c4808e0b4333b37bb55cca9cbb7871a56f63058509281588d789" } ,
]
[ package . dependencies ]
pyparsing = ">=2.0.3"
2023-12-11 21:53:30 +00:00
[ [ package ] ]
name = "bleach"
version = "6.1.0"
description = "An easy safelist-based HTML-sanitizing tool."
optional = false
python-versions = ">=3.8"
files = [
{ file = "bleach-6.1.0-py3-none-any.whl" , hash = "sha256:3225f354cfc436b9789c66c4ee030194bee0568fbf9cbdad3bc8b5c26c5f12b6" } ,
{ file = "bleach-6.1.0.tar.gz" , hash = "sha256:0a31f1837963c41d46bbf1331b8778e1308ea0791db03cc4e7357b97cf42a8fe" } ,
]
[ package . dependencies ]
six = ">=1.9.0"
webencodings = "*"
[ package . extras ]
css = [ "tinycss2 (>=1.1.0,<1.3)" ]
2024-03-15 17:10:47 +00:00
[ [ package ] ]
name = "blinker"
version = "1.7.0"
description = "Fast, simple object-to-object and broadcast signaling"
optional = true
python-versions = ">=3.8"
files = [
{ file = "blinker-1.7.0-py3-none-any.whl" , hash = "sha256:c3f865d4d54db7abc53758a01601cf343fe55b84c1de4e3fa910e420b438d5b9" } ,
{ file = "blinker-1.7.0.tar.gz" , hash = "sha256:e6820ff6fa4e4d1d8e2747c2283749c3f547e4fee112b98555cdcdae32996182" } ,
]
[ [ package ] ]
name = "boto3"
version = "1.34.61"
description = "The AWS SDK for Python"
optional = true
python-versions = ">= 3.8"
files = [
{ file = "boto3-1.34.61-py3-none-any.whl" , hash = "sha256:992e994c7e481a5d3259c699574882b79d631a46f7c369bea350b7ccb0651317" } ,
{ file = "boto3-1.34.61.tar.gz" , hash = "sha256:4b40bf2c8494647c9e88c180537dc9fc0c1047a9fffbb1e5b0da6596f1e59b7b" } ,
]
[ package . dependencies ]
botocore = ">=1.34.61,<1.35.0"
jmespath = ">=0.7.1,<2.0.0"
s3transfer = ">=0.10.0,<0.11.0"
[ package . extras ]
crt = [ "botocore[crt] (>=1.21.0,<2.0a0)" ]
[ [ package ] ]
name = "boto3-stubs"
version = "1.34.61"
description = "Type annotations for boto3 1.34.61 generated with mypy-boto3-builder 7.23.2"
optional = true
python-versions = ">=3.8"
files = [
{ file = "boto3-stubs-1.34.61.tar.gz" , hash = "sha256:2e1c47bfe00a3401c92fa77ee4560bda6152cc3457f2ac00e4a349c8a853c776" } ,
{ file = "boto3_stubs-1.34.61-py3-none-any.whl" , hash = "sha256:24badf32e31472d4f8326a6e759762bcf902f97e1241611f4167da1530ff6d0f" } ,
]
[ package . dependencies ]
botocore-stubs = "*"
types-s3transfer = "*"
typing-extensions = { version = ">=4.1.0" , markers = "python_version < \"3.12\"" }
[ package . extras ]
accessanalyzer = [ "mypy-boto3-accessanalyzer (>=1.34.0,<1.35.0)" ]
account = [ "mypy-boto3-account (>=1.34.0,<1.35.0)" ]
acm = [ "mypy-boto3-acm (>=1.34.0,<1.35.0)" ]
acm-pca = [ "mypy-boto3-acm-pca (>=1.34.0,<1.35.0)" ]
alexaforbusiness = [ "mypy-boto3-alexaforbusiness (>=1.34.0,<1.35.0)" ]
all = [ "mypy-boto3-accessanalyzer (>=1.34.0,<1.35.0)" , "mypy-boto3-account (>=1.34.0,<1.35.0)" , "mypy-boto3-acm (>=1.34.0,<1.35.0)" , "mypy-boto3-acm-pca (>=1.34.0,<1.35.0)" , "mypy-boto3-alexaforbusiness (>=1.34.0,<1.35.0)" , "mypy-boto3-amp (>=1.34.0,<1.35.0)" , "mypy-boto3-amplify (>=1.34.0,<1.35.0)" , "mypy-boto3-amplifybackend (>=1.34.0,<1.35.0)" , "mypy-boto3-amplifyuibuilder (>=1.34.0,<1.35.0)" , "mypy-boto3-apigateway (>=1.34.0,<1.35.0)" , "mypy-boto3-apigatewaymanagementapi (>=1.34.0,<1.35.0)" , "mypy-boto3-apigatewayv2 (>=1.34.0,<1.35.0)" , "mypy-boto3-appconfig (>=1.34.0,<1.35.0)" , "mypy-boto3-appconfigdata (>=1.34.0,<1.35.0)" , "mypy-boto3-appfabric (>=1.34.0,<1.35.0)" , "mypy-boto3-appflow (>=1.34.0,<1.35.0)" , "mypy-boto3-appintegrations (>=1.34.0,<1.35.0)" , "mypy-boto3-application-autoscaling (>=1.34.0,<1.35.0)" , "mypy-boto3-application-insights (>=1.34.0,<1.35.0)" , "mypy-boto3-applicationcostprofiler (>=1.34.0,<1.35.0)" , "mypy-boto3-appmesh (>=1.34.0,<1.35.0)" , "mypy-boto3-apprunner (>=1.34.0,<1.35.0)" , "mypy-boto3-appstream (>=1.34.0,<1.35.0)" , "mypy-boto3-appsync (>=1.34.0,<1.35.0)" , "mypy-boto3-arc-zonal-shift (>=1.34.0,<1.35.0)" , "mypy-boto3-artifact (>=1.34.0,<1.35.0)" , "mypy-boto3-athena (>=1.34.0,<1.35.0)" , "mypy-boto3-auditmanager (>=1.34.0,<1.35.0)" , "mypy-boto3-autoscaling (>=1.34.0,<1.35.0)" , "mypy-boto3-autoscaling-plans (>=1.34.0,<1.35.0)" , "mypy-boto3-b2bi (>=1.34.0,<1.35.0)" , "mypy-boto3-backup (>=1.34.0,<1.35.0)" , "mypy-boto3-backup-gateway (>=1.34.0,<1.35.0)" , "mypy-boto3-backupstorage (>=1.34.0,<1.35.0)" , "mypy-boto3-batch (>=1.34.0,<1.35.0)" , "mypy-boto3-bcm-data-exports (>=1.34.0,<1.35.0)" , "mypy-boto3-bedrock (>=1.34.0,<1.35.0)" , "mypy-boto3-bedrock-agent (>=1.34.0,<1.35.0)" , "mypy-boto3-bedrock-agent-runtime (>=1.34.0,<1.35.0)" , "mypy-boto3-bedrock-runtime (>=1.34.0,<1.35.0)" , "mypy-boto3-billingconductor (>=1.34.0,<1.35.0)" , "mypy-boto3-braket (>=1.34.0,<1.35.0)" , "mypy-boto3-budgets (>=1.34.0,<1.35.0)" , "mypy-boto3-ce (>=1.34.0,<1.35.0)" , "mypy-boto3-chatbot (>=1.34.0,<1.35.0)" , "mypy-boto3-chime (>=1.34.0,<1.35.0)" , "mypy-boto3-chime-sdk-identity (>=1.34.0,<1.35.0)" , "mypy-boto3-chime-sdk-media-pipelines (>=1.34.0,<1.35.0)" , "mypy-boto3-chime-sdk-meetings (>=1.34.0,<1.35.0)" , "mypy-boto3-chime-sdk-messaging (>=1.34.0,<1.35.0)" , "mypy-boto3-chime-sdk-voice (>=1.34.0,<1.35.0)" , "mypy-boto3-cleanrooms (>=1.34.0,<1.35.0)" , "mypy-boto3-cleanroomsml (>=1.34.0,<1.35.0)" , "mypy-boto3-cloud9 (>=1.34.0,<1.35.0)" , "mypy-boto3-cloudcontrol (>=1.34.0,<1.35.0)" , "mypy-boto3-clouddirectory (>=1.34.0,<1.35.0)" , "mypy-boto3-cloudformation (>=1.34.0,<1.35.0)" , "mypy-boto3-cloudfront (>=1.34.0,<1.35.0)" , "mypy-boto3-cloudfront-keyvaluestore (>=1.34.0,<1.35.0)" , "mypy-boto3-cloudhsm (>=1.34.0,<1.35.0)" , "mypy-boto3-cloudhsmv2 (>=1.34.0,<1.35.0)" , "mypy-boto3-cloudsearch (>=1.34.0,<1.35.0)" , "mypy-boto3-cloudsearchdomain (>=1.34.0,<1.35.0)" , "mypy-boto3-cloudtrail (>=1.34.0,<1.35.0)" , "mypy-boto3-cloudtrail-data (>=1.34.0,<1.35.0)" , "mypy-boto3-cloudwatch (>=1.34.0,<1.35.0)" , "mypy-boto3-codeartifact (>=1.34.0,<1.35.0)" , "mypy-boto3-codebuild (>=1.34.0,<1.35.0)" , "mypy-boto3-codecatalyst (>=1.34.0,<1.35.0)" , "mypy-boto3-codecommit (>=1.34.0,<1.35.0)" , "mypy-boto3-codedeploy (>=1.34.0,<1.35.0)" , "mypy-boto3-codeguru-reviewer (>=1.34.0,<1.35.0)" , "mypy-boto3-codeguru-security (>=1.34.0,<1.35.0)" , "mypy-boto3-codeguruprofiler (>=1.34.0,<1.35.0)" , "mypy-boto3-codepipeline (>=1.34.0,<1.35.0)" , "mypy-boto3-codestar (>=1.34.0,<1.35.0)" , "mypy-boto3-codestar-connections (>=1.34.0,<1.35.0)" , "mypy-boto3-codestar-notifications (>=1.34.0,<1.35.0)" , "mypy-boto3-cognito-identity (>=1.34.0,<1.35.0)" , "mypy-boto3-cognito-idp (>=1.34.0,<1.35.0)" , "mypy-boto3-cognito-sync (>=1.34.0,<1.35.0)" , "mypy-boto3-comprehend (>=1.34.0,<1.35.0)" , "mypy-boto3-comprehendmedical (>=1.34.0,<1.35.0)" , "mypy-boto3-compute-optimizer (>=1.34.0,<1.35.0)" , "mypy-boto3-config (>=1.34.0,<1.35.0)" , "mypy-boto3-connect (>=1.34.0,<1.35.0)" , "mypy-boto3-connect-contact-lens (>=1.34.0,<1.35.0)" , "mypy-boto3-connectcampaigns (>=1.34.0,<1.35.0)" , " mypy-boto3-
amp = [ "mypy-boto3-amp (>=1.34.0,<1.35.0)" ]
amplify = [ "mypy-boto3-amplify (>=1.34.0,<1.35.0)" ]
amplifybackend = [ "mypy-boto3-amplifybackend (>=1.34.0,<1.35.0)" ]
amplifyuibuilder = [ "mypy-boto3-amplifyuibuilder (>=1.34.0,<1.35.0)" ]
apigateway = [ "mypy-boto3-apigateway (>=1.34.0,<1.35.0)" ]
apigatewaymanagementapi = [ "mypy-boto3-apigatewaymanagementapi (>=1.34.0,<1.35.0)" ]
apigatewayv2 = [ "mypy-boto3-apigatewayv2 (>=1.34.0,<1.35.0)" ]
appconfig = [ "mypy-boto3-appconfig (>=1.34.0,<1.35.0)" ]
appconfigdata = [ "mypy-boto3-appconfigdata (>=1.34.0,<1.35.0)" ]
appfabric = [ "mypy-boto3-appfabric (>=1.34.0,<1.35.0)" ]
appflow = [ "mypy-boto3-appflow (>=1.34.0,<1.35.0)" ]
appintegrations = [ "mypy-boto3-appintegrations (>=1.34.0,<1.35.0)" ]
application-autoscaling = [ "mypy-boto3-application-autoscaling (>=1.34.0,<1.35.0)" ]
application-insights = [ "mypy-boto3-application-insights (>=1.34.0,<1.35.0)" ]
applicationcostprofiler = [ "mypy-boto3-applicationcostprofiler (>=1.34.0,<1.35.0)" ]
appmesh = [ "mypy-boto3-appmesh (>=1.34.0,<1.35.0)" ]
apprunner = [ "mypy-boto3-apprunner (>=1.34.0,<1.35.0)" ]
appstream = [ "mypy-boto3-appstream (>=1.34.0,<1.35.0)" ]
appsync = [ "mypy-boto3-appsync (>=1.34.0,<1.35.0)" ]
arc-zonal-shift = [ "mypy-boto3-arc-zonal-shift (>=1.34.0,<1.35.0)" ]
artifact = [ "mypy-boto3-artifact (>=1.34.0,<1.35.0)" ]
athena = [ "mypy-boto3-athena (>=1.34.0,<1.35.0)" ]
auditmanager = [ "mypy-boto3-auditmanager (>=1.34.0,<1.35.0)" ]
autoscaling = [ "mypy-boto3-autoscaling (>=1.34.0,<1.35.0)" ]
autoscaling-plans = [ "mypy-boto3-autoscaling-plans (>=1.34.0,<1.35.0)" ]
b2bi = [ "mypy-boto3-b2bi (>=1.34.0,<1.35.0)" ]
backup = [ "mypy-boto3-backup (>=1.34.0,<1.35.0)" ]
backup-gateway = [ "mypy-boto3-backup-gateway (>=1.34.0,<1.35.0)" ]
backupstorage = [ "mypy-boto3-backupstorage (>=1.34.0,<1.35.0)" ]
batch = [ "mypy-boto3-batch (>=1.34.0,<1.35.0)" ]
bcm-data-exports = [ "mypy-boto3-bcm-data-exports (>=1.34.0,<1.35.0)" ]
bedrock = [ "mypy-boto3-bedrock (>=1.34.0,<1.35.0)" ]
bedrock-agent = [ "mypy-boto3-bedrock-agent (>=1.34.0,<1.35.0)" ]
bedrock-agent-runtime = [ "mypy-boto3-bedrock-agent-runtime (>=1.34.0,<1.35.0)" ]
bedrock-runtime = [ "mypy-boto3-bedrock-runtime (>=1.34.0,<1.35.0)" ]
billingconductor = [ "mypy-boto3-billingconductor (>=1.34.0,<1.35.0)" ]
boto3 = [ "boto3 (==1.34.61)" , "botocore (==1.34.61)" ]
braket = [ "mypy-boto3-braket (>=1.34.0,<1.35.0)" ]
budgets = [ "mypy-boto3-budgets (>=1.34.0,<1.35.0)" ]
ce = [ "mypy-boto3-ce (>=1.34.0,<1.35.0)" ]
chatbot = [ "mypy-boto3-chatbot (>=1.34.0,<1.35.0)" ]
chime = [ "mypy-boto3-chime (>=1.34.0,<1.35.0)" ]
chime-sdk-identity = [ "mypy-boto3-chime-sdk-identity (>=1.34.0,<1.35.0)" ]
chime-sdk-media-pipelines = [ "mypy-boto3-chime-sdk-media-pipelines (>=1.34.0,<1.35.0)" ]
chime-sdk-meetings = [ "mypy-boto3-chime-sdk-meetings (>=1.34.0,<1.35.0)" ]
chime-sdk-messaging = [ "mypy-boto3-chime-sdk-messaging (>=1.34.0,<1.35.0)" ]
chime-sdk-voice = [ "mypy-boto3-chime-sdk-voice (>=1.34.0,<1.35.0)" ]
cleanrooms = [ "mypy-boto3-cleanrooms (>=1.34.0,<1.35.0)" ]
cleanroomsml = [ "mypy-boto3-cleanroomsml (>=1.34.0,<1.35.0)" ]
cloud9 = [ "mypy-boto3-cloud9 (>=1.34.0,<1.35.0)" ]
cloudcontrol = [ "mypy-boto3-cloudcontrol (>=1.34.0,<1.35.0)" ]
clouddirectory = [ "mypy-boto3-clouddirectory (>=1.34.0,<1.35.0)" ]
cloudformation = [ "mypy-boto3-cloudformation (>=1.34.0,<1.35.0)" ]
cloudfront = [ "mypy-boto3-cloudfront (>=1.34.0,<1.35.0)" ]
cloudfront-keyvaluestore = [ "mypy-boto3-cloudfront-keyvaluestore (>=1.34.0,<1.35.0)" ]
cloudhsm = [ "mypy-boto3-cloudhsm (>=1.34.0,<1.35.0)" ]
cloudhsmv2 = [ "mypy-boto3-cloudhsmv2 (>=1.34.0,<1.35.0)" ]
cloudsearch = [ "mypy-boto3-cloudsearch (>=1.34.0,<1.35.0)" ]
cloudsearchdomain = [ "mypy-boto3-cloudsearchdomain (>=1.34.0,<1.35.0)" ]
cloudtrail = [ "mypy-boto3-cloudtrail (>=1.34.0,<1.35.0)" ]
cloudtrail-data = [ "mypy-boto3-cloudtrail-data (>=1.34.0,<1.35.0)" ]
cloudwatch = [ "mypy-boto3-cloudwatch (>=1.34.0,<1.35.0)" ]
codeartifact = [ "mypy-boto3-codeartifact (>=1.34.0,<1.35.0)" ]
codebuild = [ "mypy-boto3-codebuild (>=1.34.0,<1.35.0)" ]
codecatalyst = [ "mypy-boto3-codecatalyst (>=1.34.0,<1.35.0)" ]
codecommit = [ "mypy-boto3-codecommit (>=1.34.0,<1.35.0)" ]
codedeploy = [ "mypy-boto3-codedeploy (>=1.34.0,<1.35.0)" ]
codeguru-reviewer = [ "mypy-boto3-codeguru-reviewer (>=1.34.0,<1.35.0)" ]
codeguru-security = [ "mypy-boto3-codeguru-security (>=1.34.0,<1.35.0)" ]
codeguruprofiler = [ "mypy-boto3-codeguruprofiler (>=1.34.0,<1.35.0)" ]
codepipeline = [ "mypy-boto3-codepipeline (>=1.34.0,<1.35.0)" ]
codestar = [ "mypy-boto3-codestar (>=1.34.0,<1.35.0)" ]
codestar-connections = [ "mypy-boto3-codestar-connections (>=1.34.0,<1.35.0)" ]
codestar-notifications = [ "mypy-boto3-codestar-notifications (>=1.34.0,<1.35.0)" ]
cognito-identity = [ "mypy-boto3-cognito-identity (>=1.34.0,<1.35.0)" ]
cognito-idp = [ "mypy-boto3-cognito-idp (>=1.34.0,<1.35.0)" ]
cognito-sync = [ "mypy-boto3-cognito-sync (>=1.34.0,<1.35.0)" ]
comprehend = [ "mypy-boto3-comprehend (>=1.34.0,<1.35.0)" ]
comprehendmedical = [ "mypy-boto3-comprehendmedical (>=1.34.0,<1.35.0)" ]
compute-optimizer = [ "mypy-boto3-compute-optimizer (>=1.34.0,<1.35.0)" ]
config = [ "mypy-boto3-config (>=1.34.0,<1.35.0)" ]
connect = [ "mypy-boto3-connect (>=1.34.0,<1.35.0)" ]
connect-contact-lens = [ "mypy-boto3-connect-contact-lens (>=1.34.0,<1.35.0)" ]
connectcampaigns = [ "mypy-boto3-connectcampaigns (>=1.34.0,<1.35.0)" ]
connectcases = [ "mypy-boto3-connectcases (>=1.34.0,<1.35.0)" ]
connectparticipant = [ "mypy-boto3-connectparticipant (>=1.34.0,<1.35.0)" ]
controltower = [ "mypy-boto3-controltower (>=1.34.0,<1.35.0)" ]
cost-optimization-hub = [ "mypy-boto3-cost-optimization-hub (>=1.34.0,<1.35.0)" ]
cur = [ "mypy-boto3-cur (>=1.34.0,<1.35.0)" ]
customer-profiles = [ "mypy-boto3-customer-profiles (>=1.34.0,<1.35.0)" ]
databrew = [ "mypy-boto3-databrew (>=1.34.0,<1.35.0)" ]
dataexchange = [ "mypy-boto3-dataexchange (>=1.34.0,<1.35.0)" ]
datapipeline = [ "mypy-boto3-datapipeline (>=1.34.0,<1.35.0)" ]
datasync = [ "mypy-boto3-datasync (>=1.34.0,<1.35.0)" ]
datazone = [ "mypy-boto3-datazone (>=1.34.0,<1.35.0)" ]
dax = [ "mypy-boto3-dax (>=1.34.0,<1.35.0)" ]
detective = [ "mypy-boto3-detective (>=1.34.0,<1.35.0)" ]
devicefarm = [ "mypy-boto3-devicefarm (>=1.34.0,<1.35.0)" ]
devops-guru = [ "mypy-boto3-devops-guru (>=1.34.0,<1.35.0)" ]
directconnect = [ "mypy-boto3-directconnect (>=1.34.0,<1.35.0)" ]
discovery = [ "mypy-boto3-discovery (>=1.34.0,<1.35.0)" ]
dlm = [ "mypy-boto3-dlm (>=1.34.0,<1.35.0)" ]
dms = [ "mypy-boto3-dms (>=1.34.0,<1.35.0)" ]
docdb = [ "mypy-boto3-docdb (>=1.34.0,<1.35.0)" ]
docdb-elastic = [ "mypy-boto3-docdb-elastic (>=1.34.0,<1.35.0)" ]
drs = [ "mypy-boto3-drs (>=1.34.0,<1.35.0)" ]
ds = [ "mypy-boto3-ds (>=1.34.0,<1.35.0)" ]
dynamodb = [ "mypy-boto3-dynamodb (>=1.34.0,<1.35.0)" ]
dynamodbstreams = [ "mypy-boto3-dynamodbstreams (>=1.34.0,<1.35.0)" ]
ebs = [ "mypy-boto3-ebs (>=1.34.0,<1.35.0)" ]
ec2 = [ "mypy-boto3-ec2 (>=1.34.0,<1.35.0)" ]
ec2-instance-connect = [ "mypy-boto3-ec2-instance-connect (>=1.34.0,<1.35.0)" ]
ecr = [ "mypy-boto3-ecr (>=1.34.0,<1.35.0)" ]
ecr-public = [ "mypy-boto3-ecr-public (>=1.34.0,<1.35.0)" ]
ecs = [ "mypy-boto3-ecs (>=1.34.0,<1.35.0)" ]
efs = [ "mypy-boto3-efs (>=1.34.0,<1.35.0)" ]
eks = [ "mypy-boto3-eks (>=1.34.0,<1.35.0)" ]
eks-auth = [ "mypy-boto3-eks-auth (>=1.34.0,<1.35.0)" ]
elastic-inference = [ "mypy-boto3-elastic-inference (>=1.34.0,<1.35.0)" ]
elasticache = [ "mypy-boto3-elasticache (>=1.34.0,<1.35.0)" ]
elasticbeanstalk = [ "mypy-boto3-elasticbeanstalk (>=1.34.0,<1.35.0)" ]
elastictranscoder = [ "mypy-boto3-elastictranscoder (>=1.34.0,<1.35.0)" ]
elb = [ "mypy-boto3-elb (>=1.34.0,<1.35.0)" ]
elbv2 = [ "mypy-boto3-elbv2 (>=1.34.0,<1.35.0)" ]
emr = [ "mypy-boto3-emr (>=1.34.0,<1.35.0)" ]
emr-containers = [ "mypy-boto3-emr-containers (>=1.34.0,<1.35.0)" ]
emr-serverless = [ "mypy-boto3-emr-serverless (>=1.34.0,<1.35.0)" ]
entityresolution = [ "mypy-boto3-entityresolution (>=1.34.0,<1.35.0)" ]
es = [ "mypy-boto3-es (>=1.34.0,<1.35.0)" ]
essential = [ "mypy-boto3-cloudformation (>=1.34.0,<1.35.0)" , "mypy-boto3-dynamodb (>=1.34.0,<1.35.0)" , "mypy-boto3-ec2 (>=1.34.0,<1.35.0)" , "mypy-boto3-lambda (>=1.34.0,<1.35.0)" , "mypy-boto3-rds (>=1.34.0,<1.35.0)" , "mypy-boto3-s3 (>=1.34.0,<1.35.0)" , "mypy-boto3-sqs (>=1.34.0,<1.35.0)" ]
events = [ "mypy-boto3-events (>=1.34.0,<1.35.0)" ]
evidently = [ "mypy-boto3-evidently (>=1.34.0,<1.35.0)" ]
finspace = [ "mypy-boto3-finspace (>=1.34.0,<1.35.0)" ]
finspace-data = [ "mypy-boto3-finspace-data (>=1.34.0,<1.35.0)" ]
firehose = [ "mypy-boto3-firehose (>=1.34.0,<1.35.0)" ]
fis = [ "mypy-boto3-fis (>=1.34.0,<1.35.0)" ]
fms = [ "mypy-boto3-fms (>=1.34.0,<1.35.0)" ]
forecast = [ "mypy-boto3-forecast (>=1.34.0,<1.35.0)" ]
forecastquery = [ "mypy-boto3-forecastquery (>=1.34.0,<1.35.0)" ]
frauddetector = [ "mypy-boto3-frauddetector (>=1.34.0,<1.35.0)" ]
freetier = [ "mypy-boto3-freetier (>=1.34.0,<1.35.0)" ]
fsx = [ "mypy-boto3-fsx (>=1.34.0,<1.35.0)" ]
gamelift = [ "mypy-boto3-gamelift (>=1.34.0,<1.35.0)" ]
glacier = [ "mypy-boto3-glacier (>=1.34.0,<1.35.0)" ]
globalaccelerator = [ "mypy-boto3-globalaccelerator (>=1.34.0,<1.35.0)" ]
glue = [ "mypy-boto3-glue (>=1.34.0,<1.35.0)" ]
grafana = [ "mypy-boto3-grafana (>=1.34.0,<1.35.0)" ]
greengrass = [ "mypy-boto3-greengrass (>=1.34.0,<1.35.0)" ]
greengrassv2 = [ "mypy-boto3-greengrassv2 (>=1.34.0,<1.35.0)" ]
groundstation = [ "mypy-boto3-groundstation (>=1.34.0,<1.35.0)" ]
guardduty = [ "mypy-boto3-guardduty (>=1.34.0,<1.35.0)" ]
health = [ "mypy-boto3-health (>=1.34.0,<1.35.0)" ]
healthlake = [ "mypy-boto3-healthlake (>=1.34.0,<1.35.0)" ]
honeycode = [ "mypy-boto3-honeycode (>=1.34.0,<1.35.0)" ]
iam = [ "mypy-boto3-iam (>=1.34.0,<1.35.0)" ]
identitystore = [ "mypy-boto3-identitystore (>=1.34.0,<1.35.0)" ]
imagebuilder = [ "mypy-boto3-imagebuilder (>=1.34.0,<1.35.0)" ]
importexport = [ "mypy-boto3-importexport (>=1.34.0,<1.35.0)" ]
inspector = [ "mypy-boto3-inspector (>=1.34.0,<1.35.0)" ]
inspector-scan = [ "mypy-boto3-inspector-scan (>=1.34.0,<1.35.0)" ]
inspector2 = [ "mypy-boto3-inspector2 (>=1.34.0,<1.35.0)" ]
internetmonitor = [ "mypy-boto3-internetmonitor (>=1.34.0,<1.35.0)" ]
iot = [ "mypy-boto3-iot (>=1.34.0,<1.35.0)" ]
iot-data = [ "mypy-boto3-iot-data (>=1.34.0,<1.35.0)" ]
iot-jobs-data = [ "mypy-boto3-iot-jobs-data (>=1.34.0,<1.35.0)" ]
iot-roborunner = [ "mypy-boto3-iot-roborunner (>=1.34.0,<1.35.0)" ]
iot1click-devices = [ "mypy-boto3-iot1click-devices (>=1.34.0,<1.35.0)" ]
iot1click-projects = [ "mypy-boto3-iot1click-projects (>=1.34.0,<1.35.0)" ]
iotanalytics = [ "mypy-boto3-iotanalytics (>=1.34.0,<1.35.0)" ]
iotdeviceadvisor = [ "mypy-boto3-iotdeviceadvisor (>=1.34.0,<1.35.0)" ]
iotevents = [ "mypy-boto3-iotevents (>=1.34.0,<1.35.0)" ]
iotevents-data = [ "mypy-boto3-iotevents-data (>=1.34.0,<1.35.0)" ]
iotfleethub = [ "mypy-boto3-iotfleethub (>=1.34.0,<1.35.0)" ]
iotfleetwise = [ "mypy-boto3-iotfleetwise (>=1.34.0,<1.35.0)" ]
iotsecuretunneling = [ "mypy-boto3-iotsecuretunneling (>=1.34.0,<1.35.0)" ]
iotsitewise = [ "mypy-boto3-iotsitewise (>=1.34.0,<1.35.0)" ]
iotthingsgraph = [ "mypy-boto3-iotthingsgraph (>=1.34.0,<1.35.0)" ]
iottwinmaker = [ "mypy-boto3-iottwinmaker (>=1.34.0,<1.35.0)" ]
iotwireless = [ "mypy-boto3-iotwireless (>=1.34.0,<1.35.0)" ]
ivs = [ "mypy-boto3-ivs (>=1.34.0,<1.35.0)" ]
ivs-realtime = [ "mypy-boto3-ivs-realtime (>=1.34.0,<1.35.0)" ]
ivschat = [ "mypy-boto3-ivschat (>=1.34.0,<1.35.0)" ]
kafka = [ "mypy-boto3-kafka (>=1.34.0,<1.35.0)" ]
kafkaconnect = [ "mypy-boto3-kafkaconnect (>=1.34.0,<1.35.0)" ]
kendra = [ "mypy-boto3-kendra (>=1.34.0,<1.35.0)" ]
kendra-ranking = [ "mypy-boto3-kendra-ranking (>=1.34.0,<1.35.0)" ]
keyspaces = [ "mypy-boto3-keyspaces (>=1.34.0,<1.35.0)" ]
kinesis = [ "mypy-boto3-kinesis (>=1.34.0,<1.35.0)" ]
kinesis-video-archived-media = [ "mypy-boto3-kinesis-video-archived-media (>=1.34.0,<1.35.0)" ]
kinesis-video-media = [ "mypy-boto3-kinesis-video-media (>=1.34.0,<1.35.0)" ]
kinesis-video-signaling = [ "mypy-boto3-kinesis-video-signaling (>=1.34.0,<1.35.0)" ]
kinesis-video-webrtc-storage = [ "mypy-boto3-kinesis-video-webrtc-storage (>=1.34.0,<1.35.0)" ]
kinesisanalytics = [ "mypy-boto3-kinesisanalytics (>=1.34.0,<1.35.0)" ]
kinesisanalyticsv2 = [ "mypy-boto3-kinesisanalyticsv2 (>=1.34.0,<1.35.0)" ]
kinesisvideo = [ "mypy-boto3-kinesisvideo (>=1.34.0,<1.35.0)" ]
kms = [ "mypy-boto3-kms (>=1.34.0,<1.35.0)" ]
lakeformation = [ "mypy-boto3-lakeformation (>=1.34.0,<1.35.0)" ]
lambda = [ "mypy-boto3-lambda (>=1.34.0,<1.35.0)" ]
launch-wizard = [ "mypy-boto3-launch-wizard (>=1.34.0,<1.35.0)" ]
lex-models = [ "mypy-boto3-lex-models (>=1.34.0,<1.35.0)" ]
lex-runtime = [ "mypy-boto3-lex-runtime (>=1.34.0,<1.35.0)" ]
lexv2-models = [ "mypy-boto3-lexv2-models (>=1.34.0,<1.35.0)" ]
lexv2-runtime = [ "mypy-boto3-lexv2-runtime (>=1.34.0,<1.35.0)" ]
license-manager = [ "mypy-boto3-license-manager (>=1.34.0,<1.35.0)" ]
license-manager-linux-subscriptions = [ "mypy-boto3-license-manager-linux-subscriptions (>=1.34.0,<1.35.0)" ]
license-manager-user-subscriptions = [ "mypy-boto3-license-manager-user-subscriptions (>=1.34.0,<1.35.0)" ]
lightsail = [ "mypy-boto3-lightsail (>=1.34.0,<1.35.0)" ]
location = [ "mypy-boto3-location (>=1.34.0,<1.35.0)" ]
logs = [ "mypy-boto3-logs (>=1.34.0,<1.35.0)" ]
lookoutequipment = [ "mypy-boto3-lookoutequipment (>=1.34.0,<1.35.0)" ]
lookoutmetrics = [ "mypy-boto3-lookoutmetrics (>=1.34.0,<1.35.0)" ]
lookoutvision = [ "mypy-boto3-lookoutvision (>=1.34.0,<1.35.0)" ]
m2 = [ "mypy-boto3-m2 (>=1.34.0,<1.35.0)" ]
machinelearning = [ "mypy-boto3-machinelearning (>=1.34.0,<1.35.0)" ]
macie2 = [ "mypy-boto3-macie2 (>=1.34.0,<1.35.0)" ]
managedblockchain = [ "mypy-boto3-managedblockchain (>=1.34.0,<1.35.0)" ]
managedblockchain-query = [ "mypy-boto3-managedblockchain-query (>=1.34.0,<1.35.0)" ]
marketplace-agreement = [ "mypy-boto3-marketplace-agreement (>=1.34.0,<1.35.0)" ]
marketplace-catalog = [ "mypy-boto3-marketplace-catalog (>=1.34.0,<1.35.0)" ]
marketplace-deployment = [ "mypy-boto3-marketplace-deployment (>=1.34.0,<1.35.0)" ]
marketplace-entitlement = [ "mypy-boto3-marketplace-entitlement (>=1.34.0,<1.35.0)" ]
marketplacecommerceanalytics = [ "mypy-boto3-marketplacecommerceanalytics (>=1.34.0,<1.35.0)" ]
mediaconnect = [ "mypy-boto3-mediaconnect (>=1.34.0,<1.35.0)" ]
mediaconvert = [ "mypy-boto3-mediaconvert (>=1.34.0,<1.35.0)" ]
medialive = [ "mypy-boto3-medialive (>=1.34.0,<1.35.0)" ]
mediapackage = [ "mypy-boto3-mediapackage (>=1.34.0,<1.35.0)" ]
mediapackage-vod = [ "mypy-boto3-mediapackage-vod (>=1.34.0,<1.35.0)" ]
mediapackagev2 = [ "mypy-boto3-mediapackagev2 (>=1.34.0,<1.35.0)" ]
mediastore = [ "mypy-boto3-mediastore (>=1.34.0,<1.35.0)" ]
mediastore-data = [ "mypy-boto3-mediastore-data (>=1.34.0,<1.35.0)" ]
mediatailor = [ "mypy-boto3-mediatailor (>=1.34.0,<1.35.0)" ]
medical-imaging = [ "mypy-boto3-medical-imaging (>=1.34.0,<1.35.0)" ]
memorydb = [ "mypy-boto3-memorydb (>=1.34.0,<1.35.0)" ]
meteringmarketplace = [ "mypy-boto3-meteringmarketplace (>=1.34.0,<1.35.0)" ]
mgh = [ "mypy-boto3-mgh (>=1.34.0,<1.35.0)" ]
mgn = [ "mypy-boto3-mgn (>=1.34.0,<1.35.0)" ]
migration-hub-refactor-spaces = [ "mypy-boto3-migration-hub-refactor-spaces (>=1.34.0,<1.35.0)" ]
migrationhub-config = [ "mypy-boto3-migrationhub-config (>=1.34.0,<1.35.0)" ]
migrationhuborchestrator = [ "mypy-boto3-migrationhuborchestrator (>=1.34.0,<1.35.0)" ]
migrationhubstrategy = [ "mypy-boto3-migrationhubstrategy (>=1.34.0,<1.35.0)" ]
mobile = [ "mypy-boto3-mobile (>=1.34.0,<1.35.0)" ]
mq = [ "mypy-boto3-mq (>=1.34.0,<1.35.0)" ]
mturk = [ "mypy-boto3-mturk (>=1.34.0,<1.35.0)" ]
mwaa = [ "mypy-boto3-mwaa (>=1.34.0,<1.35.0)" ]
neptune = [ "mypy-boto3-neptune (>=1.34.0,<1.35.0)" ]
neptune-graph = [ "mypy-boto3-neptune-graph (>=1.34.0,<1.35.0)" ]
neptunedata = [ "mypy-boto3-neptunedata (>=1.34.0,<1.35.0)" ]
network-firewall = [ "mypy-boto3-network-firewall (>=1.34.0,<1.35.0)" ]
networkmanager = [ "mypy-boto3-networkmanager (>=1.34.0,<1.35.0)" ]
networkmonitor = [ "mypy-boto3-networkmonitor (>=1.34.0,<1.35.0)" ]
nimble = [ "mypy-boto3-nimble (>=1.34.0,<1.35.0)" ]
oam = [ "mypy-boto3-oam (>=1.34.0,<1.35.0)" ]
omics = [ "mypy-boto3-omics (>=1.34.0,<1.35.0)" ]
opensearch = [ "mypy-boto3-opensearch (>=1.34.0,<1.35.0)" ]
opensearchserverless = [ "mypy-boto3-opensearchserverless (>=1.34.0,<1.35.0)" ]
opsworks = [ "mypy-boto3-opsworks (>=1.34.0,<1.35.0)" ]
opsworkscm = [ "mypy-boto3-opsworkscm (>=1.34.0,<1.35.0)" ]
organizations = [ "mypy-boto3-organizations (>=1.34.0,<1.35.0)" ]
osis = [ "mypy-boto3-osis (>=1.34.0,<1.35.0)" ]
outposts = [ "mypy-boto3-outposts (>=1.34.0,<1.35.0)" ]
panorama = [ "mypy-boto3-panorama (>=1.34.0,<1.35.0)" ]
payment-cryptography = [ "mypy-boto3-payment-cryptography (>=1.34.0,<1.35.0)" ]
payment-cryptography-data = [ "mypy-boto3-payment-cryptography-data (>=1.34.0,<1.35.0)" ]
pca-connector-ad = [ "mypy-boto3-pca-connector-ad (>=1.34.0,<1.35.0)" ]
personalize = [ "mypy-boto3-personalize (>=1.34.0,<1.35.0)" ]
personalize-events = [ "mypy-boto3-personalize-events (>=1.34.0,<1.35.0)" ]
personalize-runtime = [ "mypy-boto3-personalize-runtime (>=1.34.0,<1.35.0)" ]
pi = [ "mypy-boto3-pi (>=1.34.0,<1.35.0)" ]
pinpoint = [ "mypy-boto3-pinpoint (>=1.34.0,<1.35.0)" ]
pinpoint-email = [ "mypy-boto3-pinpoint-email (>=1.34.0,<1.35.0)" ]
pinpoint-sms-voice = [ "mypy-boto3-pinpoint-sms-voice (>=1.34.0,<1.35.0)" ]
pinpoint-sms-voice-v2 = [ "mypy-boto3-pinpoint-sms-voice-v2 (>=1.34.0,<1.35.0)" ]
pipes = [ "mypy-boto3-pipes (>=1.34.0,<1.35.0)" ]
polly = [ "mypy-boto3-polly (>=1.34.0,<1.35.0)" ]
pricing = [ "mypy-boto3-pricing (>=1.34.0,<1.35.0)" ]
privatenetworks = [ "mypy-boto3-privatenetworks (>=1.34.0,<1.35.0)" ]
proton = [ "mypy-boto3-proton (>=1.34.0,<1.35.0)" ]
qbusiness = [ "mypy-boto3-qbusiness (>=1.34.0,<1.35.0)" ]
qconnect = [ "mypy-boto3-qconnect (>=1.34.0,<1.35.0)" ]
qldb = [ "mypy-boto3-qldb (>=1.34.0,<1.35.0)" ]
qldb-session = [ "mypy-boto3-qldb-session (>=1.34.0,<1.35.0)" ]
quicksight = [ "mypy-boto3-quicksight (>=1.34.0,<1.35.0)" ]
ram = [ "mypy-boto3-ram (>=1.34.0,<1.35.0)" ]
rbin = [ "mypy-boto3-rbin (>=1.34.0,<1.35.0)" ]
rds = [ "mypy-boto3-rds (>=1.34.0,<1.35.0)" ]
rds-data = [ "mypy-boto3-rds-data (>=1.34.0,<1.35.0)" ]
redshift = [ "mypy-boto3-redshift (>=1.34.0,<1.35.0)" ]
redshift-data = [ "mypy-boto3-redshift-data (>=1.34.0,<1.35.0)" ]
redshift-serverless = [ "mypy-boto3-redshift-serverless (>=1.34.0,<1.35.0)" ]
rekognition = [ "mypy-boto3-rekognition (>=1.34.0,<1.35.0)" ]
repostspace = [ "mypy-boto3-repostspace (>=1.34.0,<1.35.0)" ]
resiliencehub = [ "mypy-boto3-resiliencehub (>=1.34.0,<1.35.0)" ]
resource-explorer-2 = [ "mypy-boto3-resource-explorer-2 (>=1.34.0,<1.35.0)" ]
resource-groups = [ "mypy-boto3-resource-groups (>=1.34.0,<1.35.0)" ]
resourcegroupstaggingapi = [ "mypy-boto3-resourcegroupstaggingapi (>=1.34.0,<1.35.0)" ]
robomaker = [ "mypy-boto3-robomaker (>=1.34.0,<1.35.0)" ]
rolesanywhere = [ "mypy-boto3-rolesanywhere (>=1.34.0,<1.35.0)" ]
route53 = [ "mypy-boto3-route53 (>=1.34.0,<1.35.0)" ]
route53-recovery-cluster = [ "mypy-boto3-route53-recovery-cluster (>=1.34.0,<1.35.0)" ]
route53-recovery-control-config = [ "mypy-boto3-route53-recovery-control-config (>=1.34.0,<1.35.0)" ]
route53-recovery-readiness = [ "mypy-boto3-route53-recovery-readiness (>=1.34.0,<1.35.0)" ]
route53domains = [ "mypy-boto3-route53domains (>=1.34.0,<1.35.0)" ]
route53resolver = [ "mypy-boto3-route53resolver (>=1.34.0,<1.35.0)" ]
rum = [ "mypy-boto3-rum (>=1.34.0,<1.35.0)" ]
s3 = [ "mypy-boto3-s3 (>=1.34.0,<1.35.0)" ]
s3control = [ "mypy-boto3-s3control (>=1.34.0,<1.35.0)" ]
s3outposts = [ "mypy-boto3-s3outposts (>=1.34.0,<1.35.0)" ]
sagemaker = [ "mypy-boto3-sagemaker (>=1.34.0,<1.35.0)" ]
sagemaker-a2i-runtime = [ "mypy-boto3-sagemaker-a2i-runtime (>=1.34.0,<1.35.0)" ]
sagemaker-edge = [ "mypy-boto3-sagemaker-edge (>=1.34.0,<1.35.0)" ]
sagemaker-featurestore-runtime = [ "mypy-boto3-sagemaker-featurestore-runtime (>=1.34.0,<1.35.0)" ]
sagemaker-geospatial = [ "mypy-boto3-sagemaker-geospatial (>=1.34.0,<1.35.0)" ]
sagemaker-metrics = [ "mypy-boto3-sagemaker-metrics (>=1.34.0,<1.35.0)" ]
sagemaker-runtime = [ "mypy-boto3-sagemaker-runtime (>=1.34.0,<1.35.0)" ]
savingsplans = [ "mypy-boto3-savingsplans (>=1.34.0,<1.35.0)" ]
scheduler = [ "mypy-boto3-scheduler (>=1.34.0,<1.35.0)" ]
schemas = [ "mypy-boto3-schemas (>=1.34.0,<1.35.0)" ]
sdb = [ "mypy-boto3-sdb (>=1.34.0,<1.35.0)" ]
secretsmanager = [ "mypy-boto3-secretsmanager (>=1.34.0,<1.35.0)" ]
securityhub = [ "mypy-boto3-securityhub (>=1.34.0,<1.35.0)" ]
securitylake = [ "mypy-boto3-securitylake (>=1.34.0,<1.35.0)" ]
serverlessrepo = [ "mypy-boto3-serverlessrepo (>=1.34.0,<1.35.0)" ]
service-quotas = [ "mypy-boto3-service-quotas (>=1.34.0,<1.35.0)" ]
servicecatalog = [ "mypy-boto3-servicecatalog (>=1.34.0,<1.35.0)" ]
servicecatalog-appregistry = [ "mypy-boto3-servicecatalog-appregistry (>=1.34.0,<1.35.0)" ]
servicediscovery = [ "mypy-boto3-servicediscovery (>=1.34.0,<1.35.0)" ]
ses = [ "mypy-boto3-ses (>=1.34.0,<1.35.0)" ]
sesv2 = [ "mypy-boto3-sesv2 (>=1.34.0,<1.35.0)" ]
shield = [ "mypy-boto3-shield (>=1.34.0,<1.35.0)" ]
signer = [ "mypy-boto3-signer (>=1.34.0,<1.35.0)" ]
simspaceweaver = [ "mypy-boto3-simspaceweaver (>=1.34.0,<1.35.0)" ]
sms = [ "mypy-boto3-sms (>=1.34.0,<1.35.0)" ]
sms-voice = [ "mypy-boto3-sms-voice (>=1.34.0,<1.35.0)" ]
snow-device-management = [ "mypy-boto3-snow-device-management (>=1.34.0,<1.35.0)" ]
snowball = [ "mypy-boto3-snowball (>=1.34.0,<1.35.0)" ]
sns = [ "mypy-boto3-sns (>=1.34.0,<1.35.0)" ]
sqs = [ "mypy-boto3-sqs (>=1.34.0,<1.35.0)" ]
ssm = [ "mypy-boto3-ssm (>=1.34.0,<1.35.0)" ]
ssm-contacts = [ "mypy-boto3-ssm-contacts (>=1.34.0,<1.35.0)" ]
ssm-incidents = [ "mypy-boto3-ssm-incidents (>=1.34.0,<1.35.0)" ]
ssm-sap = [ "mypy-boto3-ssm-sap (>=1.34.0,<1.35.0)" ]
sso = [ "mypy-boto3-sso (>=1.34.0,<1.35.0)" ]
sso-admin = [ "mypy-boto3-sso-admin (>=1.34.0,<1.35.0)" ]
sso-oidc = [ "mypy-boto3-sso-oidc (>=1.34.0,<1.35.0)" ]
stepfunctions = [ "mypy-boto3-stepfunctions (>=1.34.0,<1.35.0)" ]
storagegateway = [ "mypy-boto3-storagegateway (>=1.34.0,<1.35.0)" ]
sts = [ "mypy-boto3-sts (>=1.34.0,<1.35.0)" ]
supplychain = [ "mypy-boto3-supplychain (>=1.34.0,<1.35.0)" ]
support = [ "mypy-boto3-support (>=1.34.0,<1.35.0)" ]
support-app = [ "mypy-boto3-support-app (>=1.34.0,<1.35.0)" ]
swf = [ "mypy-boto3-swf (>=1.34.0,<1.35.0)" ]
synthetics = [ "mypy-boto3-synthetics (>=1.34.0,<1.35.0)" ]
textract = [ "mypy-boto3-textract (>=1.34.0,<1.35.0)" ]
timestream-query = [ "mypy-boto3-timestream-query (>=1.34.0,<1.35.0)" ]
timestream-write = [ "mypy-boto3-timestream-write (>=1.34.0,<1.35.0)" ]
tnb = [ "mypy-boto3-tnb (>=1.34.0,<1.35.0)" ]
transcribe = [ "mypy-boto3-transcribe (>=1.34.0,<1.35.0)" ]
transfer = [ "mypy-boto3-transfer (>=1.34.0,<1.35.0)" ]
translate = [ "mypy-boto3-translate (>=1.34.0,<1.35.0)" ]
trustedadvisor = [ "mypy-boto3-trustedadvisor (>=1.34.0,<1.35.0)" ]
verifiedpermissions = [ "mypy-boto3-verifiedpermissions (>=1.34.0,<1.35.0)" ]
voice-id = [ "mypy-boto3-voice-id (>=1.34.0,<1.35.0)" ]
vpc-lattice = [ "mypy-boto3-vpc-lattice (>=1.34.0,<1.35.0)" ]
waf = [ "mypy-boto3-waf (>=1.34.0,<1.35.0)" ]
waf-regional = [ "mypy-boto3-waf-regional (>=1.34.0,<1.35.0)" ]
wafv2 = [ "mypy-boto3-wafv2 (>=1.34.0,<1.35.0)" ]
wellarchitected = [ "mypy-boto3-wellarchitected (>=1.34.0,<1.35.0)" ]
wisdom = [ "mypy-boto3-wisdom (>=1.34.0,<1.35.0)" ]
workdocs = [ "mypy-boto3-workdocs (>=1.34.0,<1.35.0)" ]
worklink = [ "mypy-boto3-worklink (>=1.34.0,<1.35.0)" ]
workmail = [ "mypy-boto3-workmail (>=1.34.0,<1.35.0)" ]
workmailmessageflow = [ "mypy-boto3-workmailmessageflow (>=1.34.0,<1.35.0)" ]
workspaces = [ "mypy-boto3-workspaces (>=1.34.0,<1.35.0)" ]
workspaces-thin-client = [ "mypy-boto3-workspaces-thin-client (>=1.34.0,<1.35.0)" ]
workspaces-web = [ "mypy-boto3-workspaces-web (>=1.34.0,<1.35.0)" ]
xray = [ "mypy-boto3-xray (>=1.34.0,<1.35.0)" ]
[ [ package ] ]
name = "botocore"
version = "1.34.61"
description = "Low-level, data-driven core of boto 3."
optional = true
python-versions = ">= 3.8"
files = [
{ file = "botocore-1.34.61-py3-none-any.whl" , hash = "sha256:079f3288d38f97fd5656c25c44a94bea0e7090b938abfdeea463eaadb210c4a0" } ,
{ file = "botocore-1.34.61.tar.gz" , hash = "sha256:72df4af7e4e6392552c882d48c74e4be9bf7be4cd8d829711b312fbae13d7034" } ,
]
[ package . dependencies ]
jmespath = ">=0.7.1,<2.0.0"
python-dateutil = ">=2.1,<3.0.0"
urllib3 = [
{ version = ">=1.25.4,<1.27" , markers = "python_version < \"3.10\"" } ,
{ version = ">=1.25.4,<2.1" , markers = "python_version >= \"3.10\"" } ,
]
[ package . extras ]
crt = [ "awscrt (==0.19.19)" ]
[ [ package ] ]
name = "botocore-stubs"
version = "1.34.61"
description = "Type annotations and code completion for botocore"
optional = true
python-versions = ">=3.8,<4.0"
files = [
{ file = "botocore_stubs-1.34.61-py3-none-any.whl" , hash = "sha256:f2b44cf7eb7c8f2c0f674792ab516a4a187fe2561524d21b89f76309e1812738" } ,
{ file = "botocore_stubs-1.34.61.tar.gz" , hash = "sha256:c8ece27ae6d6204a823a2a6df47128d6f9e1c4e63252e1e11d86f635e98b4159" } ,
]
[ package . dependencies ]
types-awscrt = "*"
typing-extensions = { version = ">=4.1.0" , markers = "python_version < \"3.9\"" }
[ package . extras ]
botocore = [ "botocore" ]
[ [ package ] ]
name = "cachetools"
version = "5.3.3"
description = "Extensible memoizing collections and decorators"
optional = true
python-versions = ">=3.7"
files = [
{ file = "cachetools-5.3.3-py3-none-any.whl" , hash = "sha256:0abad1021d3f8325b2fc1d2e9c8b9c9d57b04c3932657a72465447332c24d945" } ,
{ file = "cachetools-5.3.3.tar.gz" , hash = "sha256:ba29e2dfa0b8b556606f097407ed1aa62080ee108ab0dc5ec9d6a723a007d105" } ,
]
2023-12-11 21:53:30 +00:00
[ [ package ] ]
name = "cassandra-driver"
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
version = "3.29.0"
2023-12-11 21:53:30 +00:00
description = "DataStax Driver for Apache Cassandra"
optional = false
python-versions = "*"
files = [
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
{ file = "cassandra-driver-3.29.0.tar.gz" , hash = "sha256:0a34f9534356e5fd33af8cdda109d5e945b6335cb50399b267c46368c4e93c98" } ,
{ file = "cassandra_driver-3.29.0-cp310-cp310-macosx_10_9_universal2.whl" , hash = "sha256:28d6fe5379d55e4fc96785bd2e2cba029ef171cc43fb38fc507b9ba232917ac2" } ,
{ file = "cassandra_driver-3.29.0-cp310-cp310-macosx_10_9_x86_64.whl" , hash = "sha256:05e267412ccc9fe71ee4a81d98f2250df2429390fac4721f41dd17b65e4c41ac" } ,
{ file = "cassandra_driver-3.29.0-cp310-cp310-macosx_11_0_arm64.whl" , hash = "sha256:84eacfc8e6461590eb1c2b9651ea809be298eb8283c2d844a6dad8058ee7928c" } ,
{ file = "cassandra_driver-3.29.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:8feeda01bb13dce1a74b0a94172b3b06b0d9d8f33d6fb56e1910d495b0e085e5" } ,
{ file = "cassandra_driver-3.29.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:7bb0ef3297255bbade7b0c2d168c31d36ec904b1a9b42521d1d3d65c3148bbc7" } ,
{ file = "cassandra_driver-3.29.0-cp310-cp310-win32.whl" , hash = "sha256:39d78971a4e26ef65b77caa09c0e6ccfd7b2c52b0924c328fbfdca91667eb08e" } ,
{ file = "cassandra_driver-3.29.0-cp310-cp310-win_amd64.whl" , hash = "sha256:9dd713fe6388f3ba141cc2eef4737b5e4a27b0d1c1a6b0372b8ff3d2d35ccf79" } ,
{ file = "cassandra_driver-3.29.0-cp311-cp311-macosx_10_9_universal2.whl" , hash = "sha256:76333d38cb663065d53ca658e15185b23aa0ce434f2876c455624d90d2ee0dbf" } ,
{ file = "cassandra_driver-3.29.0-cp311-cp311-macosx_10_9_x86_64.whl" , hash = "sha256:81ce92e0420bf18742b4bc433052c7c2e4aa72fa84898be2b26083e240ace343" } ,
{ file = "cassandra_driver-3.29.0-cp311-cp311-macosx_11_0_arm64.whl" , hash = "sha256:5b90c2f052a102560e4fcf860f6d1ac35d3514ad36b1978cf821998f1e689f38" } ,
{ file = "cassandra_driver-3.29.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:6fecf584a7f411d247d1925c66d527f7ecc73710b230b68cdacf2044fb57ae4b" } ,
{ file = "cassandra_driver-3.29.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:a678bc7107cc606ac8ff8cb58fe6abb0bb2a9ff5196016b3bd36926146c4dc62" } ,
{ file = "cassandra_driver-3.29.0-cp311-cp311-win32.whl" , hash = "sha256:e9badede26005fd993e2344e8a541a4133bc46a76a90969d57a90a028b2b8ca6" } ,
{ file = "cassandra_driver-3.29.0-cp311-cp311-win_amd64.whl" , hash = "sha256:cac6d2e6ad1a386f1b786de78102f918bcd5caac390c3e446558e5adee9464c6" } ,
{ file = "cassandra_driver-3.29.0-cp312-cp312-macosx_10_9_universal2.whl" , hash = "sha256:01a8b4cdb056c209c5c4aa22e0d7f427b87cb98297a6efff29ea278da9a52698" } ,
{ file = "cassandra_driver-3.29.0-cp312-cp312-macosx_10_9_x86_64.whl" , hash = "sha256:73aa7b32dfad1f58fb00167052ab80b1b186b69baac7de4ad5cca785fff569be" } ,
{ file = "cassandra_driver-3.29.0-cp312-cp312-macosx_11_0_arm64.whl" , hash = "sha256:7f7c446edba002b0fdd94f2b92c4752e16738ea7dce27d754103fcd086b4dcc9" } ,
{ file = "cassandra_driver-3.29.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:6843569360fb4a446d65f6733faed1207c252745a31a1d8dc02feff8f7f86a23" } ,
{ file = "cassandra_driver-3.29.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:1762d228bdd3f1bc5faa0812e1fcac75a36ab7504f3cfb7e9b5d2bf26a50c552" } ,
{ file = "cassandra_driver-3.29.0-cp312-cp312-win32.whl" , hash = "sha256:dd245817e0df048b780f45ac78b1840fe12deb5aea8873df4a11e0c44a68c19a" } ,
{ file = "cassandra_driver-3.29.0-cp312-cp312-win_amd64.whl" , hash = "sha256:002134a4152034ed66d9f9616ea391f44dfdf7c9f97d22bd4d4f64d70020b91b" } ,
{ file = "cassandra_driver-3.29.0-cp38-cp38-macosx_10_9_universal2.whl" , hash = "sha256:d9b652db99f69ee62bbd679a29cfbab398ebf2bfc195632d57ecb3f246baf48b" } ,
{ file = "cassandra_driver-3.29.0-cp38-cp38-macosx_10_9_x86_64.whl" , hash = "sha256:6ac82ae8240b4f4f1a3d1e6f21a4ecd9948afdfedef6f23235fac85d20d11076" } ,
{ file = "cassandra_driver-3.29.0-cp38-cp38-macosx_11_0_arm64.whl" , hash = "sha256:1590d231503594546dfdbf6119d805e1a0b22de98a1a6ec0de79a1bacc59ecb5" } ,
{ file = "cassandra_driver-3.29.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:fcf9dee3b120062a8224278da56ab088c2c081a79dc9e017f065dccd421b6477" } ,
{ file = "cassandra_driver-3.29.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:bb9a123ad86152d2a1ca31f4a3d91d72cbd3ed7a88a4c3cd5f6f72173a1bfbd8" } ,
{ file = "cassandra_driver-3.29.0-cp38-cp38-win32.whl" , hash = "sha256:cc6794ca9c94e157570e2b7b5a04458259ee29c5a0d0de50a9e0c8e2da8f5455" } ,
{ file = "cassandra_driver-3.29.0-cp38-cp38-win_amd64.whl" , hash = "sha256:096eef84ab466b090a69a4e9d85e65d57e926ff7d7897443e7b637d40277f373" } ,
{ file = "cassandra_driver-3.29.0-cp39-cp39-macosx_10_9_universal2.whl" , hash = "sha256:befb723d62ee650cb3afd9668245ee9ce6ba5394dbd58352866ff2baa0324101" } ,
{ file = "cassandra_driver-3.29.0-cp39-cp39-macosx_10_9_x86_64.whl" , hash = "sha256:4108fb2a64a8fd77948003ff0ca4d296364d9ff7381f4abe7a9db202e6378446" } ,
{ file = "cassandra_driver-3.29.0-cp39-cp39-macosx_11_0_arm64.whl" , hash = "sha256:5cd4701cc083e047553888dbd99d2d5119b5b3da54b9e8034a80b8c8d516142c" } ,
{ file = "cassandra_driver-3.29.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:d7b94c5273bf3c2f252aed8624303c46d9d4e6dc7663f53ed9c9335e5d0dcb88" } ,
{ file = "cassandra_driver-3.29.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:3609f2eda8ee2a6a9b2c9c84c009bf54a7695b9dfc21700b88dd0a2140c82c95" } ,
{ file = "cassandra_driver-3.29.0-cp39-cp39-win32.whl" , hash = "sha256:aaeff4c3af3100510e329177c46da89aab6d444070f4fa370df5328b8ad488b4" } ,
{ file = "cassandra_driver-3.29.0-cp39-cp39-win_amd64.whl" , hash = "sha256:88d9a6abd0e0af199636ff9386d0b9b81b1dd189e22c8498ecaa546256bacf24" } ,
2023-12-11 21:53:30 +00:00
]
[ package . dependencies ]
geomet = ">=0.1,<0.3"
[ package . extras ]
cle = [ "cryptography (>=35.0)" ]
graph = [ "gremlinpython (==3.4.6)" ]
[ [ package ] ]
name = "cassio"
2024-03-08 02:20:47 +00:00
version = "0.1.5"
2023-12-11 21:53:30 +00:00
description = "A framework-agnostic Python library to seamlessly integrate Apache Cassandra(R) with ML/LLM/genAI workloads."
optional = false
python-versions = ">=3.8"
files = [
2024-03-08 02:20:47 +00:00
{ file = "cassio-0.1.5-py3-none-any.whl" , hash = "sha256:cf1d11f255c040bc0aede4963ca020840133377aa54f7f15d2f819d6553d52ce" } ,
{ file = "cassio-0.1.5.tar.gz" , hash = "sha256:88c50c34d46a1bfffca1e0b600318a6efef45e6c18a56ddabe208cbede8dcc27" } ,
2023-12-11 21:53:30 +00:00
]
[ package . dependencies ]
cassandra-driver = ">=3.28.0"
numpy = ">=1.0"
requests = ">=2"
2024-03-15 17:10:47 +00:00
[ [ package ] ]
name = "cerberus"
version = "1.3.5"
description = "Lightweight, extensible schema and data validation tool for Pythondictionaries."
optional = true
python-versions = "*"
files = [
{ file = "Cerberus-1.3.5-py3-none-any.whl" , hash = "sha256:7649a5815024d18eb7c6aa5e7a95355c649a53aacfc9b050e9d0bf6bfa2af372" } ,
{ file = "Cerberus-1.3.5.tar.gz" , hash = "sha256:81011e10266ef71b6ec6d50e60171258a5b134d69f8fb387d16e4936d0d47642" } ,
]
2023-12-11 21:53:30 +00:00
[ [ package ] ]
name = "certifi"
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
version = "2024.2.2"
2023-12-11 21:53:30 +00:00
description = "Python package for providing Mozilla's CA Bundle."
optional = false
python-versions = ">=3.6"
files = [
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
{ file = "certifi-2024.2.2-py3-none-any.whl" , hash = "sha256:dc383c07b76109f368f6106eee2b593b04a011ea4d55f652c6ca24a754d1cdd1" } ,
{ file = "certifi-2024.2.2.tar.gz" , hash = "sha256:0569859f95fc761b18b45ef421b1290a0f65f147e92a1e5eb3e635f9a5e4e66f" } ,
2023-12-11 21:53:30 +00:00
]
[ [ package ] ]
name = "cffi"
version = "1.16.0"
description = "Foreign Function Interface for Python calling C code."
optional = false
python-versions = ">=3.8"
files = [
{ file = "cffi-1.16.0-cp310-cp310-macosx_10_9_x86_64.whl" , hash = "sha256:6b3d6606d369fc1da4fd8c357d026317fbb9c9b75d36dc16e90e84c26854b088" } ,
{ file = "cffi-1.16.0-cp310-cp310-macosx_11_0_arm64.whl" , hash = "sha256:ac0f5edd2360eea2f1daa9e26a41db02dd4b0451b48f7c318e217ee092a213e9" } ,
{ file = "cffi-1.16.0-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:7e61e3e4fa664a8588aa25c883eab612a188c725755afff6289454d6362b9673" } ,
{ file = "cffi-1.16.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:a72e8961a86d19bdb45851d8f1f08b041ea37d2bd8d4fd19903bc3083d80c896" } ,
{ file = "cffi-1.16.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:5b50bf3f55561dac5438f8e70bfcdfd74543fd60df5fa5f62d94e5867deca684" } ,
{ file = "cffi-1.16.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:7651c50c8c5ef7bdb41108b7b8c5a83013bfaa8a935590c5d74627c047a583c7" } ,
{ file = "cffi-1.16.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:e4108df7fe9b707191e55f33efbcb2d81928e10cea45527879a4749cbe472614" } ,
{ file = "cffi-1.16.0-cp310-cp310-musllinux_1_1_i686.whl" , hash = "sha256:32c68ef735dbe5857c810328cb2481e24722a59a2003018885514d4c09af9743" } ,
{ file = "cffi-1.16.0-cp310-cp310-musllinux_1_1_x86_64.whl" , hash = "sha256:673739cb539f8cdaa07d92d02efa93c9ccf87e345b9a0b556e3ecc666718468d" } ,
{ file = "cffi-1.16.0-cp310-cp310-win32.whl" , hash = "sha256:9f90389693731ff1f659e55c7d1640e2ec43ff725cc61b04b2f9c6d8d017df6a" } ,
{ file = "cffi-1.16.0-cp310-cp310-win_amd64.whl" , hash = "sha256:e6024675e67af929088fda399b2094574609396b1decb609c55fa58b028a32a1" } ,
{ file = "cffi-1.16.0-cp311-cp311-macosx_10_9_x86_64.whl" , hash = "sha256:b84834d0cf97e7d27dd5b7f3aca7b6e9263c56308ab9dc8aae9784abb774d404" } ,
{ file = "cffi-1.16.0-cp311-cp311-macosx_11_0_arm64.whl" , hash = "sha256:1b8ebc27c014c59692bb2664c7d13ce7a6e9a629be20e54e7271fa696ff2b417" } ,
{ file = "cffi-1.16.0-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:ee07e47c12890ef248766a6e55bd38ebfb2bb8edd4142d56db91b21ea68b7627" } ,
{ file = "cffi-1.16.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:d8a9d3ebe49f084ad71f9269834ceccbf398253c9fac910c4fd7053ff1386936" } ,
{ file = "cffi-1.16.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:e70f54f1796669ef691ca07d046cd81a29cb4deb1e5f942003f401c0c4a2695d" } ,
{ file = "cffi-1.16.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:5bf44d66cdf9e893637896c7faa22298baebcd18d1ddb6d2626a6e39793a1d56" } ,
{ file = "cffi-1.16.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:7b78010e7b97fef4bee1e896df8a4bbb6712b7f05b7ef630f9d1da00f6444d2e" } ,
{ file = "cffi-1.16.0-cp311-cp311-musllinux_1_1_i686.whl" , hash = "sha256:c6a164aa47843fb1b01e941d385aab7215563bb8816d80ff3a363a9f8448a8dc" } ,
{ file = "cffi-1.16.0-cp311-cp311-musllinux_1_1_x86_64.whl" , hash = "sha256:e09f3ff613345df5e8c3667da1d918f9149bd623cd9070c983c013792a9a62eb" } ,
{ file = "cffi-1.16.0-cp311-cp311-win32.whl" , hash = "sha256:2c56b361916f390cd758a57f2e16233eb4f64bcbeee88a4881ea90fca14dc6ab" } ,
{ file = "cffi-1.16.0-cp311-cp311-win_amd64.whl" , hash = "sha256:db8e577c19c0fda0beb7e0d4e09e0ba74b1e4c092e0e40bfa12fe05b6f6d75ba" } ,
{ file = "cffi-1.16.0-cp312-cp312-macosx_10_9_x86_64.whl" , hash = "sha256:fa3a0128b152627161ce47201262d3140edb5a5c3da88d73a1b790a959126956" } ,
{ file = "cffi-1.16.0-cp312-cp312-macosx_11_0_arm64.whl" , hash = "sha256:68e7c44931cc171c54ccb702482e9fc723192e88d25a0e133edd7aff8fcd1f6e" } ,
{ file = "cffi-1.16.0-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:abd808f9c129ba2beda4cfc53bde801e5bcf9d6e0f22f095e45327c038bfe68e" } ,
{ file = "cffi-1.16.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:88e2b3c14bdb32e440be531ade29d3c50a1a59cd4e51b1dd8b0865c54ea5d2e2" } ,
{ file = "cffi-1.16.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:fcc8eb6d5902bb1cf6dc4f187ee3ea80a1eba0a89aba40a5cb20a5087d961357" } ,
{ file = "cffi-1.16.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:b7be2d771cdba2942e13215c4e340bfd76398e9227ad10402a8767ab1865d2e6" } ,
{ file = "cffi-1.16.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:e715596e683d2ce000574bae5d07bd522c781a822866c20495e52520564f0969" } ,
{ file = "cffi-1.16.0-cp312-cp312-musllinux_1_1_x86_64.whl" , hash = "sha256:2d92b25dbf6cae33f65005baf472d2c245c050b1ce709cc4588cdcdd5495b520" } ,
{ file = "cffi-1.16.0-cp312-cp312-win32.whl" , hash = "sha256:b2ca4e77f9f47c55c194982e10f058db063937845bb2b7a86c84a6cfe0aefa8b" } ,
{ file = "cffi-1.16.0-cp312-cp312-win_amd64.whl" , hash = "sha256:68678abf380b42ce21a5f2abde8efee05c114c2fdb2e9eef2efdb0257fba1235" } ,
{ file = "cffi-1.16.0-cp38-cp38-macosx_10_9_x86_64.whl" , hash = "sha256:0c9ef6ff37e974b73c25eecc13952c55bceed9112be2d9d938ded8e856138bcc" } ,
{ file = "cffi-1.16.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:a09582f178759ee8128d9270cd1344154fd473bb77d94ce0aeb2a93ebf0feaf0" } ,
{ file = "cffi-1.16.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:e760191dd42581e023a68b758769e2da259b5d52e3103c6060ddc02c9edb8d7b" } ,
{ file = "cffi-1.16.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:80876338e19c951fdfed6198e70bc88f1c9758b94578d5a7c4c91a87af3cf31c" } ,
{ file = "cffi-1.16.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:a6a14b17d7e17fa0d207ac08642c8820f84f25ce17a442fd15e27ea18d67c59b" } ,
{ file = "cffi-1.16.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:6602bc8dc6f3a9e02b6c22c4fc1e47aa50f8f8e6d3f78a5e16ac33ef5fefa324" } ,
{ file = "cffi-1.16.0-cp38-cp38-win32.whl" , hash = "sha256:131fd094d1065b19540c3d72594260f118b231090295d8c34e19a7bbcf2e860a" } ,
{ file = "cffi-1.16.0-cp38-cp38-win_amd64.whl" , hash = "sha256:31d13b0f99e0836b7ff893d37af07366ebc90b678b6664c955b54561fc36ef36" } ,
{ file = "cffi-1.16.0-cp39-cp39-macosx_10_9_x86_64.whl" , hash = "sha256:582215a0e9adbe0e379761260553ba11c58943e4bbe9c36430c4ca6ac74b15ed" } ,
{ file = "cffi-1.16.0-cp39-cp39-macosx_11_0_arm64.whl" , hash = "sha256:b29ebffcf550f9da55bec9e02ad430c992a87e5f512cd63388abb76f1036d8d2" } ,
{ file = "cffi-1.16.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:dc9b18bf40cc75f66f40a7379f6a9513244fe33c0e8aa72e2d56b0196a7ef872" } ,
{ file = "cffi-1.16.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:9cb4a35b3642fc5c005a6755a5d17c6c8b6bcb6981baf81cea8bfbc8903e8ba8" } ,
{ file = "cffi-1.16.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:b86851a328eedc692acf81fb05444bdf1891747c25af7529e39ddafaf68a4f3f" } ,
{ file = "cffi-1.16.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:c0f31130ebc2d37cdd8e44605fb5fa7ad59049298b3f745c74fa74c62fbfcfc4" } ,
{ file = "cffi-1.16.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:8f8e709127c6c77446a8c0a8c8bf3c8ee706a06cd44b1e827c3e6a2ee6b8c098" } ,
{ file = "cffi-1.16.0-cp39-cp39-musllinux_1_1_i686.whl" , hash = "sha256:748dcd1e3d3d7cd5443ef03ce8685043294ad6bd7c02a38d1bd367cfd968e000" } ,
{ file = "cffi-1.16.0-cp39-cp39-musllinux_1_1_x86_64.whl" , hash = "sha256:8895613bcc094d4a1b2dbe179d88d7fb4a15cee43c052e8885783fac397d91fe" } ,
{ file = "cffi-1.16.0-cp39-cp39-win32.whl" , hash = "sha256:ed86a35631f7bfbb28e108dd96773b9d5a6ce4811cf6ea468bb6a359b256b1e4" } ,
{ file = "cffi-1.16.0-cp39-cp39-win_amd64.whl" , hash = "sha256:3686dffb02459559c74dd3d81748269ffb0eb027c39a6fc99502de37d501faa8" } ,
{ file = "cffi-1.16.0.tar.gz" , hash = "sha256:bcb3ef43e58665bbda2fb198698fcae6776483e0c4a631aa5647806c25e02cc0" } ,
]
[ package . dependencies ]
pycparser = "*"
2024-03-15 17:10:47 +00:00
[ [ package ] ]
name = "chardet"
version = "5.2.0"
description = "Universal encoding detector for Python 3"
optional = true
python-versions = ">=3.7"
files = [
{ file = "chardet-5.2.0-py3-none-any.whl" , hash = "sha256:e1cf59446890a00105fe7b7912492ea04b6e6f06d4b742b2c788469e34c82970" } ,
{ file = "chardet-5.2.0.tar.gz" , hash = "sha256:1b3b6ff479a8c414bc3fa2c0852995695c4a026dcd6d0633b2dd092ca39c1cf7" } ,
]
2023-12-11 21:53:30 +00:00
[ [ package ] ]
name = "charset-normalizer"
version = "3.3.2"
description = "The Real First Universal Charset Detector. Open, modern and actively maintained alternative to Chardet."
optional = false
python-versions = ">=3.7.0"
files = [
{ file = "charset-normalizer-3.3.2.tar.gz" , hash = "sha256:f30c3cb33b24454a82faecaf01b19c18562b1e89558fb6c56de4d9118a032fd5" } ,
{ file = "charset_normalizer-3.3.2-cp310-cp310-macosx_10_9_universal2.whl" , hash = "sha256:25baf083bf6f6b341f4121c2f3c548875ee6f5339300e08be3f2b2ba1721cdd3" } ,
{ file = "charset_normalizer-3.3.2-cp310-cp310-macosx_10_9_x86_64.whl" , hash = "sha256:06435b539f889b1f6f4ac1758871aae42dc3a8c0e24ac9e60c2384973ad73027" } ,
{ file = "charset_normalizer-3.3.2-cp310-cp310-macosx_11_0_arm64.whl" , hash = "sha256:9063e24fdb1e498ab71cb7419e24622516c4a04476b17a2dab57e8baa30d6e03" } ,
{ file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:6897af51655e3691ff853668779c7bad41579facacf5fd7253b0133308cf000d" } ,
{ file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:1d3193f4a680c64b4b6a9115943538edb896edc190f0b222e73761716519268e" } ,
{ file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:cd70574b12bb8a4d2aaa0094515df2463cb429d8536cfb6c7ce983246983e5a6" } ,
{ file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:8465322196c8b4d7ab6d1e049e4c5cb460d0394da4a27d23cc242fbf0034b6b5" } ,
{ file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:a9a8e9031d613fd2009c182b69c7b2c1ef8239a0efb1df3f7c8da66d5dd3d537" } ,
{ file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_aarch64.whl" , hash = "sha256:beb58fe5cdb101e3a055192ac291b7a21e3b7ef4f67fa1d74e331a7f2124341c" } ,
{ file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_i686.whl" , hash = "sha256:e06ed3eb3218bc64786f7db41917d4e686cc4856944f53d5bdf83a6884432e12" } ,
{ file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_ppc64le.whl" , hash = "sha256:2e81c7b9c8979ce92ed306c249d46894776a909505d8f5a4ba55b14206e3222f" } ,
{ file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_s390x.whl" , hash = "sha256:572c3763a264ba47b3cf708a44ce965d98555f618ca42c926a9c1616d8f34269" } ,
{ file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_x86_64.whl" , hash = "sha256:fd1abc0d89e30cc4e02e4064dc67fcc51bd941eb395c502aac3ec19fab46b519" } ,
{ file = "charset_normalizer-3.3.2-cp310-cp310-win32.whl" , hash = "sha256:3d47fa203a7bd9c5b6cee4736ee84ca03b8ef23193c0d1ca99b5089f72645c73" } ,
{ file = "charset_normalizer-3.3.2-cp310-cp310-win_amd64.whl" , hash = "sha256:10955842570876604d404661fbccbc9c7e684caf432c09c715ec38fbae45ae09" } ,
{ file = "charset_normalizer-3.3.2-cp311-cp311-macosx_10_9_universal2.whl" , hash = "sha256:802fe99cca7457642125a8a88a084cef28ff0cf9407060f7b93dca5aa25480db" } ,
{ file = "charset_normalizer-3.3.2-cp311-cp311-macosx_10_9_x86_64.whl" , hash = "sha256:573f6eac48f4769d667c4442081b1794f52919e7edada77495aaed9236d13a96" } ,
{ file = "charset_normalizer-3.3.2-cp311-cp311-macosx_11_0_arm64.whl" , hash = "sha256:549a3a73da901d5bc3ce8d24e0600d1fa85524c10287f6004fbab87672bf3e1e" } ,
{ file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:f27273b60488abe721a075bcca6d7f3964f9f6f067c8c4c605743023d7d3944f" } ,
{ file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:1ceae2f17a9c33cb48e3263960dc5fc8005351ee19db217e9b1bb15d28c02574" } ,
{ file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:65f6f63034100ead094b8744b3b97965785388f308a64cf8d7c34f2f2e5be0c4" } ,
{ file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:753f10e867343b4511128c6ed8c82f7bec3bd026875576dfd88483c5c73b2fd8" } ,
{ file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:4a78b2b446bd7c934f5dcedc588903fb2f5eec172f3d29e52a9096a43722adfc" } ,
{ file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_aarch64.whl" , hash = "sha256:e537484df0d8f426ce2afb2d0f8e1c3d0b114b83f8850e5f2fbea0e797bd82ae" } ,
{ file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_i686.whl" , hash = "sha256:eb6904c354526e758fda7167b33005998fb68c46fbc10e013ca97f21ca5c8887" } ,
{ file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_ppc64le.whl" , hash = "sha256:deb6be0ac38ece9ba87dea880e438f25ca3eddfac8b002a2ec3d9183a454e8ae" } ,
{ file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_s390x.whl" , hash = "sha256:4ab2fe47fae9e0f9dee8c04187ce5d09f48eabe611be8259444906793ab7cbce" } ,
{ file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_x86_64.whl" , hash = "sha256:80402cd6ee291dcb72644d6eac93785fe2c8b9cb30893c1af5b8fdd753b9d40f" } ,
{ file = "charset_normalizer-3.3.2-cp311-cp311-win32.whl" , hash = "sha256:7cd13a2e3ddeed6913a65e66e94b51d80a041145a026c27e6bb76c31a853c6ab" } ,
{ file = "charset_normalizer-3.3.2-cp311-cp311-win_amd64.whl" , hash = "sha256:663946639d296df6a2bb2aa51b60a2454ca1cb29835324c640dafb5ff2131a77" } ,
{ file = "charset_normalizer-3.3.2-cp312-cp312-macosx_10_9_universal2.whl" , hash = "sha256:0b2b64d2bb6d3fb9112bafa732def486049e63de9618b5843bcdd081d8144cd8" } ,
{ file = "charset_normalizer-3.3.2-cp312-cp312-macosx_10_9_x86_64.whl" , hash = "sha256:ddbb2551d7e0102e7252db79ba445cdab71b26640817ab1e3e3648dad515003b" } ,
{ file = "charset_normalizer-3.3.2-cp312-cp312-macosx_11_0_arm64.whl" , hash = "sha256:55086ee1064215781fff39a1af09518bc9255b50d6333f2e4c74ca09fac6a8f6" } ,
{ file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:8f4a014bc36d3c57402e2977dada34f9c12300af536839dc38c0beab8878f38a" } ,
{ file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:a10af20b82360ab00827f916a6058451b723b4e65030c5a18577c8b2de5b3389" } ,
{ file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:8d756e44e94489e49571086ef83b2bb8ce311e730092d2c34ca8f7d925cb20aa" } ,
{ file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:90d558489962fd4918143277a773316e56c72da56ec7aa3dc3dbbe20fdfed15b" } ,
{ file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:6ac7ffc7ad6d040517be39eb591cac5ff87416c2537df6ba3cba3bae290c0fed" } ,
{ file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_aarch64.whl" , hash = "sha256:7ed9e526742851e8d5cc9e6cf41427dfc6068d4f5a3bb03659444b4cabf6bc26" } ,
{ file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_i686.whl" , hash = "sha256:8bdb58ff7ba23002a4c5808d608e4e6c687175724f54a5dade5fa8c67b604e4d" } ,
{ file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_ppc64le.whl" , hash = "sha256:6b3251890fff30ee142c44144871185dbe13b11bab478a88887a639655be1068" } ,
{ file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_s390x.whl" , hash = "sha256:b4a23f61ce87adf89be746c8a8974fe1c823c891d8f86eb218bb957c924bb143" } ,
{ file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_x86_64.whl" , hash = "sha256:efcb3f6676480691518c177e3b465bcddf57cea040302f9f4e6e191af91174d4" } ,
{ file = "charset_normalizer-3.3.2-cp312-cp312-win32.whl" , hash = "sha256:d965bba47ddeec8cd560687584e88cf699fd28f192ceb452d1d7ee807c5597b7" } ,
{ file = "charset_normalizer-3.3.2-cp312-cp312-win_amd64.whl" , hash = "sha256:96b02a3dc4381e5494fad39be677abcb5e6634bf7b4fa83a6dd3112607547001" } ,
{ file = "charset_normalizer-3.3.2-cp37-cp37m-macosx_10_9_x86_64.whl" , hash = "sha256:95f2a5796329323b8f0512e09dbb7a1860c46a39da62ecb2324f116fa8fdc85c" } ,
{ file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:c002b4ffc0be611f0d9da932eb0f704fe2602a9a949d1f738e4c34c75b0863d5" } ,
{ file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:a981a536974bbc7a512cf44ed14938cf01030a99e9b3a06dd59578882f06f985" } ,
{ file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:3287761bc4ee9e33561a7e058c72ac0938c4f57fe49a09eae428fd88aafe7bb6" } ,
{ file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:42cb296636fcc8b0644486d15c12376cb9fa75443e00fb25de0b8602e64c1714" } ,
{ file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:0a55554a2fa0d408816b3b5cedf0045f4b8e1a6065aec45849de2d6f3f8e9786" } ,
{ file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_aarch64.whl" , hash = "sha256:c083af607d2515612056a31f0a8d9e0fcb5876b7bfc0abad3ecd275bc4ebc2d5" } ,
{ file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_i686.whl" , hash = "sha256:87d1351268731db79e0f8e745d92493ee2841c974128ef629dc518b937d9194c" } ,
{ file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_ppc64le.whl" , hash = "sha256:bd8f7df7d12c2db9fab40bdd87a7c09b1530128315d047a086fa3ae3435cb3a8" } ,
{ file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_s390x.whl" , hash = "sha256:c180f51afb394e165eafe4ac2936a14bee3eb10debc9d9e4db8958fe36afe711" } ,
{ file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_x86_64.whl" , hash = "sha256:8c622a5fe39a48f78944a87d4fb8a53ee07344641b0562c540d840748571b811" } ,
{ file = "charset_normalizer-3.3.2-cp37-cp37m-win32.whl" , hash = "sha256:db364eca23f876da6f9e16c9da0df51aa4f104a972735574842618b8c6d999d4" } ,
{ file = "charset_normalizer-3.3.2-cp37-cp37m-win_amd64.whl" , hash = "sha256:86216b5cee4b06df986d214f664305142d9c76df9b6512be2738aa72a2048f99" } ,
{ file = "charset_normalizer-3.3.2-cp38-cp38-macosx_10_9_universal2.whl" , hash = "sha256:6463effa3186ea09411d50efc7d85360b38d5f09b870c48e4600f63af490e56a" } ,
{ file = "charset_normalizer-3.3.2-cp38-cp38-macosx_10_9_x86_64.whl" , hash = "sha256:6c4caeef8fa63d06bd437cd4bdcf3ffefe6738fb1b25951440d80dc7df8c03ac" } ,
{ file = "charset_normalizer-3.3.2-cp38-cp38-macosx_11_0_arm64.whl" , hash = "sha256:37e55c8e51c236f95b033f6fb391d7d7970ba5fe7ff453dad675e88cf303377a" } ,
{ file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:fb69256e180cb6c8a894fee62b3afebae785babc1ee98b81cdf68bbca1987f33" } ,
{ file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:ae5f4161f18c61806f411a13b0310bea87f987c7d2ecdbdaad0e94eb2e404238" } ,
{ file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:b2b0a0c0517616b6869869f8c581d4eb2dd83a4d79e0ebcb7d373ef9956aeb0a" } ,
{ file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:45485e01ff4d3630ec0d9617310448a8702f70e9c01906b0d0118bdf9d124cf2" } ,
{ file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:eb00ed941194665c332bf8e078baf037d6c35d7c4f3102ea2d4f16ca94a26dc8" } ,
{ file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_aarch64.whl" , hash = "sha256:2127566c664442652f024c837091890cb1942c30937add288223dc895793f898" } ,
{ file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_i686.whl" , hash = "sha256:a50aebfa173e157099939b17f18600f72f84eed3049e743b68ad15bd69b6bf99" } ,
{ file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_ppc64le.whl" , hash = "sha256:4d0d1650369165a14e14e1e47b372cfcb31d6ab44e6e33cb2d4e57265290044d" } ,
{ file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_s390x.whl" , hash = "sha256:923c0c831b7cfcb071580d3f46c4baf50f174be571576556269530f4bbd79d04" } ,
{ file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_x86_64.whl" , hash = "sha256:06a81e93cd441c56a9b65d8e1d043daeb97a3d0856d177d5c90ba85acb3db087" } ,
{ file = "charset_normalizer-3.3.2-cp38-cp38-win32.whl" , hash = "sha256:6ef1d82a3af9d3eecdba2321dc1b3c238245d890843e040e41e470ffa64c3e25" } ,
{ file = "charset_normalizer-3.3.2-cp38-cp38-win_amd64.whl" , hash = "sha256:eb8821e09e916165e160797a6c17edda0679379a4be5c716c260e836e122f54b" } ,
{ file = "charset_normalizer-3.3.2-cp39-cp39-macosx_10_9_universal2.whl" , hash = "sha256:c235ebd9baae02f1b77bcea61bce332cb4331dc3617d254df3323aa01ab47bd4" } ,
{ file = "charset_normalizer-3.3.2-cp39-cp39-macosx_10_9_x86_64.whl" , hash = "sha256:5b4c145409bef602a690e7cfad0a15a55c13320ff7a3ad7ca59c13bb8ba4d45d" } ,
{ file = "charset_normalizer-3.3.2-cp39-cp39-macosx_11_0_arm64.whl" , hash = "sha256:68d1f8a9e9e37c1223b656399be5d6b448dea850bed7d0f87a8311f1ff3dabb0" } ,
{ file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:22afcb9f253dac0696b5a4be4a1c0f8762f8239e21b99680099abd9b2b1b2269" } ,
{ file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:e27ad930a842b4c5eb8ac0016b0a54f5aebbe679340c26101df33424142c143c" } ,
{ file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:1f79682fbe303db92bc2b1136016a38a42e835d932bab5b3b1bfcfbf0640e519" } ,
{ file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:b261ccdec7821281dade748d088bb6e9b69e6d15b30652b74cbbac25e280b796" } ,
{ file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:122c7fa62b130ed55f8f285bfd56d5f4b4a5b503609d181f9ad85e55c89f4185" } ,
{ file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_aarch64.whl" , hash = "sha256:d0eccceffcb53201b5bfebb52600a5fb483a20b61da9dbc885f8b103cbe7598c" } ,
{ file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_i686.whl" , hash = "sha256:9f96df6923e21816da7e0ad3fd47dd8f94b2a5ce594e00677c0013018b813458" } ,
{ file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_ppc64le.whl" , hash = "sha256:7f04c839ed0b6b98b1a7501a002144b76c18fb1c1850c8b98d458ac269e26ed2" } ,
{ file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_s390x.whl" , hash = "sha256:34d1c8da1e78d2e001f363791c98a272bb734000fcef47a491c1e3b0505657a8" } ,
{ file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_x86_64.whl" , hash = "sha256:ff8fa367d09b717b2a17a052544193ad76cd49979c805768879cb63d9ca50561" } ,
{ file = "charset_normalizer-3.3.2-cp39-cp39-win32.whl" , hash = "sha256:aed38f6e4fb3f5d6bf81bfa990a07806be9d83cf7bacef998ab1a9bd660a581f" } ,
{ file = "charset_normalizer-3.3.2-cp39-cp39-win_amd64.whl" , hash = "sha256:b01b88d45a6fcb69667cd6d2f7a9aeb4bf53760d7fc536bf679ec94fe9f3ff3d" } ,
{ file = "charset_normalizer-3.3.2-py3-none-any.whl" , hash = "sha256:3e4d1f6587322d2788836a99c69062fbb091331ec940e02d12d179c1d53e25fc" } ,
]
2024-03-15 17:10:47 +00:00
[ [ package ] ]
name = "circuitbreaker"
version = "1.4.0"
description = "Python Circuit Breaker pattern implementation"
optional = true
python-versions = "*"
files = [
{ file = "circuitbreaker-1.4.0.tar.gz" , hash = "sha256:80b7bda803d9a20e568453eb26f3530cd9bf602d6414f6ff6a74c611603396d2" } ,
]
2023-12-11 21:53:30 +00:00
[ [ package ] ]
name = "click"
version = "8.1.7"
description = "Composable command line interface toolkit"
optional = false
python-versions = ">=3.7"
files = [
{ file = "click-8.1.7-py3-none-any.whl" , hash = "sha256:ae74fb96c20a0277a1d615f1e4d73c8414f5a98db8b799a7931d1582f3390c28" } ,
{ file = "click-8.1.7.tar.gz" , hash = "sha256:ca9853ad459e787e2192211578cc907e7594e294c7ccc834310722b41b9ca6de" } ,
]
[ package . dependencies ]
colorama = { version = "*" , markers = "platform_system == \"Windows\"" }
[ [ package ] ]
2024-03-15 17:10:47 +00:00
name = "click-plugins"
version = "1.1.1"
description = "An extension module for click to enable registering CLI commands via setuptools entry-points."
optional = true
python-versions = "*"
2023-12-11 21:53:30 +00:00
files = [
2024-03-15 17:10:47 +00:00
{ file = "click-plugins-1.1.1.tar.gz" , hash = "sha256:46ab999744a9d831159c3411bb0c79346d94a444df9a3a3742e9ed63645f264b" } ,
{ file = "click_plugins-1.1.1-py2.py3-none-any.whl" , hash = "sha256:5d262006d3222f5057fd81e1623d4443e41dcda5dc815c06b442aa3c02889fc8" } ,
2023-12-11 21:53:30 +00:00
]
2024-03-15 17:10:47 +00:00
[ package . dependencies ]
click = ">=4.0"
2023-12-11 21:53:30 +00:00
[ package . extras ]
2024-03-15 17:10:47 +00:00
dev = [ "coveralls" , "pytest (>=3.6)" , "pytest-cov" , "wheel" ]
2023-12-11 21:53:30 +00:00
[ [ package ] ]
2024-03-15 17:10:47 +00:00
name = "cligj"
version = "0.7.2"
description = "Click params for commmand line interfaces to GeoJSON"
optional = true
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, <4"
files = [
{ file = "cligj-0.7.2-py3-none-any.whl" , hash = "sha256:c1ca117dbce1fe20a5809dc96f01e1c2840f6dcc939b3ddbb1111bf330ba82df" } ,
{ file = "cligj-0.7.2.tar.gz" , hash = "sha256:a4bc13d623356b373c2c27c53dbd9c68cae5d526270bfa71f6c6fa69669c6b27" } ,
]
[ package . dependencies ]
click = ">=4.0"
[ package . extras ]
test = [ "pytest-cov" ]
[ [ package ] ]
name = "cloudpickle"
version = "3.0.0"
description = "Pickler class to extend the standard pickle.Pickler functionality"
optional = true
python-versions = ">=3.8"
files = [
{ file = "cloudpickle-3.0.0-py3-none-any.whl" , hash = "sha256:246ee7d0c295602a036e86369c77fecda4ab17b506496730f2f576d9016fd9c7" } ,
{ file = "cloudpickle-3.0.0.tar.gz" , hash = "sha256:996d9a482c6fb4f33c1a35335cf8afd065d2a56e973270364840712d9131a882" } ,
]
[ [ package ] ]
name = "codespell"
version = "2.2.6"
description = "Codespell"
optional = false
python-versions = ">=3.8"
files = [
{ file = "codespell-2.2.6-py3-none-any.whl" , hash = "sha256:9ee9a3e5df0990604013ac2a9f22fa8e57669c827124a2e961fe8a1da4cacc07" } ,
{ file = "codespell-2.2.6.tar.gz" , hash = "sha256:a8c65d8eb3faa03deabab6b3bbe798bea72e1799c7e9e955d57eca4096abcff9" } ,
]
[ package . extras ]
dev = [ "Pygments" , "build" , "chardet" , "pre-commit" , "pytest" , "pytest-cov" , "pytest-dependency" , "ruff" , "tomli" , "twine" ]
hard-encoding-detection = [ "chardet" ]
toml = [ "tomli" ]
types = [ "chardet (>=5.1.0)" , "mypy" , "pytest" , "pytest-cov" , "pytest-dependency" ]
[ [ package ] ]
name = "cohere"
version = "4.54"
description = "Python SDK for the Cohere API"
optional = true
python-versions = ">=3.8,<4.0"
files = [
{ file = "cohere-4.54-py3-none-any.whl" , hash = "sha256:6f83bd2530d461f91dfea828c1a7162b37cf03bdad4d801a218681064821f167" } ,
{ file = "cohere-4.54.tar.gz" , hash = "sha256:c4bd84f0d766575430db91262e3ba0f4b655e40fec8a08fde98652e49a18608d" } ,
]
[ package . dependencies ]
aiohttp = ">=3.0,<4.0"
backoff = ">=2.0,<3.0"
fastavro = ">=1.8,<2.0"
importlib_metadata = ">=6.0,<7.0"
requests = ">=2.25.0,<3.0.0"
urllib3 = ">=1.26,<3"
[ [ package ] ]
name = "colorama"
2023-12-11 21:53:30 +00:00
version = "0.4.6"
description = "Cross-platform colored terminal text."
optional = false
python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,!=3.6.*,>=2.7"
files = [
{ file = "colorama-0.4.6-py2.py3-none-any.whl" , hash = "sha256:4f1d9991f5acc0ca119f9d443620b77f9d6b33703e51011c16baf57afb285fc6" } ,
{ file = "colorama-0.4.6.tar.gz" , hash = "sha256:08695f5cb7ed6e0531a20572697297273c47b8cae5a63ffc6d6ed5c201be6e44" } ,
]
2024-03-15 17:10:47 +00:00
[ [ package ] ]
name = "coloredlogs"
version = "15.0.1"
description = "Colored terminal output for Python's logging module"
optional = true
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*"
files = [
{ file = "coloredlogs-15.0.1-py2.py3-none-any.whl" , hash = "sha256:612ee75c546f53e92e70049c9dbfcc18c935a2b9a53b66085ce9ef6a6e5c0934" } ,
{ file = "coloredlogs-15.0.1.tar.gz" , hash = "sha256:7c991aa71a4577af2f82600d8f8f3a89f936baeaf9b50a9c197da014e5bf16b0" } ,
]
[ package . dependencies ]
humanfriendly = ">=9.1"
[ package . extras ]
cron = [ "capturer (>=2.4)" ]
2023-12-11 21:53:30 +00:00
[ [ package ] ]
name = "comm"
2024-03-12 21:55:29 +00:00
version = "0.2.2"
2023-12-11 21:53:30 +00:00
description = "Jupyter Python Comm implementation, for usage in ipykernel, xeus-python etc."
optional = false
python-versions = ">=3.8"
files = [
2024-03-12 21:55:29 +00:00
{ file = "comm-0.2.2-py3-none-any.whl" , hash = "sha256:e6fb86cb70ff661ee8c9c14e7d36d6de3b4066f1441be4063df9c5009f0a64d3" } ,
{ file = "comm-0.2.2.tar.gz" , hash = "sha256:3fd7a84065306e07bea1773df6eb8282de51ba82f77c72f9c85716ab11fe980e" } ,
2023-12-11 21:53:30 +00:00
]
[ package . dependencies ]
traitlets = ">=4"
[ package . extras ]
test = [ "pytest" ]
2024-03-15 17:10:47 +00:00
[ [ package ] ]
name = "commonmark"
version = "0.9.1"
description = "Python parser for the CommonMark Markdown spec"
optional = true
python-versions = "*"
files = [
{ file = "commonmark-0.9.1-py2.py3-none-any.whl" , hash = "sha256:da2f38c92590f83de410ba1a3cbceafbc74fee9def35f9251ba9a971d6d66fd9" } ,
{ file = "commonmark-0.9.1.tar.gz" , hash = "sha256:452f9dc859be7f06631ddcb328b6919c67984aca654e5fefb3914d54691aed60" } ,
]
[ package . extras ]
test = [ "flake8 (==3.7.8)" , "hypothesis (==3.55.3)" ]
[ [ package ] ]
name = "contourpy"
version = "1.1.0"
description = "Python library for calculating contours of 2D quadrilateral grids"
optional = true
python-versions = ">=3.8"
files = [
{ file = "contourpy-1.1.0-cp310-cp310-macosx_10_9_x86_64.whl" , hash = "sha256:89f06eff3ce2f4b3eb24c1055a26981bffe4e7264acd86f15b97e40530b794bc" } ,
{ file = "contourpy-1.1.0-cp310-cp310-macosx_11_0_arm64.whl" , hash = "sha256:dffcc2ddec1782dd2f2ce1ef16f070861af4fb78c69862ce0aab801495dda6a3" } ,
{ file = "contourpy-1.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:25ae46595e22f93592d39a7eac3d638cda552c3e1160255258b695f7b58e5655" } ,
{ file = "contourpy-1.1.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:17cfaf5ec9862bc93af1ec1f302457371c34e688fbd381f4035a06cd47324f48" } ,
{ file = "contourpy-1.1.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:18a64814ae7bce73925131381603fff0116e2df25230dfc80d6d690aa6e20b37" } ,
{ file = "contourpy-1.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:90c81f22b4f572f8a2110b0b741bb64e5a6427e0a198b2cdc1fbaf85f352a3aa" } ,
{ file = "contourpy-1.1.0-cp310-cp310-musllinux_1_1_x86_64.whl" , hash = "sha256:53cc3a40635abedbec7f1bde60f8c189c49e84ac180c665f2cd7c162cc454baa" } ,
{ file = "contourpy-1.1.0-cp310-cp310-win32.whl" , hash = "sha256:9b2dd2ca3ac561aceef4c7c13ba654aaa404cf885b187427760d7f7d4c57cff8" } ,
{ file = "contourpy-1.1.0-cp310-cp310-win_amd64.whl" , hash = "sha256:1f795597073b09d631782e7245016a4323cf1cf0b4e06eef7ea6627e06a37ff2" } ,
{ file = "contourpy-1.1.0-cp311-cp311-macosx_10_9_x86_64.whl" , hash = "sha256:0b7b04ed0961647691cfe5d82115dd072af7ce8846d31a5fac6c142dcce8b882" } ,
{ file = "contourpy-1.1.0-cp311-cp311-macosx_11_0_arm64.whl" , hash = "sha256:27bc79200c742f9746d7dd51a734ee326a292d77e7d94c8af6e08d1e6c15d545" } ,
{ file = "contourpy-1.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:052cc634bf903c604ef1a00a5aa093c54f81a2612faedaa43295809ffdde885e" } ,
{ file = "contourpy-1.1.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:9382a1c0bc46230fb881c36229bfa23d8c303b889b788b939365578d762b5c18" } ,
{ file = "contourpy-1.1.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:e5cec36c5090e75a9ac9dbd0ff4a8cf7cecd60f1b6dc23a374c7d980a1cd710e" } ,
{ file = "contourpy-1.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:1f0cbd657e9bde94cd0e33aa7df94fb73c1ab7799378d3b3f902eb8eb2e04a3a" } ,
{ file = "contourpy-1.1.0-cp311-cp311-musllinux_1_1_x86_64.whl" , hash = "sha256:181cbace49874f4358e2929aaf7ba84006acb76694102e88dd15af861996c16e" } ,
{ file = "contourpy-1.1.0-cp311-cp311-win32.whl" , hash = "sha256:edb989d31065b1acef3828a3688f88b2abb799a7db891c9e282df5ec7e46221b" } ,
{ file = "contourpy-1.1.0-cp311-cp311-win_amd64.whl" , hash = "sha256:fb3b7d9e6243bfa1efb93ccfe64ec610d85cfe5aec2c25f97fbbd2e58b531256" } ,
{ file = "contourpy-1.1.0-cp38-cp38-macosx_10_9_x86_64.whl" , hash = "sha256:bcb41692aa09aeb19c7c213411854402f29f6613845ad2453d30bf421fe68fed" } ,
{ file = "contourpy-1.1.0-cp38-cp38-macosx_11_0_arm64.whl" , hash = "sha256:5d123a5bc63cd34c27ff9c7ac1cd978909e9c71da12e05be0231c608048bb2ae" } ,
{ file = "contourpy-1.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:62013a2cf68abc80dadfd2307299bfa8f5aa0dcaec5b2954caeb5fa094171103" } ,
{ file = "contourpy-1.1.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:0b6616375d7de55797d7a66ee7d087efe27f03d336c27cf1f32c02b8c1a5ac70" } ,
{ file = "contourpy-1.1.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:317267d915490d1e84577924bd61ba71bf8681a30e0d6c545f577363157e5e94" } ,
{ file = "contourpy-1.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:d551f3a442655f3dcc1285723f9acd646ca5858834efeab4598d706206b09c9f" } ,
{ file = "contourpy-1.1.0-cp38-cp38-musllinux_1_1_x86_64.whl" , hash = "sha256:e7a117ce7df5a938fe035cad481b0189049e8d92433b4b33aa7fc609344aafa1" } ,
{ file = "contourpy-1.1.0-cp38-cp38-win32.whl" , hash = "sha256:108dfb5b3e731046a96c60bdc46a1a0ebee0760418951abecbe0fc07b5b93b27" } ,
{ file = "contourpy-1.1.0-cp38-cp38-win_amd64.whl" , hash = "sha256:d4f26b25b4f86087e7d75e63212756c38546e70f2a92d2be44f80114826e1cd4" } ,
{ file = "contourpy-1.1.0-cp39-cp39-macosx_10_9_x86_64.whl" , hash = "sha256:bc00bb4225d57bff7ebb634646c0ee2a1298402ec10a5fe7af79df9a51c1bfd9" } ,
{ file = "contourpy-1.1.0-cp39-cp39-macosx_11_0_arm64.whl" , hash = "sha256:189ceb1525eb0655ab8487a9a9c41f42a73ba52d6789754788d1883fb06b2d8a" } ,
{ file = "contourpy-1.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:9f2931ed4741f98f74b410b16e5213f71dcccee67518970c42f64153ea9313b9" } ,
{ file = "contourpy-1.1.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:30f511c05fab7f12e0b1b7730ebdc2ec8deedcfb505bc27eb570ff47c51a8f15" } ,
{ file = "contourpy-1.1.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:143dde50520a9f90e4a2703f367cf8ec96a73042b72e68fcd184e1279962eb6f" } ,
{ file = "contourpy-1.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:e94bef2580e25b5fdb183bf98a2faa2adc5b638736b2c0a4da98691da641316a" } ,
{ file = "contourpy-1.1.0-cp39-cp39-musllinux_1_1_x86_64.whl" , hash = "sha256:ed614aea8462735e7d70141374bd7650afd1c3f3cb0c2dbbcbe44e14331bf002" } ,
{ file = "contourpy-1.1.0-cp39-cp39-win32.whl" , hash = "sha256:71551f9520f008b2950bef5f16b0e3587506ef4f23c734b71ffb7b89f8721999" } ,
{ file = "contourpy-1.1.0-cp39-cp39-win_amd64.whl" , hash = "sha256:438ba416d02f82b692e371858143970ed2eb6337d9cdbbede0d8ad9f3d7dd17d" } ,
{ file = "contourpy-1.1.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl" , hash = "sha256:a698c6a7a432789e587168573a864a7ea374c6be8d4f31f9d87c001d5a843493" } ,
{ file = "contourpy-1.1.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:397b0ac8a12880412da3551a8cb5a187d3298a72802b45a3bd1805e204ad8439" } ,
{ file = "contourpy-1.1.0-pp38-pypy38_pp73-win_amd64.whl" , hash = "sha256:a67259c2b493b00e5a4d0f7bfae51fb4b3371395e47d079a4446e9b0f4d70e76" } ,
{ file = "contourpy-1.1.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl" , hash = "sha256:2b836d22bd2c7bb2700348e4521b25e077255ebb6ab68e351ab5aa91ca27e027" } ,
{ file = "contourpy-1.1.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:084eaa568400cfaf7179b847ac871582199b1b44d5699198e9602ecbbb5f6104" } ,
{ file = "contourpy-1.1.0-pp39-pypy39_pp73-win_amd64.whl" , hash = "sha256:911ff4fd53e26b019f898f32db0d4956c9d227d51338fb3b03ec72ff0084ee5f" } ,
{ file = "contourpy-1.1.0.tar.gz" , hash = "sha256:e53046c3863828d21d531cc3b53786e6580eb1ba02477e8681009b6aa0870b21" } ,
]
[ package . dependencies ]
numpy = ">=1.16"
[ package . extras ]
bokeh = [ "bokeh" , "selenium" ]
docs = [ "furo" , "sphinx-copybutton" ]
mypy = [ "contourpy[bokeh,docs]" , "docutils-stubs" , "mypy (==1.2.0)" , "types-Pillow" ]
test = [ "Pillow" , "contourpy[test-no-images]" , "matplotlib" ]
test-no-images = [ "pytest" , "pytest-cov" , "wurlitzer" ]
[ [ package ] ]
name = "contourpy"
version = "1.1.1"
description = "Python library for calculating contours of 2D quadrilateral grids"
optional = true
python-versions = ">=3.8"
files = [
{ file = "contourpy-1.1.1-cp310-cp310-macosx_10_9_x86_64.whl" , hash = "sha256:46e24f5412c948d81736509377e255f6040e94216bf1a9b5ea1eaa9d29f6ec1b" } ,
{ file = "contourpy-1.1.1-cp310-cp310-macosx_11_0_arm64.whl" , hash = "sha256:0e48694d6a9c5a26ee85b10130c77a011a4fedf50a7279fa0bdaf44bafb4299d" } ,
{ file = "contourpy-1.1.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:a66045af6cf00e19d02191ab578a50cb93b2028c3eefed999793698e9ea768ae" } ,
{ file = "contourpy-1.1.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:4ebf42695f75ee1a952f98ce9775c873e4971732a87334b099dde90b6af6a916" } ,
{ file = "contourpy-1.1.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:f6aec19457617ef468ff091669cca01fa7ea557b12b59a7908b9474bb9674cf0" } ,
{ file = "contourpy-1.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:462c59914dc6d81e0b11f37e560b8a7c2dbab6aca4f38be31519d442d6cde1a1" } ,
{ file = "contourpy-1.1.1-cp310-cp310-musllinux_1_1_x86_64.whl" , hash = "sha256:6d0a8efc258659edc5299f9ef32d8d81de8b53b45d67bf4bfa3067f31366764d" } ,
{ file = "contourpy-1.1.1-cp310-cp310-win32.whl" , hash = "sha256:d6ab42f223e58b7dac1bb0af32194a7b9311065583cc75ff59dcf301afd8a431" } ,
{ file = "contourpy-1.1.1-cp310-cp310-win_amd64.whl" , hash = "sha256:549174b0713d49871c6dee90a4b499d3f12f5e5f69641cd23c50a4542e2ca1eb" } ,
{ file = "contourpy-1.1.1-cp311-cp311-macosx_10_9_x86_64.whl" , hash = "sha256:407d864db716a067cc696d61fa1ef6637fedf03606e8417fe2aeed20a061e6b2" } ,
{ file = "contourpy-1.1.1-cp311-cp311-macosx_11_0_arm64.whl" , hash = "sha256:dfe80c017973e6a4c367e037cb31601044dd55e6bfacd57370674867d15a899b" } ,
{ file = "contourpy-1.1.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:e30aaf2b8a2bac57eb7e1650df1b3a4130e8d0c66fc2f861039d507a11760e1b" } ,
{ file = "contourpy-1.1.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:3de23ca4f381c3770dee6d10ead6fff524d540c0f662e763ad1530bde5112532" } ,
{ file = "contourpy-1.1.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:566f0e41df06dfef2431defcfaa155f0acfa1ca4acbf8fd80895b1e7e2ada40e" } ,
{ file = "contourpy-1.1.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:b04c2f0adaf255bf756cf08ebef1be132d3c7a06fe6f9877d55640c5e60c72c5" } ,
{ file = "contourpy-1.1.1-cp311-cp311-musllinux_1_1_x86_64.whl" , hash = "sha256:d0c188ae66b772d9d61d43c6030500344c13e3f73a00d1dc241da896f379bb62" } ,
{ file = "contourpy-1.1.1-cp311-cp311-win32.whl" , hash = "sha256:0683e1ae20dc038075d92e0e0148f09ffcefab120e57f6b4c9c0f477ec171f33" } ,
{ file = "contourpy-1.1.1-cp311-cp311-win_amd64.whl" , hash = "sha256:8636cd2fc5da0fb102a2504fa2c4bea3cbc149533b345d72cdf0e7a924decc45" } ,
{ file = "contourpy-1.1.1-cp312-cp312-macosx_10_9_x86_64.whl" , hash = "sha256:560f1d68a33e89c62da5da4077ba98137a5e4d3a271b29f2f195d0fba2adcb6a" } ,
{ file = "contourpy-1.1.1-cp312-cp312-macosx_11_0_arm64.whl" , hash = "sha256:24216552104ae8f3b34120ef84825400b16eb6133af2e27a190fdc13529f023e" } ,
{ file = "contourpy-1.1.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:56de98a2fb23025882a18b60c7f0ea2d2d70bbbcfcf878f9067234b1c4818442" } ,
{ file = "contourpy-1.1.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:07d6f11dfaf80a84c97f1a5ba50d129d9303c5b4206f776e94037332e298dda8" } ,
{ file = "contourpy-1.1.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:f1eaac5257a8f8a047248d60e8f9315c6cff58f7803971170d952555ef6344a7" } ,
{ file = "contourpy-1.1.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:19557fa407e70f20bfaba7d55b4d97b14f9480856c4fb65812e8a05fe1c6f9bf" } ,
{ file = "contourpy-1.1.1-cp312-cp312-musllinux_1_1_x86_64.whl" , hash = "sha256:081f3c0880712e40effc5f4c3b08feca6d064cb8cfbb372ca548105b86fd6c3d" } ,
{ file = "contourpy-1.1.1-cp312-cp312-win32.whl" , hash = "sha256:059c3d2a94b930f4dafe8105bcdc1b21de99b30b51b5bce74c753686de858cb6" } ,
{ file = "contourpy-1.1.1-cp312-cp312-win_amd64.whl" , hash = "sha256:f44d78b61740e4e8c71db1cf1fd56d9050a4747681c59ec1094750a658ceb970" } ,
{ file = "contourpy-1.1.1-cp38-cp38-macosx_10_9_x86_64.whl" , hash = "sha256:70e5a10f8093d228bb2b552beeb318b8928b8a94763ef03b858ef3612b29395d" } ,
{ file = "contourpy-1.1.1-cp38-cp38-macosx_11_0_arm64.whl" , hash = "sha256:8394e652925a18ef0091115e3cc191fef350ab6dc3cc417f06da66bf98071ae9" } ,
{ file = "contourpy-1.1.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:c5bd5680f844c3ff0008523a71949a3ff5e4953eb7701b28760805bc9bcff217" } ,
{ file = "contourpy-1.1.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:66544f853bfa85c0d07a68f6c648b2ec81dafd30f272565c37ab47a33b220684" } ,
{ file = "contourpy-1.1.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:e0c02b75acfea5cab07585d25069207e478d12309557f90a61b5a3b4f77f46ce" } ,
{ file = "contourpy-1.1.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:41339b24471c58dc1499e56783fedc1afa4bb018bcd035cfb0ee2ad2a7501ef8" } ,
{ file = "contourpy-1.1.1-cp38-cp38-musllinux_1_1_x86_64.whl" , hash = "sha256:f29fb0b3f1217dfe9362ec55440d0743fe868497359f2cf93293f4b2701b8251" } ,
{ file = "contourpy-1.1.1-cp38-cp38-win32.whl" , hash = "sha256:f9dc7f933975367251c1b34da882c4f0e0b2e24bb35dc906d2f598a40b72bfc7" } ,
{ file = "contourpy-1.1.1-cp38-cp38-win_amd64.whl" , hash = "sha256:498e53573e8b94b1caeb9e62d7c2d053c263ebb6aa259c81050766beb50ff8d9" } ,
{ file = "contourpy-1.1.1-cp39-cp39-macosx_10_9_x86_64.whl" , hash = "sha256:ba42e3810999a0ddd0439e6e5dbf6d034055cdc72b7c5c839f37a7c274cb4eba" } ,
{ file = "contourpy-1.1.1-cp39-cp39-macosx_11_0_arm64.whl" , hash = "sha256:6c06e4c6e234fcc65435223c7b2a90f286b7f1b2733058bdf1345d218cc59e34" } ,
{ file = "contourpy-1.1.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:ca6fab080484e419528e98624fb5c4282148b847e3602dc8dbe0cb0669469887" } ,
{ file = "contourpy-1.1.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:93df44ab351119d14cd1e6b52a5063d3336f0754b72736cc63db59307dabb718" } ,
{ file = "contourpy-1.1.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:eafbef886566dc1047d7b3d4b14db0d5b7deb99638d8e1be4e23a7c7ac59ff0f" } ,
{ file = "contourpy-1.1.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:efe0fab26d598e1ec07d72cf03eaeeba8e42b4ecf6b9ccb5a356fde60ff08b85" } ,
{ file = "contourpy-1.1.1-cp39-cp39-musllinux_1_1_x86_64.whl" , hash = "sha256:f08e469821a5e4751c97fcd34bcb586bc243c39c2e39321822060ba902eac49e" } ,
{ file = "contourpy-1.1.1-cp39-cp39-win32.whl" , hash = "sha256:bfc8a5e9238232a45ebc5cb3bfee71f1167064c8d382cadd6076f0d51cff1da0" } ,
{ file = "contourpy-1.1.1-cp39-cp39-win_amd64.whl" , hash = "sha256:c84fdf3da00c2827d634de4fcf17e3e067490c4aea82833625c4c8e6cdea0887" } ,
{ file = "contourpy-1.1.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl" , hash = "sha256:229a25f68046c5cf8067d6d6351c8b99e40da11b04d8416bf8d2b1d75922521e" } ,
{ file = "contourpy-1.1.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:a10dab5ea1bd4401c9483450b5b0ba5416be799bbd50fc7a6cc5e2a15e03e8a3" } ,
{ file = "contourpy-1.1.1-pp38-pypy38_pp73-win_amd64.whl" , hash = "sha256:4f9147051cb8fdb29a51dc2482d792b3b23e50f8f57e3720ca2e3d438b7adf23" } ,
{ file = "contourpy-1.1.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl" , hash = "sha256:a75cc163a5f4531a256f2c523bd80db509a49fc23721b36dd1ef2f60ff41c3cb" } ,
{ file = "contourpy-1.1.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:3b53d5769aa1f2d4ea407c65f2d1d08002952fac1d9e9d307aa2e1023554a163" } ,
{ file = "contourpy-1.1.1-pp39-pypy39_pp73-win_amd64.whl" , hash = "sha256:11b836b7dbfb74e049c302bbf74b4b8f6cb9d0b6ca1bf86cfa8ba144aedadd9c" } ,
{ file = "contourpy-1.1.1.tar.gz" , hash = "sha256:96ba37c2e24b7212a77da85004c38e7c4d155d3e72a45eeaf22c1f03f607e8ab" } ,
]
[ package . dependencies ]
numpy = { version = ">=1.16,<2.0" , markers = "python_version <= \"3.11\"" }
[ package . extras ]
bokeh = [ "bokeh" , "selenium" ]
docs = [ "furo" , "sphinx (>=7.2)" , "sphinx-copybutton" ]
mypy = [ "contourpy[bokeh,docs]" , "docutils-stubs" , "mypy (==1.4.1)" , "types-Pillow" ]
test = [ "Pillow" , "contourpy[test-no-images]" , "matplotlib" ]
test-no-images = [ "pytest" , "pytest-cov" , "wurlitzer" ]
2023-12-11 21:53:30 +00:00
[ [ package ] ]
name = "coverage"
2024-03-15 17:10:47 +00:00
version = "7.4.3"
2023-12-11 21:53:30 +00:00
description = "Code coverage measurement for Python"
optional = false
python-versions = ">=3.8"
files = [
2024-03-15 17:10:47 +00:00
{ file = "coverage-7.4.3-cp310-cp310-macosx_10_9_x86_64.whl" , hash = "sha256:8580b827d4746d47294c0e0b92854c85a92c2227927433998f0d3320ae8a71b6" } ,
{ file = "coverage-7.4.3-cp310-cp310-macosx_11_0_arm64.whl" , hash = "sha256:718187eeb9849fc6cc23e0d9b092bc2348821c5e1a901c9f8975df0bc785bfd4" } ,
{ file = "coverage-7.4.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:767b35c3a246bcb55b8044fd3a43b8cd553dd1f9f2c1eeb87a302b1f8daa0524" } ,
{ file = "coverage-7.4.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:ae7f19afe0cce50039e2c782bff379c7e347cba335429678450b8fe81c4ef96d" } ,
{ file = "coverage-7.4.3-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:ba3a8aaed13770e970b3df46980cb068d1c24af1a1968b7818b69af8c4347efb" } ,
{ file = "coverage-7.4.3-cp310-cp310-musllinux_1_1_aarch64.whl" , hash = "sha256:ee866acc0861caebb4f2ab79f0b94dbfbdbfadc19f82e6e9c93930f74e11d7a0" } ,
{ file = "coverage-7.4.3-cp310-cp310-musllinux_1_1_i686.whl" , hash = "sha256:506edb1dd49e13a2d4cac6a5173317b82a23c9d6e8df63efb4f0380de0fbccbc" } ,
{ file = "coverage-7.4.3-cp310-cp310-musllinux_1_1_x86_64.whl" , hash = "sha256:fd6545d97c98a192c5ac995d21c894b581f1fd14cf389be90724d21808b657e2" } ,
{ file = "coverage-7.4.3-cp310-cp310-win32.whl" , hash = "sha256:f6a09b360d67e589236a44f0c39218a8efba2593b6abdccc300a8862cffc2f94" } ,
{ file = "coverage-7.4.3-cp310-cp310-win_amd64.whl" , hash = "sha256:18d90523ce7553dd0b7e23cbb28865db23cddfd683a38fb224115f7826de78d0" } ,
{ file = "coverage-7.4.3-cp311-cp311-macosx_10_9_x86_64.whl" , hash = "sha256:cbbe5e739d45a52f3200a771c6d2c7acf89eb2524890a4a3aa1a7fa0695d2a47" } ,
{ file = "coverage-7.4.3-cp311-cp311-macosx_11_0_arm64.whl" , hash = "sha256:489763b2d037b164846ebac0cbd368b8a4ca56385c4090807ff9fad817de4113" } ,
{ file = "coverage-7.4.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:451f433ad901b3bb00184d83fd83d135fb682d780b38af7944c9faeecb1e0bfe" } ,
{ file = "coverage-7.4.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:fcc66e222cf4c719fe7722a403888b1f5e1682d1679bd780e2b26c18bb648cdc" } ,
{ file = "coverage-7.4.3-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:b3ec74cfef2d985e145baae90d9b1b32f85e1741b04cd967aaf9cfa84c1334f3" } ,
{ file = "coverage-7.4.3-cp311-cp311-musllinux_1_1_aarch64.whl" , hash = "sha256:abbbd8093c5229c72d4c2926afaee0e6e3140de69d5dcd918b2921f2f0c8baba" } ,
{ file = "coverage-7.4.3-cp311-cp311-musllinux_1_1_i686.whl" , hash = "sha256:35eb581efdacf7b7422af677b92170da4ef34500467381e805944a3201df2079" } ,
{ file = "coverage-7.4.3-cp311-cp311-musllinux_1_1_x86_64.whl" , hash = "sha256:8249b1c7334be8f8c3abcaaa996e1e4927b0e5a23b65f5bf6cfe3180d8ca7840" } ,
{ file = "coverage-7.4.3-cp311-cp311-win32.whl" , hash = "sha256:cf30900aa1ba595312ae41978b95e256e419d8a823af79ce670835409fc02ad3" } ,
{ file = "coverage-7.4.3-cp311-cp311-win_amd64.whl" , hash = "sha256:18c7320695c949de11a351742ee001849912fd57e62a706d83dfc1581897fa2e" } ,
{ file = "coverage-7.4.3-cp312-cp312-macosx_10_9_x86_64.whl" , hash = "sha256:b51bfc348925e92a9bd9b2e48dad13431b57011fd1038f08316e6bf1df107d10" } ,
{ file = "coverage-7.4.3-cp312-cp312-macosx_11_0_arm64.whl" , hash = "sha256:d6cdecaedea1ea9e033d8adf6a0ab11107b49571bbb9737175444cea6eb72328" } ,
{ file = "coverage-7.4.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:3b2eccb883368f9e972e216c7b4c7c06cabda925b5f06dde0650281cb7666a30" } ,
{ file = "coverage-7.4.3-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:6c00cdc8fa4e50e1cc1f941a7f2e3e0f26cb2a1233c9696f26963ff58445bac7" } ,
{ file = "coverage-7.4.3-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:b9a4a8dd3dcf4cbd3165737358e4d7dfbd9d59902ad11e3b15eebb6393b0446e" } ,
{ file = "coverage-7.4.3-cp312-cp312-musllinux_1_1_aarch64.whl" , hash = "sha256:062b0a75d9261e2f9c6d071753f7eef0fc9caf3a2c82d36d76667ba7b6470003" } ,
{ file = "coverage-7.4.3-cp312-cp312-musllinux_1_1_i686.whl" , hash = "sha256:ebe7c9e67a2d15fa97b77ea6571ce5e1e1f6b0db71d1d5e96f8d2bf134303c1d" } ,
{ file = "coverage-7.4.3-cp312-cp312-musllinux_1_1_x86_64.whl" , hash = "sha256:c0a120238dd71c68484f02562f6d446d736adcc6ca0993712289b102705a9a3a" } ,
{ file = "coverage-7.4.3-cp312-cp312-win32.whl" , hash = "sha256:37389611ba54fd6d278fde86eb2c013c8e50232e38f5c68235d09d0a3f8aa352" } ,
{ file = "coverage-7.4.3-cp312-cp312-win_amd64.whl" , hash = "sha256:d25b937a5d9ffa857d41be042b4238dd61db888533b53bc76dc082cb5a15e914" } ,
{ file = "coverage-7.4.3-cp38-cp38-macosx_10_9_x86_64.whl" , hash = "sha256:28ca2098939eabab044ad68850aac8f8db6bf0b29bc7f2887d05889b17346454" } ,
{ file = "coverage-7.4.3-cp38-cp38-macosx_11_0_arm64.whl" , hash = "sha256:280459f0a03cecbe8800786cdc23067a8fc64c0bd51dc614008d9c36e1659d7e" } ,
{ file = "coverage-7.4.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:6c0cdedd3500e0511eac1517bf560149764b7d8e65cb800d8bf1c63ebf39edd2" } ,
{ file = "coverage-7.4.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:9a9babb9466fe1da12417a4aed923e90124a534736de6201794a3aea9d98484e" } ,
{ file = "coverage-7.4.3-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:dec9de46a33cf2dd87a5254af095a409ea3bf952d85ad339751e7de6d962cde6" } ,
{ file = "coverage-7.4.3-cp38-cp38-musllinux_1_1_aarch64.whl" , hash = "sha256:16bae383a9cc5abab9bb05c10a3e5a52e0a788325dc9ba8499e821885928968c" } ,
{ file = "coverage-7.4.3-cp38-cp38-musllinux_1_1_i686.whl" , hash = "sha256:2c854ce44e1ee31bda4e318af1dbcfc929026d12c5ed030095ad98197eeeaed0" } ,
{ file = "coverage-7.4.3-cp38-cp38-musllinux_1_1_x86_64.whl" , hash = "sha256:ce8c50520f57ec57aa21a63ea4f325c7b657386b3f02ccaedeccf9ebe27686e1" } ,
{ file = "coverage-7.4.3-cp38-cp38-win32.whl" , hash = "sha256:708a3369dcf055c00ddeeaa2b20f0dd1ce664eeabde6623e516c5228b753654f" } ,
{ file = "coverage-7.4.3-cp38-cp38-win_amd64.whl" , hash = "sha256:1bf25fbca0c8d121a3e92a2a0555c7e5bc981aee5c3fdaf4bb7809f410f696b9" } ,
{ file = "coverage-7.4.3-cp39-cp39-macosx_10_9_x86_64.whl" , hash = "sha256:3b253094dbe1b431d3a4ac2f053b6d7ede2664ac559705a704f621742e034f1f" } ,
{ file = "coverage-7.4.3-cp39-cp39-macosx_11_0_arm64.whl" , hash = "sha256:77fbfc5720cceac9c200054b9fab50cb2a7d79660609200ab83f5db96162d20c" } ,
{ file = "coverage-7.4.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:6679060424faa9c11808598504c3ab472de4531c571ab2befa32f4971835788e" } ,
{ file = "coverage-7.4.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:4af154d617c875b52651dd8dd17a31270c495082f3d55f6128e7629658d63765" } ,
{ file = "coverage-7.4.3-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:8640f1fde5e1b8e3439fe482cdc2b0bb6c329f4bb161927c28d2e8879c6029ee" } ,
{ file = "coverage-7.4.3-cp39-cp39-musllinux_1_1_aarch64.whl" , hash = "sha256:69b9f6f66c0af29642e73a520b6fed25ff9fd69a25975ebe6acb297234eda501" } ,
{ file = "coverage-7.4.3-cp39-cp39-musllinux_1_1_i686.whl" , hash = "sha256:0842571634f39016a6c03e9d4aba502be652a6e4455fadb73cd3a3a49173e38f" } ,
{ file = "coverage-7.4.3-cp39-cp39-musllinux_1_1_x86_64.whl" , hash = "sha256:a78ed23b08e8ab524551f52953a8a05d61c3a760781762aac49f8de6eede8c45" } ,
{ file = "coverage-7.4.3-cp39-cp39-win32.whl" , hash = "sha256:c0524de3ff096e15fcbfe8f056fdb4ea0bf497d584454f344d59fce069d3e6e9" } ,
{ file = "coverage-7.4.3-cp39-cp39-win_amd64.whl" , hash = "sha256:0209a6369ccce576b43bb227dc8322d8ef9e323d089c6f3f26a597b09cb4d2aa" } ,
{ file = "coverage-7.4.3-pp38.pp39.pp310-none-any.whl" , hash = "sha256:7cbde573904625509a3f37b6fecea974e363460b556a627c60dc2f47e2fffa51" } ,
{ file = "coverage-7.4.3.tar.gz" , hash = "sha256:276f6077a5c61447a48d133ed13e759c09e62aff0dc84274a68dc18660104d52" } ,
2023-12-11 21:53:30 +00:00
]
[ package . dependencies ]
tomli = { version = "*" , optional = true , markers = "python_full_version <= \"3.11.0a6\" and extra == \"toml\"" }
[ package . extras ]
toml = [ "tomli" ]
[ [ package ] ]
name = "cryptography"
2024-03-08 02:20:47 +00:00
version = "42.0.5"
2023-12-11 21:53:30 +00:00
description = "cryptography is a package which provides cryptographic recipes and primitives to Python developers."
optional = false
python-versions = ">=3.7"
files = [
2024-03-08 02:20:47 +00:00
{ file = "cryptography-42.0.5-cp37-abi3-macosx_10_12_universal2.whl" , hash = "sha256:a30596bae9403a342c978fb47d9b0ee277699fa53bbafad14706af51fe543d16" } ,
{ file = "cryptography-42.0.5-cp37-abi3-macosx_10_12_x86_64.whl" , hash = "sha256:b7ffe927ee6531c78f81aa17e684e2ff617daeba7f189f911065b2ea2d526dec" } ,
{ file = "cryptography-42.0.5-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:2424ff4c4ac7f6b8177b53c17ed5d8fa74ae5955656867f5a8affaca36a27abb" } ,
{ file = "cryptography-42.0.5-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:329906dcc7b20ff3cad13c069a78124ed8247adcac44b10bea1130e36caae0b4" } ,
{ file = "cryptography-42.0.5-cp37-abi3-manylinux_2_28_aarch64.whl" , hash = "sha256:b03c2ae5d2f0fc05f9a2c0c997e1bc18c8229f392234e8a0194f202169ccd278" } ,
{ file = "cryptography-42.0.5-cp37-abi3-manylinux_2_28_x86_64.whl" , hash = "sha256:f8837fe1d6ac4a8052a9a8ddab256bc006242696f03368a4009be7ee3075cdb7" } ,
{ file = "cryptography-42.0.5-cp37-abi3-musllinux_1_1_aarch64.whl" , hash = "sha256:0270572b8bd2c833c3981724b8ee9747b3ec96f699a9665470018594301439ee" } ,
{ file = "cryptography-42.0.5-cp37-abi3-musllinux_1_1_x86_64.whl" , hash = "sha256:b8cac287fafc4ad485b8a9b67d0ee80c66bf3574f655d3b97ef2e1082360faf1" } ,
{ file = "cryptography-42.0.5-cp37-abi3-musllinux_1_2_aarch64.whl" , hash = "sha256:16a48c23a62a2f4a285699dba2e4ff2d1cff3115b9df052cdd976a18856d8e3d" } ,
{ file = "cryptography-42.0.5-cp37-abi3-musllinux_1_2_x86_64.whl" , hash = "sha256:2bce03af1ce5a5567ab89bd90d11e7bbdff56b8af3acbbec1faded8f44cb06da" } ,
{ file = "cryptography-42.0.5-cp37-abi3-win32.whl" , hash = "sha256:b6cd2203306b63e41acdf39aa93b86fb566049aeb6dc489b70e34bcd07adca74" } ,
{ file = "cryptography-42.0.5-cp37-abi3-win_amd64.whl" , hash = "sha256:98d8dc6d012b82287f2c3d26ce1d2dd130ec200c8679b6213b3c73c08b2b7940" } ,
{ file = "cryptography-42.0.5-cp39-abi3-macosx_10_12_universal2.whl" , hash = "sha256:5e6275c09d2badf57aea3afa80d975444f4be8d3bc58f7f80d2a484c6f9485c8" } ,
{ file = "cryptography-42.0.5-cp39-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:e4985a790f921508f36f81831817cbc03b102d643b5fcb81cd33df3fa291a1a1" } ,
{ file = "cryptography-42.0.5-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:7cde5f38e614f55e28d831754e8a3bacf9ace5d1566235e39d91b35502d6936e" } ,
{ file = "cryptography-42.0.5-cp39-abi3-manylinux_2_28_aarch64.whl" , hash = "sha256:7367d7b2eca6513681127ebad53b2582911d1736dc2ffc19f2c3ae49997496bc" } ,
{ file = "cryptography-42.0.5-cp39-abi3-manylinux_2_28_x86_64.whl" , hash = "sha256:cd2030f6650c089aeb304cf093f3244d34745ce0cfcc39f20c6fbfe030102e2a" } ,
{ file = "cryptography-42.0.5-cp39-abi3-musllinux_1_1_aarch64.whl" , hash = "sha256:a2913c5375154b6ef2e91c10b5720ea6e21007412f6437504ffea2109b5a33d7" } ,
{ file = "cryptography-42.0.5-cp39-abi3-musllinux_1_1_x86_64.whl" , hash = "sha256:c41fb5e6a5fe9ebcd58ca3abfeb51dffb5d83d6775405305bfa8715b76521922" } ,
{ file = "cryptography-42.0.5-cp39-abi3-musllinux_1_2_aarch64.whl" , hash = "sha256:3eaafe47ec0d0ffcc9349e1708be2aaea4c6dd4978d76bf6eb0cb2c13636c6fc" } ,
{ file = "cryptography-42.0.5-cp39-abi3-musllinux_1_2_x86_64.whl" , hash = "sha256:1b95b98b0d2af784078fa69f637135e3c317091b615cd0905f8b8a087e86fa30" } ,
{ file = "cryptography-42.0.5-cp39-abi3-win32.whl" , hash = "sha256:1f71c10d1e88467126f0efd484bd44bca5e14c664ec2ede64c32f20875c0d413" } ,
{ file = "cryptography-42.0.5-cp39-abi3-win_amd64.whl" , hash = "sha256:a011a644f6d7d03736214d38832e030d8268bcff4a41f728e6030325fea3e400" } ,
{ file = "cryptography-42.0.5-pp310-pypy310_pp73-macosx_10_12_x86_64.whl" , hash = "sha256:9481ffe3cf013b71b2428b905c4f7a9a4f76ec03065b05ff499bb5682a8d9ad8" } ,
{ file = "cryptography-42.0.5-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl" , hash = "sha256:ba334e6e4b1d92442b75ddacc615c5476d4ad55cc29b15d590cc6b86efa487e2" } ,
{ file = "cryptography-42.0.5-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl" , hash = "sha256:ba3e4a42397c25b7ff88cdec6e2a16c2be18720f317506ee25210f6d31925f9c" } ,
{ file = "cryptography-42.0.5-pp310-pypy310_pp73-win_amd64.whl" , hash = "sha256:111a0d8553afcf8eb02a4fea6ca4f59d48ddb34497aa8706a6cf536f1a5ec576" } ,
{ file = "cryptography-42.0.5-pp39-pypy39_pp73-macosx_10_12_x86_64.whl" , hash = "sha256:cd65d75953847815962c84a4654a84850b2bb4aed3f26fadcc1c13892e1e29f6" } ,
{ file = "cryptography-42.0.5-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl" , hash = "sha256:e807b3188f9eb0eaa7bbb579b462c5ace579f1cedb28107ce8b48a9f7ad3679e" } ,
{ file = "cryptography-42.0.5-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl" , hash = "sha256:f12764b8fffc7a123f641d7d049d382b73f96a34117e0b637b80643169cec8ac" } ,
{ file = "cryptography-42.0.5-pp39-pypy39_pp73-win_amd64.whl" , hash = "sha256:37dd623507659e08be98eec89323469e8c7b4c1407c85112634ae3dbdb926fdd" } ,
{ file = "cryptography-42.0.5.tar.gz" , hash = "sha256:6fe07eec95dfd477eb9530aef5bead34fec819b3aaf6c5bd6d20565da607bfe1" } ,
]
[ package . dependencies ]
cffi = { version = ">=1.12" , markers = "platform_python_implementation != \"PyPy\"" }
2023-12-11 21:53:30 +00:00
[ package . extras ]
docs = [ "sphinx (>=5.3.0)" , "sphinx-rtd-theme (>=1.1.1)" ]
2024-03-08 02:20:47 +00:00
docstest = [ "pyenchant (>=1.6.11)" , "readme-renderer" , "sphinxcontrib-spelling (>=4.0.1)" ]
2023-12-11 21:53:30 +00:00
nox = [ "nox" ]
2024-03-08 02:20:47 +00:00
pep8test = [ "check-sdist" , "click" , "mypy" , "ruff" ]
2023-12-11 21:53:30 +00:00
sdist = [ "build" ]
ssh = [ "bcrypt (>=3.1.5)" ]
2024-03-08 02:20:47 +00:00
test = [ "certifi" , "pretend" , "pytest (>=6.2.0)" , "pytest-benchmark" , "pytest-cov" , "pytest-xdist" ]
2023-12-11 21:53:30 +00:00
test-randomorder = [ "pytest-randomly" ]
2024-03-15 17:10:47 +00:00
[ [ package ] ]
name = "cssselect"
version = "1.2.0"
description = "cssselect parses CSS3 Selectors and translates them to XPath 1.0"
optional = true
python-versions = ">=3.7"
files = [
{ file = "cssselect-1.2.0-py2.py3-none-any.whl" , hash = "sha256:da1885f0c10b60c03ed5eccbb6b68d6eff248d91976fcde348f395d54c9fd35e" } ,
{ file = "cssselect-1.2.0.tar.gz" , hash = "sha256:666b19839cfaddb9ce9d36bfe4c969132c647b92fc9088c4e23f786b30f1b3dc" } ,
]
[ [ package ] ]
name = "cycler"
version = "0.12.1"
description = "Composable style cycles"
optional = true
python-versions = ">=3.8"
files = [
{ file = "cycler-0.12.1-py3-none-any.whl" , hash = "sha256:85cef7cff222d8644161529808465972e51340599459b8ac3ccbac5a854e0d30" } ,
{ file = "cycler-0.12.1.tar.gz" , hash = "sha256:88bb128f02ba341da8ef447245a9e138fae777f6a23943da4540077d3601eb1c" } ,
]
[ package . extras ]
docs = [ "ipython" , "matplotlib" , "numpydoc" , "sphinx" ]
tests = [ "pytest" , "pytest-cov" , "pytest-xdist" ]
[ [ package ] ]
name = "databricks-vectorsearch"
version = "0.21"
description = "Databricks Vector Search Client"
optional = true
python-versions = ">=3.7"
files = [
{ file = "databricks_vectorsearch-0.21-py3-none-any.whl" , hash = "sha256:18265affdb38d44e7ec4cc95f8267379c5109bdb6e75bb61a729f126b2433868" } ,
]
[ package . dependencies ]
mlflow-skinny = ">=2.4.0,<3"
protobuf = ">=3.12.0,<5"
requests = ">=2"
[ [ package ] ]
name = "dataclasses"
version = "0.6"
description = "A backport of the dataclasses module for Python 3.6"
optional = true
python-versions = "*"
files = [
{ file = "dataclasses-0.6-py3-none-any.whl" , hash = "sha256:454a69d788c7fda44efd71e259be79577822f5e3f53f029a22d08004e951dc9f" } ,
{ file = "dataclasses-0.6.tar.gz" , hash = "sha256:6988bd2b895eef432d562370bb707d540f32f7360ab13da45340101bc2307d84" } ,
]
2023-12-11 21:53:30 +00:00
[ [ package ] ]
name = "dataclasses-json"
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
version = "0.6.4"
2023-12-11 21:53:30 +00:00
description = "Easily serialize dataclasses to and from JSON."
optional = false
python-versions = ">=3.7,<4.0"
files = [
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
{ file = "dataclasses_json-0.6.4-py3-none-any.whl" , hash = "sha256:f90578b8a3177f7552f4e1a6e535e84293cd5da421fcce0642d49c0d7bdf8df2" } ,
{ file = "dataclasses_json-0.6.4.tar.gz" , hash = "sha256:73696ebf24936560cca79a2430cbc4f3dd23ac7bf46ed17f38e5e5e7657a6377" } ,
2023-12-11 21:53:30 +00:00
]
[ package . dependencies ]
marshmallow = ">=3.18.0,<4.0.0"
typing-inspect = ">=0.4.0,<1"
2024-03-15 17:10:47 +00:00
[ [ package ] ]
name = "datasets"
version = "2.18.0"
description = "HuggingFace community-driven open-source library of datasets"
optional = true
python-versions = ">=3.8.0"
files = [
{ file = "datasets-2.18.0-py3-none-any.whl" , hash = "sha256:f1bbf0e2896917a914de01cbd37075b14deea3837af87ad0d9f697388ccaeb50" } ,
{ file = "datasets-2.18.0.tar.gz" , hash = "sha256:cdf8b8c6abf7316377ba4f49f9589a4c74556d6b481afd0abd2284f3d69185cb" } ,
]
[ package . dependencies ]
aiohttp = "*"
dill = ">=0.3.0,<0.3.9"
filelock = "*"
fsspec = { version = ">=2023.1.0,<=2024.2.0" , extras = [ "http" ] }
huggingface-hub = ">=0.19.4"
multiprocess = "*"
numpy = ">=1.17"
packaging = "*"
pandas = "*"
pyarrow = ">=12.0.0"
pyarrow-hotfix = "*"
pyyaml = ">=5.1"
requests = ">=2.19.0"
tqdm = ">=4.62.1"
xxhash = "*"
[ package . extras ]
apache-beam = [ "apache-beam (>=2.26.0)" ]
audio = [ "librosa" , "soundfile (>=0.12.1)" ]
benchmarks = [ "tensorflow (==2.12.0)" , "torch (==2.0.1)" , "transformers (==4.30.1)" ]
dev = [ "Pillow (>=6.2.1)" , "absl-py" , "apache-beam (>=2.26.0)" , "elasticsearch (<8.0.0)" , "faiss-cpu (>=1.6.4)" , "jax (>=0.3.14)" , "jaxlib (>=0.3.14)" , "joblib (<1.3.0)" , "joblibspark" , "librosa" , "lz4" , "py7zr" , "pyspark (>=3.4)" , "pytest" , "pytest-datadir" , "pytest-xdist" , "rarfile (>=4.0)" , "ruff (>=0.3.0)" , "s3fs" , "s3fs (>=2021.11.1)" , "soundfile (>=0.12.1)" , "sqlalchemy" , "tensorflow (>=2.2.0,!=2.6.0,!=2.6.1)" , "tensorflow (>=2.3,!=2.6.0,!=2.6.1)" , "tensorflow-macos" , "tiktoken" , "torch" , "torch (>=2.0.0)" , "transformers" , "typing-extensions (>=4.6.1)" , "zstandard" ]
docs = [ "s3fs" , "tensorflow (>=2.2.0,!=2.6.0,!=2.6.1)" , "tensorflow-macos" , "torch" , "transformers" ]
jax = [ "jax (>=0.3.14)" , "jaxlib (>=0.3.14)" ]
metrics-tests = [ "Werkzeug (>=1.0.1)" , "accelerate" , "bert-score (>=0.3.6)" , "jiwer" , "langdetect" , "mauve-text" , "nltk" , "requests-file (>=1.5.1)" , "rouge-score" , "sacrebleu" , "sacremoses" , "scikit-learn" , "scipy" , "sentencepiece" , "seqeval" , "six (>=1.15.0,<1.16.0)" , "spacy (>=3.0.0)" , "texttable (>=1.6.3)" , "tldextract" , "tldextract (>=3.1.0)" , "toml (>=0.10.1)" , "typer (<0.5.0)" ]
quality = [ "ruff (>=0.3.0)" ]
s3 = [ "s3fs" ]
tensorflow = [ "tensorflow (>=2.2.0,!=2.6.0,!=2.6.1)" , "tensorflow-macos" ]
tensorflow-gpu = [ "tensorflow-gpu (>=2.2.0,!=2.6.0,!=2.6.1)" ]
tests = [ "Pillow (>=6.2.1)" , "absl-py" , "apache-beam (>=2.26.0)" , "elasticsearch (<8.0.0)" , "faiss-cpu (>=1.6.4)" , "jax (>=0.3.14)" , "jaxlib (>=0.3.14)" , "joblib (<1.3.0)" , "joblibspark" , "librosa" , "lz4" , "py7zr" , "pyspark (>=3.4)" , "pytest" , "pytest-datadir" , "pytest-xdist" , "rarfile (>=4.0)" , "s3fs (>=2021.11.1)" , "soundfile (>=0.12.1)" , "sqlalchemy" , "tensorflow (>=2.3,!=2.6.0,!=2.6.1)" , "tensorflow-macos" , "tiktoken" , "torch (>=2.0.0)" , "transformers" , "typing-extensions (>=4.6.1)" , "zstandard" ]
torch = [ "torch" ]
vision = [ "Pillow (>=6.2.1)" ]
2023-12-11 21:53:30 +00:00
[ [ package ] ]
name = "debugpy"
2024-03-08 02:20:47 +00:00
version = "1.8.1"
2023-12-11 21:53:30 +00:00
description = "An implementation of the Debug Adapter Protocol for Python"
optional = false
python-versions = ">=3.8"
files = [
2024-03-08 02:20:47 +00:00
{ file = "debugpy-1.8.1-cp310-cp310-macosx_11_0_x86_64.whl" , hash = "sha256:3bda0f1e943d386cc7a0e71bfa59f4137909e2ed947fb3946c506e113000f741" } ,
{ file = "debugpy-1.8.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:dda73bf69ea479c8577a0448f8c707691152e6c4de7f0c4dec5a4bc11dee516e" } ,
{ file = "debugpy-1.8.1-cp310-cp310-win32.whl" , hash = "sha256:3a79c6f62adef994b2dbe9fc2cc9cc3864a23575b6e387339ab739873bea53d0" } ,
{ file = "debugpy-1.8.1-cp310-cp310-win_amd64.whl" , hash = "sha256:7eb7bd2b56ea3bedb009616d9e2f64aab8fc7000d481faec3cd26c98a964bcdd" } ,
{ file = "debugpy-1.8.1-cp311-cp311-macosx_11_0_universal2.whl" , hash = "sha256:016a9fcfc2c6b57f939673c874310d8581d51a0fe0858e7fac4e240c5eb743cb" } ,
{ file = "debugpy-1.8.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:fd97ed11a4c7f6d042d320ce03d83b20c3fb40da892f994bc041bbc415d7a099" } ,
{ file = "debugpy-1.8.1-cp311-cp311-win32.whl" , hash = "sha256:0de56aba8249c28a300bdb0672a9b94785074eb82eb672db66c8144fff673146" } ,
{ file = "debugpy-1.8.1-cp311-cp311-win_amd64.whl" , hash = "sha256:1a9fe0829c2b854757b4fd0a338d93bc17249a3bf69ecf765c61d4c522bb92a8" } ,
{ file = "debugpy-1.8.1-cp312-cp312-macosx_11_0_universal2.whl" , hash = "sha256:3ebb70ba1a6524d19fa7bb122f44b74170c447d5746a503e36adc244a20ac539" } ,
{ file = "debugpy-1.8.1-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:a2e658a9630f27534e63922ebf655a6ab60c370f4d2fc5c02a5b19baf4410ace" } ,
{ file = "debugpy-1.8.1-cp312-cp312-win32.whl" , hash = "sha256:caad2846e21188797a1f17fc09c31b84c7c3c23baf2516fed5b40b378515bbf0" } ,
{ file = "debugpy-1.8.1-cp312-cp312-win_amd64.whl" , hash = "sha256:edcc9f58ec0fd121a25bc950d4578df47428d72e1a0d66c07403b04eb93bcf98" } ,
{ file = "debugpy-1.8.1-cp38-cp38-macosx_11_0_x86_64.whl" , hash = "sha256:7a3afa222f6fd3d9dfecd52729bc2e12c93e22a7491405a0ecbf9e1d32d45b39" } ,
{ file = "debugpy-1.8.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:d915a18f0597ef685e88bb35e5d7ab968964b7befefe1aaea1eb5b2640b586c7" } ,
{ file = "debugpy-1.8.1-cp38-cp38-win32.whl" , hash = "sha256:92116039b5500633cc8d44ecc187abe2dfa9b90f7a82bbf81d079fcdd506bae9" } ,
{ file = "debugpy-1.8.1-cp38-cp38-win_amd64.whl" , hash = "sha256:e38beb7992b5afd9d5244e96ad5fa9135e94993b0c551ceebf3fe1a5d9beb234" } ,
{ file = "debugpy-1.8.1-cp39-cp39-macosx_11_0_x86_64.whl" , hash = "sha256:bfb20cb57486c8e4793d41996652e5a6a885b4d9175dd369045dad59eaacea42" } ,
{ file = "debugpy-1.8.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:efd3fdd3f67a7e576dd869c184c5dd71d9aaa36ded271939da352880c012e703" } ,
{ file = "debugpy-1.8.1-cp39-cp39-win32.whl" , hash = "sha256:58911e8521ca0c785ac7a0539f1e77e0ce2df753f786188f382229278b4cdf23" } ,
{ file = "debugpy-1.8.1-cp39-cp39-win_amd64.whl" , hash = "sha256:6df9aa9599eb05ca179fb0b810282255202a66835c6efb1d112d21ecb830ddd3" } ,
{ file = "debugpy-1.8.1-py2.py3-none-any.whl" , hash = "sha256:28acbe2241222b87e255260c76741e1fbf04fdc3b6d094fcf57b6c6f75ce1242" } ,
{ file = "debugpy-1.8.1.zip" , hash = "sha256:f696d6be15be87aef621917585f9bb94b1dc9e8aced570db1b8a6fc14e8f9b42" } ,
2023-12-11 21:53:30 +00:00
]
[ [ package ] ]
name = "decorator"
version = "5.1.1"
description = "Decorators for Humans"
optional = false
python-versions = ">=3.5"
files = [
{ file = "decorator-5.1.1-py3-none-any.whl" , hash = "sha256:b8c3f85900b9dc423225913c5aace94729fe1fa9763b38939a95226f02d37186" } ,
{ file = "decorator-5.1.1.tar.gz" , hash = "sha256:637996211036b6385ef91435e4fae22989472f9d571faba8927ba8253acbc330" } ,
]
[ [ package ] ]
name = "defusedxml"
version = "0.7.1"
description = "XML bomb protection for Python stdlib modules"
optional = false
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*"
files = [
{ file = "defusedxml-0.7.1-py2.py3-none-any.whl" , hash = "sha256:a352e7e428770286cc899e2542b6cdaedb2b4953ff269a210103ec58f6198a61" } ,
{ file = "defusedxml-0.7.1.tar.gz" , hash = "sha256:1bb3032db185915b62d7c6209c5a8792be6a32ab2fedacc84e01b52c51aa3e69" } ,
]
2024-03-15 17:10:47 +00:00
[ [ package ] ]
name = "deprecated"
version = "1.2.14"
description = "Python @deprecated decorator to deprecate old python classes, functions or methods."
optional = true
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*"
files = [
{ file = "Deprecated-1.2.14-py2.py3-none-any.whl" , hash = "sha256:6fac8b097794a90302bdbb17b9b815e732d3c4720583ff1b198499d78470466c" } ,
{ file = "Deprecated-1.2.14.tar.gz" , hash = "sha256:e5323eb936458dccc2582dc6f9c322c852a775a27065ff2b0c4970b9d53d01b3" } ,
]
[ package . dependencies ]
wrapt = ">=1.10,<2"
[ package . extras ]
dev = [ "PyTest" , "PyTest-Cov" , "bump2version (<1)" , "sphinx (<2)" , "tox" ]
[ [ package ] ]
name = "deprecation"
version = "2.1.0"
description = "A library to handle automated deprecations"
optional = true
python-versions = "*"
files = [
{ file = "deprecation-2.1.0-py2.py3-none-any.whl" , hash = "sha256:a10811591210e1fb0e768a8c25517cabeabcba6f0bf96564f8ff45189f90b14a" } ,
{ file = "deprecation-2.1.0.tar.gz" , hash = "sha256:72b3bde64e5d778694b0cf68178aed03d15e15477116add3fb773e581f9518ff" } ,
]
[ package . dependencies ]
packaging = "*"
[ [ package ] ]
name = "dgml-utils"
version = "0.3.2"
description = "Python utilities to work with the Docugami Markup Language (DGML) format."
optional = true
python-versions = ">=3.8.1,<4.0"
files = [
{ file = "dgml_utils-0.3.2-py3-none-any.whl" , hash = "sha256:297872daf03e2d25d628102603c976afb6802789b12d526085e54d3c33c30783" } ,
{ file = "dgml_utils-0.3.2.tar.gz" , hash = "sha256:55ddc487a0ef1e259b1582e8c942ca136b06cb7b82176f8b2d5fac534cd5148c" } ,
]
[ package . dependencies ]
lxml = ">=4.9.3,<5.0.0"
tabulate = ">=0.9.0,<0.10.0"
[ [ package ] ]
name = "dill"
version = "0.3.8"
description = "serialize all of Python"
optional = true
python-versions = ">=3.8"
files = [
{ file = "dill-0.3.8-py3-none-any.whl" , hash = "sha256:c36ca9ffb54365bdd2f8eb3eff7d2a21237f8452b57ace88b1ac615b7e815bd7" } ,
{ file = "dill-0.3.8.tar.gz" , hash = "sha256:3ebe3c479ad625c4553aca177444d89b486b1d84982eeacded644afc0cf797ca" } ,
]
[ package . extras ]
graph = [ "objgraph (>=1.7.2)" ]
profile = [ "gprof2dot (>=2022.7.29)" ]
2023-12-11 21:53:30 +00:00
[ [ package ] ]
name = "distro"
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
version = "1.9.0"
2023-12-11 21:53:30 +00:00
description = "Distro - an OS platform information API"
optional = false
python-versions = ">=3.6"
files = [
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
{ file = "distro-1.9.0-py3-none-any.whl" , hash = "sha256:7bffd925d65168f85027d8da9af6bddab658135b840670a223589bc0c8ef02b2" } ,
{ file = "distro-1.9.0.tar.gz" , hash = "sha256:2fa77c6fd8940f116ee1d6b94a2f90b13b5ea8d019b98bc8bafdcabcdd9bdbed" } ,
2023-12-11 21:53:30 +00:00
]
2024-03-15 17:10:47 +00:00
[ [ package ] ]
name = "dnspython"
version = "2.6.1"
description = "DNS toolkit"
optional = true
python-versions = ">=3.8"
files = [
{ file = "dnspython-2.6.1-py3-none-any.whl" , hash = "sha256:5ef3b9680161f6fa89daf8ad451b5f1a33b18ae8a1c6778cdf4b43f08c0a6e50" } ,
{ file = "dnspython-2.6.1.tar.gz" , hash = "sha256:e8f0f9c23a7b7cb99ded64e6c3a6f3e701d78f50c55e002b839dea7225cff7cc" } ,
]
[ package . extras ]
dev = [ "black (>=23.1.0)" , "coverage (>=7.0)" , "flake8 (>=7)" , "mypy (>=1.8)" , "pylint (>=3)" , "pytest (>=7.4)" , "pytest-cov (>=4.1.0)" , "sphinx (>=7.2.0)" , "twine (>=4.0.0)" , "wheel (>=0.42.0)" ]
dnssec = [ "cryptography (>=41)" ]
doh = [ "h2 (>=4.1.0)" , "httpcore (>=1.0.0)" , "httpx (>=0.26.0)" ]
doq = [ "aioquic (>=0.9.25)" ]
idna = [ "idna (>=3.6)" ]
trio = [ "trio (>=0.23)" ]
wmi = [ "wmi (>=1.5.1)" ]
[ [ package ] ]
name = "docopt"
version = "0.6.2"
description = "Pythonic argument parser, that will make you smile"
optional = true
python-versions = "*"
files = [
{ file = "docopt-0.6.2.tar.gz" , hash = "sha256:49b3a825280bd66b3aa83585ef59c4a8c82f2c8a522dbe754a8bc8d08c85c491" } ,
]
2023-12-11 21:53:30 +00:00
[ [ package ] ]
name = "duckdb"
2024-03-08 02:20:47 +00:00
version = "0.10.0"
description = "DuckDB in-process database"
2023-12-11 21:53:30 +00:00
optional = false
python-versions = ">=3.7.0"
files = [
2024-03-08 02:20:47 +00:00
{ file = "duckdb-0.10.0-cp310-cp310-macosx_10_9_universal2.whl" , hash = "sha256:bd0ffb3fddef0f72a150e4d76e10942a84a1a0447d10907df1621b90d6668060" } ,
{ file = "duckdb-0.10.0-cp310-cp310-macosx_10_9_x86_64.whl" , hash = "sha256:f3d709d5c7c1a12b5e10d0b05fa916c670cd2b50178e3696faa0cc16048a1745" } ,
{ file = "duckdb-0.10.0-cp310-cp310-macosx_11_0_arm64.whl" , hash = "sha256:9114aa22ec5d591a20ce5184be90f49d8e5b5348ceaab21e102c54560d07a5f8" } ,
{ file = "duckdb-0.10.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:77a37877efadf39caf7cadde0f430fedf762751b9c54750c821e2f1316705a21" } ,
{ file = "duckdb-0.10.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:87cbc9e1d9c3fc9f14307bea757f99f15f46843c0ab13a6061354410824ed41f" } ,
{ file = "duckdb-0.10.0-cp310-cp310-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl" , hash = "sha256:f0bfec79fed387201550517d325dff4fad2705020bc139d936cab08b9e845662" } ,
{ file = "duckdb-0.10.0-cp310-cp310-musllinux_1_1_x86_64.whl" , hash = "sha256:c5622134d2d9796b15e09de810e450859d4beb46d9b861357ec9ae40a61b775c" } ,
{ file = "duckdb-0.10.0-cp310-cp310-win_amd64.whl" , hash = "sha256:089ee8e831ccaef1b73fc89c43b661567175eed0115454880bafed5e35cda702" } ,
{ file = "duckdb-0.10.0-cp311-cp311-macosx_10_9_universal2.whl" , hash = "sha256:a05af63747f1d7021995f0811c333dee7316cec3b06c0d3e4741b9bdb678dd21" } ,
{ file = "duckdb-0.10.0-cp311-cp311-macosx_10_9_x86_64.whl" , hash = "sha256:072d6eba5d8a59e0069a8b5b4252fed8a21f9fe3f85a9129d186a39b3d0aea03" } ,
{ file = "duckdb-0.10.0-cp311-cp311-macosx_11_0_arm64.whl" , hash = "sha256:a77b85668f59b919042832e4659538337f1c7f197123076c5311f1c9cf077df7" } ,
{ file = "duckdb-0.10.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:96a666f1d2da65d03199a977aec246920920a5ea1da76b70ae02bd4fb1ffc48c" } ,
{ file = "duckdb-0.10.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:2ec76a4262b783628d26612d184834852d9c92fb203e91af789100c17e3d7173" } ,
{ file = "duckdb-0.10.0-cp311-cp311-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl" , hash = "sha256:009dd9d2cdbd3b061a9efbdfc79f2d1a8377bcf49f1e5f430138621f8c083a6c" } ,
{ file = "duckdb-0.10.0-cp311-cp311-musllinux_1_1_x86_64.whl" , hash = "sha256:878f06766088090dad4a2e5ee0081555242b2e8dcb29415ecc97e388cf0cf8d8" } ,
{ file = "duckdb-0.10.0-cp311-cp311-win_amd64.whl" , hash = "sha256:713ff0a1fb63a6d60f454acf67f31656549fb5d63f21ac68314e4f522daa1a89" } ,
{ file = "duckdb-0.10.0-cp312-cp312-macosx_10_9_universal2.whl" , hash = "sha256:9c0ee450dfedfb52dd4957244e31820feef17228da31af6d052979450a80fd19" } ,
{ file = "duckdb-0.10.0-cp312-cp312-macosx_10_9_x86_64.whl" , hash = "sha256:ff79b2ea9994398b545c0d10601cd73565fbd09f8951b3d8003c7c5c0cebc7cb" } ,
{ file = "duckdb-0.10.0-cp312-cp312-macosx_11_0_arm64.whl" , hash = "sha256:6bdf1aa71b924ef651062e6b8ff9981ad85bec89598294af8a072062c5717340" } ,
{ file = "duckdb-0.10.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:d0265bbc8216be3ced7b377ba8847128a3fc0ef99798a3c4557c1b88e3a01c23" } ,
{ file = "duckdb-0.10.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:1d418a315a07707a693bd985274c0f8c4dd77015d9ef5d8d3da4cc1942fd82e0" } ,
{ file = "duckdb-0.10.0-cp312-cp312-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl" , hash = "sha256:2828475a292e68c71855190b818aded6bce7328f79e38c04a0c75f8f1c0ceef0" } ,
{ file = "duckdb-0.10.0-cp312-cp312-musllinux_1_1_x86_64.whl" , hash = "sha256:c3aaeaae2eba97035c65f31ffdb18202c951337bf2b3d53d77ce1da8ae2ecf51" } ,
{ file = "duckdb-0.10.0-cp312-cp312-win_amd64.whl" , hash = "sha256:c51790aaaea97d8e4a58a114c371ed8d2c4e1ca7cbf29e3bdab6d8ccfc5afc1e" } ,
{ file = "duckdb-0.10.0-cp37-cp37m-macosx_10_9_x86_64.whl" , hash = "sha256:8af1ae7cc77a12206b6c47ade191882cc8f49f750bb3e72bb86ac1d4fa89926a" } ,
{ file = "duckdb-0.10.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:aa4f7e8e8dc0e376aeb280b83f2584d0e25ec38985c27d19f3107b2edc4f4a97" } ,
{ file = "duckdb-0.10.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:28ae942a79fad913defa912b56483cd7827a4e7721f4ce4bc9025b746ecb3c89" } ,
{ file = "duckdb-0.10.0-cp37-cp37m-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl" , hash = "sha256:01b57802898091455ca2a32c1335aac1e398da77c99e8a96a1e5de09f6a0add9" } ,
{ file = "duckdb-0.10.0-cp37-cp37m-musllinux_1_1_x86_64.whl" , hash = "sha256:52e1ad4a55fa153d320c367046b9500578192e01c6d04308ba8b540441736f2c" } ,
{ file = "duckdb-0.10.0-cp37-cp37m-win_amd64.whl" , hash = "sha256:904c47d04095af745e989c853f0bfc0776913dfc40dfbd2da7afdbbb5f67fed0" } ,
{ file = "duckdb-0.10.0-cp38-cp38-macosx_10_9_universal2.whl" , hash = "sha256:184ae7ea5874f3b8fa51ab0f1519bdd088a0b78c32080ee272b1d137e2c8fd9c" } ,
{ file = "duckdb-0.10.0-cp38-cp38-macosx_10_9_x86_64.whl" , hash = "sha256:bd33982ecc9bac727a032d6cedced9f19033cbad56647147408891eb51a6cb37" } ,
{ file = "duckdb-0.10.0-cp38-cp38-macosx_11_0_arm64.whl" , hash = "sha256:f59bf0949899105dd5f8864cb48139bfb78454a8c017b8258ba2b5e90acf7afc" } ,
{ file = "duckdb-0.10.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:395f3b18948001e35dceb48a4423d574e38656606d033eef375408b539e7b076" } ,
{ file = "duckdb-0.10.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:9b8eb2b803be7ee1df70435c33b03a4598cdaf676cd67ad782b288dcff65d781" } ,
{ file = "duckdb-0.10.0-cp38-cp38-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl" , hash = "sha256:31b2ddd331801064326c8e3587a4db8a31d02aef11332c168f45b3bd92effb41" } ,
{ file = "duckdb-0.10.0-cp38-cp38-musllinux_1_1_x86_64.whl" , hash = "sha256:c8b89e76a041424b8c2026c5dc1f74b53fbbc6c6f650d563259885ab2e7d093d" } ,
{ file = "duckdb-0.10.0-cp38-cp38-win_amd64.whl" , hash = "sha256:79084a82f16c0a54f6bfb7ded5600400c2daa90eb0d83337d81a56924eaee5d4" } ,
{ file = "duckdb-0.10.0-cp39-cp39-macosx_10_9_universal2.whl" , hash = "sha256:79799b3a270dcd9070f677ba510f1e66b112df3068425691bac97c5e278929c7" } ,
{ file = "duckdb-0.10.0-cp39-cp39-macosx_10_9_x86_64.whl" , hash = "sha256:e8fc394bfe3434920cdbcfbdd0ac3ba40902faa1dbda088db0ba44003a45318a" } ,
{ file = "duckdb-0.10.0-cp39-cp39-macosx_11_0_arm64.whl" , hash = "sha256:c116605551b4abf5786243a59bcef02bd69cc51837d0c57cafaa68cdc428aa0c" } ,
{ file = "duckdb-0.10.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:3191170c3b0a43b0c12644800326f5afdea00d5a4621d59dbbd0c1059139e140" } ,
{ file = "duckdb-0.10.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:fee69a50eb93c72dc77e7ab1fabe0c38d21a52c5da44a86aa217081e38f9f1bd" } ,
{ file = "duckdb-0.10.0-cp39-cp39-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl" , hash = "sha256:c5f449e87dacb16b0d145dbe65fa6fdb5a55b2b6911a46d74876e445dd395bac" } ,
{ file = "duckdb-0.10.0-cp39-cp39-musllinux_1_1_x86_64.whl" , hash = "sha256:4487d0df221b17ea4177ad08131bc606b35f25cfadf890987833055b9d10cdf6" } ,
{ file = "duckdb-0.10.0-cp39-cp39-win_amd64.whl" , hash = "sha256:c099ae2ff8fe939fda62da81704f91e2f92ac45e48dc0e37c679c9d243d01e65" } ,
{ file = "duckdb-0.10.0.tar.gz" , hash = "sha256:c02bcc128002aa79e3c9d89b9de25e062d1096a8793bc0d7932317b7977f6845" } ,
2023-12-11 21:53:30 +00:00
]
[ [ package ] ]
name = "duckdb-engine"
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
version = "0.9.5"
2023-12-11 21:53:30 +00:00
description = "SQLAlchemy driver for duckdb"
optional = false
python-versions = ">=3.7"
files = [
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
{ file = "duckdb_engine-0.9.5-py3-none-any.whl" , hash = "sha256:bdaf9cc6b7e95bff8081921a9a2bdfa1c72b5ee60c1403c5c671de620dfebd9e" } ,
{ file = "duckdb_engine-0.9.5.tar.gz" , hash = "sha256:17fdc13068540315b64c7d174d5a260e918b1ce4b5346897caca026401afb280" } ,
2023-12-11 21:53:30 +00:00
]
[ package . dependencies ]
duckdb = ">=0.4.0"
sqlalchemy = ">=1.3.22"
2024-03-15 17:10:47 +00:00
[ [ package ] ]
name = "elastic-transport"
version = "8.12.0"
description = "Transport classes and utilities shared among Python Elastic client libraries"
optional = true
python-versions = ">=3.7"
files = [
{ file = "elastic-transport-8.12.0.tar.gz" , hash = "sha256:48839b942fcce199eece1558ecea6272e116c58da87ca8d495ef12eb61effaf7" } ,
{ file = "elastic_transport-8.12.0-py3-none-any.whl" , hash = "sha256:87d9dc9dee64a05235e7624ed7e6ab6e5ca16619aa7a6d22e853273b9f1cfbee" } ,
]
[ package . dependencies ]
certifi = "*"
urllib3 = ">=1.26.2,<3"
[ package . extras ]
develop = [ "aiohttp" , "furo" , "mock" , "pytest" , "pytest-asyncio" , "pytest-cov" , "pytest-httpserver" , "pytest-mock" , "requests" , "sphinx (>2)" , "sphinx-autodoc-typehints" , "trustme" ]
[ [ package ] ]
name = "elasticsearch"
version = "8.12.1"
description = "Python client for Elasticsearch"
optional = true
python-versions = ">=3.7"
files = [
{ file = "elasticsearch-8.12.1-py3-none-any.whl" , hash = "sha256:cc459b7e0fb88dc85b43b9d7d254cffad552b0063a3e0a12290c8fa5f138c038" } ,
{ file = "elasticsearch-8.12.1.tar.gz" , hash = "sha256:00c997720fbd0f2afe5417c8193cf65d116817a0250de0521e30c3e81f00b8ac" } ,
]
[ package . dependencies ]
elastic-transport = ">=8,<9"
[ package . extras ]
async = [ "aiohttp (>=3,<4)" ]
requests = [ "requests (>=2.4.0,<3.0.0)" ]
[ [ package ] ]
name = "email-validator"
version = "2.1.1"
description = "A robust email address syntax and deliverability validation library."
optional = true
python-versions = ">=3.8"
files = [
{ file = "email_validator-2.1.1-py3-none-any.whl" , hash = "sha256:97d882d174e2a65732fb43bfce81a3a834cbc1bde8bf419e30ef5ea976370a05" } ,
{ file = "email_validator-2.1.1.tar.gz" , hash = "sha256:200a70680ba08904be6d1eef729205cc0d687634399a5924d842533efb824b84" } ,
]
[ package . dependencies ]
dnspython = ">=2.0.0"
idna = ">=2.0.0"
[ [ package ] ]
name = "entrypoints"
version = "0.4"
description = "Discover and load entry points from installed packages."
optional = true
python-versions = ">=3.6"
files = [
{ file = "entrypoints-0.4-py3-none-any.whl" , hash = "sha256:f174b5ff827504fd3cd97cc3f8649f3693f51538c7e4bdf3ef002c8429d42f9f" } ,
{ file = "entrypoints-0.4.tar.gz" , hash = "sha256:b706eddaa9218a19ebcd67b56818f05bb27589b1ca9e8d797b74affad4ccacd4" } ,
]
[ [ package ] ]
name = "esprima"
version = "4.0.1"
description = "ECMAScript parsing infrastructure for multipurpose analysis in Python"
optional = true
python-versions = "*"
files = [
{ file = "esprima-4.0.1.tar.gz" , hash = "sha256:08db1a876d3c2910db9cfaeb83108193af5411fc3a3a66ebefacd390d21323ee" } ,
]
2023-12-11 21:53:30 +00:00
[ [ package ] ]
name = "exceptiongroup"
version = "1.2.0"
description = "Backport of PEP 654 (exception groups)"
optional = false
python-versions = ">=3.7"
files = [
{ file = "exceptiongroup-1.2.0-py3-none-any.whl" , hash = "sha256:4bfd3996ac73b41e9b9628b04e079f193850720ea5945fc96a08633c66912f14" } ,
{ file = "exceptiongroup-1.2.0.tar.gz" , hash = "sha256:91f5c769735f051a4290d52edd0858999b57e5876e9f85937691bd4c9fa3ed68" } ,
]
[ package . extras ]
test = [ "pytest (>=6)" ]
[ [ package ] ]
name = "executing"
version = "2.0.1"
description = "Get the currently executing AST node of a frame, and other information"
optional = false
python-versions = ">=3.5"
files = [
{ file = "executing-2.0.1-py2.py3-none-any.whl" , hash = "sha256:eac49ca94516ccc753f9fb5ce82603156e590b27525a8bc32cce8ae302eb61bc" } ,
{ file = "executing-2.0.1.tar.gz" , hash = "sha256:35afe2ce3affba8ee97f2d69927fa823b08b472b7b994e36a52a964b93d16147" } ,
]
[ package . extras ]
tests = [ "asttokens (>=2.1.0)" , "coverage" , "coverage-enable-subprocess" , "ipython" , "littleutils" , "pytest" , "rich" ]
2024-03-15 17:10:47 +00:00
[ [ package ] ]
name = "faiss-cpu"
version = "1.8.0"
description = "A library for efficient similarity search and clustering of dense vectors."
optional = true
python-versions = ">=3.8"
files = [
{ file = "faiss-cpu-1.8.0.tar.gz" , hash = "sha256:3ee1549491728f37b65267c192a94661a907154a8ae0546ad50a564b8be0d82e" } ,
{ file = "faiss_cpu-1.8.0-cp310-cp310-macosx_10_14_x86_64.whl" , hash = "sha256:134a064c7411acf7d1d863173a9d2605c5a59bd573639ab39a5ded5ca983b1b2" } ,
{ file = "faiss_cpu-1.8.0-cp310-cp310-macosx_11_0_arm64.whl" , hash = "sha256:ba8e6202d561ac57394c9d691ff17f8fa6eb9a077913a993fce0a154ec0176f1" } ,
{ file = "faiss_cpu-1.8.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:a66e9fa7b70556a39681f06e0652f4124c8ddb0a1924afe4f0e40b6924dc845b" } ,
{ file = "faiss_cpu-1.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:51aaef5a1255d0ea88ea7e52a2415f98c5dd2dd9cec10348d55136541eeec99f" } ,
{ file = "faiss_cpu-1.8.0-cp310-cp310-win_amd64.whl" , hash = "sha256:38152761242870ec7019e0397cbd0ed0b0716562029ce41a71bb38448bd6d5bc" } ,
{ file = "faiss_cpu-1.8.0-cp311-cp311-macosx_10_14_x86_64.whl" , hash = "sha256:c9e6ad94b86626be1a0faff3e53c4ca169eba88aa156d7e90c5a2e9ba30558fb" } ,
{ file = "faiss_cpu-1.8.0-cp311-cp311-macosx_11_0_arm64.whl" , hash = "sha256:4601dbd81733bf1bc3bff690aac981289fb386dc8e60d0c4eec8a37ba6856d20" } ,
{ file = "faiss_cpu-1.8.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:fa943d3b5e8c5c77cdd629d9c3c6f78d7da616e586fdd1b94aecbf2e5fa9ba06" } ,
{ file = "faiss_cpu-1.8.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:b644b366c3b239b34fa3e08bf65bfc78a24eda1e1ea5b2b6d9be3e8fc73d8179" } ,
{ file = "faiss_cpu-1.8.0-cp311-cp311-win_amd64.whl" , hash = "sha256:f85ecf3514850f93985be238351f5a70736133cfae784b372640aa17c6343a1b" } ,
{ file = "faiss_cpu-1.8.0-cp312-cp312-macosx_10_14_x86_64.whl" , hash = "sha256:61abc0129a357ac00f17f5167f14dff41480de2cc852f306c3d4cd36b893ccbd" } ,
{ file = "faiss_cpu-1.8.0-cp312-cp312-macosx_11_0_arm64.whl" , hash = "sha256:b788186d6eb94e6333e1aa8bb6c84b66e967458ecdd1cee22e16f04c43ee674c" } ,
{ file = "faiss_cpu-1.8.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:5658d90a202c62e4a69c5b065785e9ddcaf6986cb395c16afed8dbe4c58c31a2" } ,
{ file = "faiss_cpu-1.8.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:5d460a372efce547e53d3c47d2c2a8a90b186ad245969048c10c1d7a1e5cf21b" } ,
{ file = "faiss_cpu-1.8.0-cp312-cp312-win_amd64.whl" , hash = "sha256:9e6520324f0a6764dd267b3c32c76958bf2b1ec36752950f6fab31a7295980a0" } ,
{ file = "faiss_cpu-1.8.0-cp38-cp38-macosx_10_14_x86_64.whl" , hash = "sha256:fc44be179d5b7f690484ef0d0caf817fea2698a5275a0c7fb6cbf406e5b2e4d1" } ,
{ file = "faiss_cpu-1.8.0-cp38-cp38-macosx_11_0_arm64.whl" , hash = "sha256:bbd6f0bc2e1424a12dc7e19d2cc95b53124867966b21110d26f909227e7ed1f1" } ,
{ file = "faiss_cpu-1.8.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:06e7add0c8a06ce8fb0443c38fcaf49c45fb74527ea633b819e56452608e64f5" } ,
{ file = "faiss_cpu-1.8.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:b864e23c1817fa6cfe9bbec096fd7140d596002934f71aa89b196ffb1b9cd846" } ,
{ file = "faiss_cpu-1.8.0-cp38-cp38-win_amd64.whl" , hash = "sha256:655433755845adbb6f0961e2f8980703640cb9faa96f1cd1ea190252149e0d0a" } ,
{ file = "faiss_cpu-1.8.0-cp39-cp39-macosx_10_14_x86_64.whl" , hash = "sha256:e81fc376a3bcda213ffb395dda1018c953ce927c587731ad582f4e6c2b225363" } ,
{ file = "faiss_cpu-1.8.0-cp39-cp39-macosx_11_0_arm64.whl" , hash = "sha256:8c6fa6b7eaf558307b4ab118a236e8d1da79a8685222928e4dd52e277dba144a" } ,
{ file = "faiss_cpu-1.8.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:652f6812ef2e8b0f9b18209828c590bc618aca82e7f1c1b1888f52928258e406" } ,
{ file = "faiss_cpu-1.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:304da4e0d19044374b63a5b6467028572eac4bd3f32bc9e8783d800a03fb1f02" } ,
{ file = "faiss_cpu-1.8.0-cp39-cp39-win_amd64.whl" , hash = "sha256:cb475d3f25f08c97ac64dfe026f113e2aeb9829b206b3b046256c3b40dd7eb62" } ,
]
[ package . dependencies ]
numpy = "*"
[ [ package ] ]
name = "fastapi"
version = "0.104.1"
description = "FastAPI framework, high performance, easy to learn, fast to code, ready for production"
optional = true
python-versions = ">=3.8"
files = [
{ file = "fastapi-0.104.1-py3-none-any.whl" , hash = "sha256:752dc31160cdbd0436bb93bad51560b57e525cbb1d4bbf6f4904ceee75548241" } ,
{ file = "fastapi-0.104.1.tar.gz" , hash = "sha256:e5e4540a7c5e1dcfbbcf5b903c234feddcdcd881f191977a1c5dfd917487e7ae" } ,
]
[ package . dependencies ]
anyio = ">=3.7.1,<4.0.0"
pydantic = ">=1.7.4,<1.8 || >1.8,<1.8.1 || >1.8.1,<2.0.0 || >2.0.0,<2.0.1 || >2.0.1,<2.1.0 || >2.1.0,<3.0.0"
starlette = ">=0.27.0,<0.28.0"
typing-extensions = ">=4.8.0"
[ package . extras ]
all = [ "email-validator (>=2.0.0)" , "httpx (>=0.23.0)" , "itsdangerous (>=1.1.0)" , "jinja2 (>=2.11.2)" , "orjson (>=3.2.1)" , "pydantic-extra-types (>=2.0.0)" , "pydantic-settings (>=2.0.0)" , "python-multipart (>=0.0.5)" , "pyyaml (>=5.3.1)" , "ujson (>=4.0.1,!=4.0.2,!=4.1.0,!=4.2.0,!=4.3.0,!=5.0.0,!=5.1.0)" , "uvicorn[standard] (>=0.12.0)" ]
[ [ package ] ]
name = "fastavro"
version = "1.9.4"
description = "Fast read/write of AVRO files"
optional = true
python-versions = ">=3.8"
files = [
{ file = "fastavro-1.9.4-cp310-cp310-macosx_11_0_x86_64.whl" , hash = "sha256:60cb38f07462a7fb4e4440ed0de67d3d400ae6b3d780f81327bebde9aa55faef" } ,
{ file = "fastavro-1.9.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:063d01d197fc929c20adc09ca9f0ca86d33ac25ee0963ce0b438244eee8315ae" } ,
{ file = "fastavro-1.9.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:87a9053fcfbc895f2a16a4303af22077e3a8fdcf1cd5d6ed47ff2ef22cbba2f0" } ,
{ file = "fastavro-1.9.4-cp310-cp310-musllinux_1_1_aarch64.whl" , hash = "sha256:02bf1276b7326397314adf41b34a4890f6ffa59cf7e0eb20b9e4ab0a143a1598" } ,
{ file = "fastavro-1.9.4-cp310-cp310-musllinux_1_1_x86_64.whl" , hash = "sha256:56bed9eca435389a8861e6e2d631ec7f8f5dda5b23f93517ac710665bd34ca29" } ,
{ file = "fastavro-1.9.4-cp310-cp310-win_amd64.whl" , hash = "sha256:0cd2099c8c672b853e0b20c13e9b62a69d3fbf67ee7c59c7271ba5df1680310d" } ,
{ file = "fastavro-1.9.4-cp311-cp311-macosx_10_9_universal2.whl" , hash = "sha256:af8c6d8c43a02b5569c093fc5467469541ac408c79c36a5b0900d3dd0b3ba838" } ,
{ file = "fastavro-1.9.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:e4a138710bd61580324d23bc5e3df01f0b82aee0a76404d5dddae73d9e4c723f" } ,
{ file = "fastavro-1.9.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:903d97418120ca6b6a7f38a731166c1ccc2c4344ee5e0470d09eb1dc3687540a" } ,
{ file = "fastavro-1.9.4-cp311-cp311-musllinux_1_1_aarch64.whl" , hash = "sha256:c443eeb99899d062dbf78c525e4614dd77e041a7688fa2710c224f4033f193ae" } ,
{ file = "fastavro-1.9.4-cp311-cp311-musllinux_1_1_x86_64.whl" , hash = "sha256:ac26ab0774d1b2b7af6d8f4300ad20bbc4b5469e658a02931ad13ce23635152f" } ,
{ file = "fastavro-1.9.4-cp311-cp311-win_amd64.whl" , hash = "sha256:cf7247874c22be856ba7d1f46a0f6e0379a6025f1a48a7da640444cbac6f570b" } ,
{ file = "fastavro-1.9.4-cp312-cp312-macosx_10_9_universal2.whl" , hash = "sha256:68912f2020e1b3d70557260b27dd85fb49a4fc6bfab18d384926127452c1da4c" } ,
{ file = "fastavro-1.9.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:6925ce137cdd78e109abdb0bc33aad55de6c9f2d2d3036b65453128f2f5f5b92" } ,
{ file = "fastavro-1.9.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:8b928cd294e36e35516d0deb9e104b45be922ba06940794260a4e5dbed6c192a" } ,
{ file = "fastavro-1.9.4-cp312-cp312-musllinux_1_1_aarch64.whl" , hash = "sha256:90c9838bc4c991ffff5dd9d88a0cc0030f938b3fdf038cdf6babde144b920246" } ,
{ file = "fastavro-1.9.4-cp312-cp312-musllinux_1_1_x86_64.whl" , hash = "sha256:eca6e54da571b06a3c5a72dbb7212073f56c92a6fbfbf847b91c347510f8a426" } ,
{ file = "fastavro-1.9.4-cp312-cp312-win_amd64.whl" , hash = "sha256:a4b02839ac261100cefca2e2ad04cdfedc556cb66b5ec735e0db428e74b399de" } ,
{ file = "fastavro-1.9.4-cp38-cp38-macosx_11_0_x86_64.whl" , hash = "sha256:4451ee9a305a73313a1558d471299f3130e4ecc10a88bf5742aa03fb37e042e6" } ,
{ file = "fastavro-1.9.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:a8524fccfb379565568c045d29b2ebf71e1f2c0dd484aeda9fe784ef5febe1a8" } ,
{ file = "fastavro-1.9.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:33d0a00a6e09baa20f6f038d7a2ddcb7eef0e7a9980e947a018300cb047091b8" } ,
{ file = "fastavro-1.9.4-cp38-cp38-musllinux_1_1_aarch64.whl" , hash = "sha256:23d7e5b29c9bf6f26e8be754b2c8b919838e506f78ef724de7d22881696712fc" } ,
{ file = "fastavro-1.9.4-cp38-cp38-musllinux_1_1_x86_64.whl" , hash = "sha256:2e6ab3ee53944326460edf1125b2ad5be2fadd80f7211b13c45fa0c503b4cf8d" } ,
{ file = "fastavro-1.9.4-cp38-cp38-win_amd64.whl" , hash = "sha256:64d335ec2004204c501f8697c385d0a8f6b521ac82d5b30696f789ff5bc85f3c" } ,
{ file = "fastavro-1.9.4-cp39-cp39-macosx_11_0_x86_64.whl" , hash = "sha256:7e05f44c493e89e73833bd3ff3790538726906d2856f59adc8103539f4a1b232" } ,
{ file = "fastavro-1.9.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:253c63993250bff4ee7b11fb46cf3a4622180a783bedc82a24c6fdcd1b10ca2a" } ,
{ file = "fastavro-1.9.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:24d6942eb1db14640c2581e0ecd1bbe0afc8a83731fcd3064ae7f429d7880cb7" } ,
{ file = "fastavro-1.9.4-cp39-cp39-musllinux_1_1_aarch64.whl" , hash = "sha256:d47bb66be6091cd48cfe026adcad11c8b11d7d815a2949a1e4ccf03df981ca65" } ,
{ file = "fastavro-1.9.4-cp39-cp39-musllinux_1_1_x86_64.whl" , hash = "sha256:c293897f12f910e58a1024f9c77f565aa8e23b36aafda6ad8e7041accc57a57f" } ,
{ file = "fastavro-1.9.4-cp39-cp39-win_amd64.whl" , hash = "sha256:f05d2afcb10a92e2a9e580a3891f090589b3e567fdc5641f8a46a0b084f120c3" } ,
{ file = "fastavro-1.9.4.tar.gz" , hash = "sha256:56b8363e360a1256c94562393dc7f8611f3baf2b3159f64fb2b9c6b87b14e876" } ,
]
[ package . extras ]
codecs = [ "cramjam" , "lz4" , "zstandard" ]
lz4 = [ "lz4" ]
snappy = [ "cramjam" ]
zstandard = [ "zstandard" ]
2023-12-11 21:53:30 +00:00
[ [ package ] ]
name = "fastjsonschema"
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
version = "2.19.1"
2023-12-11 21:53:30 +00:00
description = "Fastest Python implementation of JSON schema"
optional = false
python-versions = "*"
files = [
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
{ file = "fastjsonschema-2.19.1-py3-none-any.whl" , hash = "sha256:3672b47bc94178c9f23dbb654bf47440155d4db9df5f7bc47643315f9c405cd0" } ,
{ file = "fastjsonschema-2.19.1.tar.gz" , hash = "sha256:e3126a94bdc4623d3de4485f8d468a12f02a67921315ddc87836d6e456dc789d" } ,
2023-12-11 21:53:30 +00:00
]
[ package . extras ]
devel = [ "colorama" , "json-spec" , "jsonschema" , "pylint" , "pytest" , "pytest-benchmark" , "pytest-cache" , "validictory" ]
2024-03-15 17:10:47 +00:00
[ [ package ] ]
name = "feedfinder2"
version = "0.0.4"
description = "Find the feed URLs for a website."
optional = true
python-versions = "*"
files = [
{ file = "feedfinder2-0.0.4.tar.gz" , hash = "sha256:3701ee01a6c85f8b865a049c30ba0b4608858c803fe8e30d1d289fdbe89d0efe" } ,
]
[ package . dependencies ]
beautifulsoup4 = "*"
requests = "*"
six = "*"
[ [ package ] ]
name = "feedparser"
version = "6.0.11"
description = "Universal feed parser, handles RSS 0.9x, RSS 1.0, RSS 2.0, CDF, Atom 0.3, and Atom 1.0 feeds"
optional = true
python-versions = ">=3.6"
files = [
{ file = "feedparser-6.0.11-py3-none-any.whl" , hash = "sha256:0be7ee7b395572b19ebeb1d6aafb0028dee11169f1c934e0ed67d54992f4ad45" } ,
{ file = "feedparser-6.0.11.tar.gz" , hash = "sha256:c9d0407b64c6f2a065d0ebb292c2b35c01050cc0dc33757461aaabdc4c4184d5" } ,
]
[ package . dependencies ]
sgmllib3k = "*"
2023-12-11 21:53:30 +00:00
[ [ package ] ]
name = "filelock"
version = "3.13.1"
description = "A platform independent file lock."
optional = false
python-versions = ">=3.8"
files = [
{ file = "filelock-3.13.1-py3-none-any.whl" , hash = "sha256:57dbda9b35157b05fb3e58ee91448612eb674172fab98ee235ccb0b5bee19a1c" } ,
{ file = "filelock-3.13.1.tar.gz" , hash = "sha256:521f5f56c50f8426f5e03ad3b281b490a87ef15bc6c526f168290f0c7148d44e" } ,
]
[ package . extras ]
docs = [ "furo (>=2023.9.10)" , "sphinx (>=7.2.6)" , "sphinx-autodoc-typehints (>=1.24)" ]
testing = [ "covdefaults (>=2.3)" , "coverage (>=7.3.2)" , "diff-cover (>=8)" , "pytest (>=7.4.3)" , "pytest-cov (>=4.1)" , "pytest-mock (>=3.12)" , "pytest-timeout (>=2.2)" ]
typing = [ "typing-extensions (>=4.8)" ]
2024-03-15 17:10:47 +00:00
[ [ package ] ]
name = "fiona"
version = "1.9.6"
description = "Fiona reads and writes spatial data files"
optional = true
python-versions = ">=3.7"
files = [
{ file = "fiona-1.9.6-cp310-cp310-macosx_10_15_x86_64.whl" , hash = "sha256:63e528b5ea3d8b1038d788e7c65117835c787ba7fdc94b1b42f09c2cbc0aaff2" } ,
{ file = "fiona-1.9.6-cp310-cp310-macosx_11_0_arm64.whl" , hash = "sha256:918bd27d8625416672e834593970f96dff63215108f81efb876fe5c0bc58a3b4" } ,
{ file = "fiona-1.9.6-cp310-cp310-manylinux2014_x86_64.whl" , hash = "sha256:e313210b30d09ed8f829bf625599e248dadd78622728030221f6526580ff26c5" } ,
{ file = "fiona-1.9.6-cp310-cp310-win_amd64.whl" , hash = "sha256:89095c2d542325ee45894b8837e8048cdbb2f22274934e1be3b673ca628010d7" } ,
{ file = "fiona-1.9.6-cp311-cp311-macosx_10_15_x86_64.whl" , hash = "sha256:98cea6f435843b2119731c6b0470e5b7386aa16b6aa7edabbf1ed93aefe029c3" } ,
{ file = "fiona-1.9.6-cp311-cp311-macosx_11_0_arm64.whl" , hash = "sha256:f4230eccbd896a79d1ebfa551d84bf90f512f7bcbe1ca61e3f82231321f1a532" } ,
{ file = "fiona-1.9.6-cp311-cp311-manylinux2014_x86_64.whl" , hash = "sha256:48b6218224e96de5e36b5eb259f37160092260e5de0dcd82ca200b1887aa9884" } ,
{ file = "fiona-1.9.6-cp311-cp311-win_amd64.whl" , hash = "sha256:c1dd5fbc29b7303bb87eb683455e8451e1a53bb8faf20ef97fdcd843c9e4a7f6" } ,
{ file = "fiona-1.9.6-cp312-cp312-macosx_10_15_x86_64.whl" , hash = "sha256:42d8a0e5570948d3821c493b6141866d9a4d7a64edad2be4ecbb89f81904baac" } ,
{ file = "fiona-1.9.6-cp312-cp312-macosx_11_0_arm64.whl" , hash = "sha256:39819fb8f5ec6d9971cb01b912b4431615a3d3f50c83798565d8ce41917930db" } ,
{ file = "fiona-1.9.6-cp312-cp312-manylinux2014_x86_64.whl" , hash = "sha256:9b53034efdf93ada9295b081e6a8280af7c75496a20df82d4c2ca46d65b85905" } ,
{ file = "fiona-1.9.6-cp312-cp312-win_amd64.whl" , hash = "sha256:1dcd6eca7524535baf2a39d7981b4a46d33ae28c313934a7c3eae62eecf9dfa5" } ,
{ file = "fiona-1.9.6-cp37-cp37m-macosx_10_15_x86_64.whl" , hash = "sha256:e5404ed08c711489abcb3a50a184816825b8af06eb73ad2a99e18b8e7b47c96a" } ,
{ file = "fiona-1.9.6-cp37-cp37m-manylinux2014_x86_64.whl" , hash = "sha256:53bedd2989e255df1bf3378ae9c06d6d241ec273c280c544bb44ffffebb97fb0" } ,
{ file = "fiona-1.9.6-cp37-cp37m-win_amd64.whl" , hash = "sha256:77653a08564a44e634c44cd74a068d2f55d1d4029edd16d1c8aadcc4d8cc1d2c" } ,
{ file = "fiona-1.9.6-cp38-cp38-macosx_10_15_x86_64.whl" , hash = "sha256:e7617563b36d2be99f048f0d0054b4d765f4aae454398f88f19de9c2c324b7f8" } ,
{ file = "fiona-1.9.6-cp38-cp38-macosx_11_0_arm64.whl" , hash = "sha256:50037c3b7a5f6f434b562b5b1a5b664f1caa7a4383b00af23cdb59bfc6ba852c" } ,
{ file = "fiona-1.9.6-cp38-cp38-manylinux2014_x86_64.whl" , hash = "sha256:bf51846ad602757bf27876f458c5c9f14b09421fac612f64273cc4e3fcabc441" } ,
{ file = "fiona-1.9.6-cp38-cp38-win_amd64.whl" , hash = "sha256:11af1afc1255642a7787fe112c29d01f968f1053e4d4700fc6f3bb879c1622e0" } ,
{ file = "fiona-1.9.6-cp39-cp39-macosx_10_15_x86_64.whl" , hash = "sha256:52e8fec650b72fc5253d8f86b63859acc687182281c29bfacd3930496cf982d1" } ,
{ file = "fiona-1.9.6-cp39-cp39-macosx_11_0_arm64.whl" , hash = "sha256:c9b92aa1badb2773e7cac19bef3064d73e9d80c67c42f0928db2520a04be6f2f" } ,
{ file = "fiona-1.9.6-cp39-cp39-manylinux2014_x86_64.whl" , hash = "sha256:0eaffbf3bfae9960484c0c08ea461b0c40e111497f04e9475ebf15ac7a22d9dc" } ,
{ file = "fiona-1.9.6-cp39-cp39-win_amd64.whl" , hash = "sha256:f1b49d51a744874608b689f029766aa1e078dd72e94b44cf8eeef6d7bd2e9051" } ,
{ file = "fiona-1.9.6.tar.gz" , hash = "sha256:791b3494f8b218c06ea56f892bd6ba893dfa23525347761d066fb7738acda3b1" } ,
]
[ package . dependencies ]
attrs = ">=19.2.0"
certifi = "*"
click = ">=8.0,<9.0"
click-plugins = ">=1.0"
cligj = ">=0.5"
importlib-metadata = { version = "*" , markers = "python_version < \"3.10\"" }
six = "*"
[ package . extras ]
all = [ "fiona[calc,s3,test]" ]
calc = [ "shapely" ]
s3 = [ "boto3 (>=1.3.1)" ]
test = [ "fiona[s3]" , "pytest (>=7)" , "pytest-cov" , "pytz" ]
2023-12-11 21:53:30 +00:00
[ [ package ] ]
name = "fireworks-ai"
version = "0.9.0"
description = "Python client library for the Fireworks.ai Generative AI Platform"
optional = false
python-versions = ">=3.7"
files = [
{ file = "fireworks-ai-0.9.0.tar.gz" , hash = "sha256:0aa8ec092d0b05e9b509e33c887142521251f89d8a709524529fff058ba1e09a" } ,
{ file = "fireworks_ai-0.9.0-py3-none-any.whl" , hash = "sha256:bef6ef19423885316bc70ff0c967a2f1936070827ff0a5c3581f6a2059b11f68" } ,
]
[ package . dependencies ]
httpx = "*"
httpx-sse = "*"
Pillow = "*"
pydantic = "*"
2024-03-15 17:10:47 +00:00
[ [ package ] ]
name = "flatbuffers"
version = "24.3.7"
description = "The FlatBuffers serialization format for Python"
optional = true
python-versions = "*"
files = [
{ file = "flatbuffers-24.3.7-py2.py3-none-any.whl" , hash = "sha256:80c4f5dcad0ee76b7e349671a0d657f2fbba927a0244f88dd3f5ed6a3694e1fc" } ,
{ file = "flatbuffers-24.3.7.tar.gz" , hash = "sha256:0895c22b9a6019ff2f4de2e5e2f7cd15914043e6e7033a94c0c6369422690f22" } ,
]
[ [ package ] ]
name = "fonttools"
version = "4.49.0"
description = "Tools to manipulate font files"
optional = true
python-versions = ">=3.8"
files = [
{ file = "fonttools-4.49.0-cp310-cp310-macosx_10_9_universal2.whl" , hash = "sha256:d970ecca0aac90d399e458f0b7a8a597e08f95de021f17785fb68e2dc0b99717" } ,
{ file = "fonttools-4.49.0-cp310-cp310-macosx_10_9_x86_64.whl" , hash = "sha256:ac9a745b7609f489faa65e1dc842168c18530874a5f5b742ac3dd79e26bca8bc" } ,
{ file = "fonttools-4.49.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:0ba0e00620ca28d4ca11fc700806fd69144b463aa3275e1b36e56c7c09915559" } ,
{ file = "fonttools-4.49.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:cdee3ab220283057e7840d5fb768ad4c2ebe65bdba6f75d5d7bf47f4e0ed7d29" } ,
{ file = "fonttools-4.49.0-cp310-cp310-musllinux_1_1_aarch64.whl" , hash = "sha256:ce7033cb61f2bb65d8849658d3786188afd80f53dad8366a7232654804529532" } ,
{ file = "fonttools-4.49.0-cp310-cp310-musllinux_1_1_x86_64.whl" , hash = "sha256:07bc5ea02bb7bc3aa40a1eb0481ce20e8d9b9642a9536cde0218290dd6085828" } ,
{ file = "fonttools-4.49.0-cp310-cp310-win32.whl" , hash = "sha256:86eef6aab7fd7c6c8545f3ebd00fd1d6729ca1f63b0cb4d621bccb7d1d1c852b" } ,
{ file = "fonttools-4.49.0-cp310-cp310-win_amd64.whl" , hash = "sha256:1fac1b7eebfce75ea663e860e7c5b4a8831b858c17acd68263bc156125201abf" } ,
{ file = "fonttools-4.49.0-cp311-cp311-macosx_10_9_universal2.whl" , hash = "sha256:edc0cce355984bb3c1d1e89d6a661934d39586bb32191ebff98c600f8957c63e" } ,
{ file = "fonttools-4.49.0-cp311-cp311-macosx_10_9_x86_64.whl" , hash = "sha256:83a0d9336de2cba86d886507dd6e0153df333ac787377325a39a2797ec529814" } ,
{ file = "fonttools-4.49.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:36c8865bdb5cfeec88f5028e7e592370a0657b676c6f1d84a2108e0564f90e22" } ,
{ file = "fonttools-4.49.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:33037d9e56e2562c710c8954d0f20d25b8386b397250d65581e544edc9d6b942" } ,
{ file = "fonttools-4.49.0-cp311-cp311-musllinux_1_1_aarch64.whl" , hash = "sha256:8fb022d799b96df3eaa27263e9eea306bd3d437cc9aa981820850281a02b6c9a" } ,
{ file = "fonttools-4.49.0-cp311-cp311-musllinux_1_1_x86_64.whl" , hash = "sha256:33c584c0ef7dc54f5dd4f84082eabd8d09d1871a3d8ca2986b0c0c98165f8e86" } ,
{ file = "fonttools-4.49.0-cp311-cp311-win32.whl" , hash = "sha256:cbe61b158deb09cffdd8540dc4a948d6e8f4d5b4f3bf5cd7db09bd6a61fee64e" } ,
{ file = "fonttools-4.49.0-cp311-cp311-win_amd64.whl" , hash = "sha256:fc11e5114f3f978d0cea7e9853627935b30d451742eeb4239a81a677bdee6bf6" } ,
{ file = "fonttools-4.49.0-cp312-cp312-macosx_10_9_universal2.whl" , hash = "sha256:d647a0e697e5daa98c87993726da8281c7233d9d4ffe410812a4896c7c57c075" } ,
{ file = "fonttools-4.49.0-cp312-cp312-macosx_10_9_x86_64.whl" , hash = "sha256:f3bbe672df03563d1f3a691ae531f2e31f84061724c319652039e5a70927167e" } ,
{ file = "fonttools-4.49.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:bebd91041dda0d511b0d303180ed36e31f4f54b106b1259b69fade68413aa7ff" } ,
{ file = "fonttools-4.49.0-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:4145f91531fd43c50f9eb893faa08399816bb0b13c425667c48475c9f3a2b9b5" } ,
{ file = "fonttools-4.49.0-cp312-cp312-musllinux_1_1_aarch64.whl" , hash = "sha256:ea329dafb9670ffbdf4dbc3b0e5c264104abcd8441d56de77f06967f032943cb" } ,
{ file = "fonttools-4.49.0-cp312-cp312-musllinux_1_1_x86_64.whl" , hash = "sha256:c076a9e548521ecc13d944b1d261ff3d7825048c338722a4bd126d22316087b7" } ,
{ file = "fonttools-4.49.0-cp312-cp312-win32.whl" , hash = "sha256:b607ea1e96768d13be26d2b400d10d3ebd1456343eb5eaddd2f47d1c4bd00880" } ,
{ file = "fonttools-4.49.0-cp312-cp312-win_amd64.whl" , hash = "sha256:a974c49a981e187381b9cc2c07c6b902d0079b88ff01aed34695ec5360767034" } ,
{ file = "fonttools-4.49.0-cp38-cp38-macosx_10_9_universal2.whl" , hash = "sha256:b85ec0bdd7bdaa5c1946398cbb541e90a6dfc51df76dfa88e0aaa41b335940cb" } ,
{ file = "fonttools-4.49.0-cp38-cp38-macosx_10_9_x86_64.whl" , hash = "sha256:af20acbe198a8a790618ee42db192eb128afcdcc4e96d99993aca0b60d1faeb4" } ,
{ file = "fonttools-4.49.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:4d418b1fee41a1d14931f7ab4b92dc0bc323b490e41d7a333eec82c9f1780c75" } ,
{ file = "fonttools-4.49.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:b44a52b8e6244b6548851b03b2b377a9702b88ddc21dcaf56a15a0393d425cb9" } ,
{ file = "fonttools-4.49.0-cp38-cp38-musllinux_1_1_aarch64.whl" , hash = "sha256:7c7125068e04a70739dad11857a4d47626f2b0bd54de39e8622e89701836eabd" } ,
{ file = "fonttools-4.49.0-cp38-cp38-musllinux_1_1_x86_64.whl" , hash = "sha256:29e89d0e1a7f18bc30f197cfadcbef5a13d99806447c7e245f5667579a808036" } ,
{ file = "fonttools-4.49.0-cp38-cp38-win32.whl" , hash = "sha256:9d95fa0d22bf4f12d2fb7b07a46070cdfc19ef5a7b1c98bc172bfab5bf0d6844" } ,
{ file = "fonttools-4.49.0-cp38-cp38-win_amd64.whl" , hash = "sha256:768947008b4dc552d02772e5ebd49e71430a466e2373008ce905f953afea755a" } ,
{ file = "fonttools-4.49.0-cp39-cp39-macosx_10_9_universal2.whl" , hash = "sha256:08877e355d3dde1c11973bb58d4acad1981e6d1140711230a4bfb40b2b937ccc" } ,
{ file = "fonttools-4.49.0-cp39-cp39-macosx_10_9_x86_64.whl" , hash = "sha256:fdb54b076f25d6b0f0298dc706acee5052de20c83530fa165b60d1f2e9cbe3cb" } ,
{ file = "fonttools-4.49.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:0af65c720520710cc01c293f9c70bd69684365c6015cc3671db2b7d807fe51f2" } ,
{ file = "fonttools-4.49.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:1f255ce8ed7556658f6d23f6afd22a6d9bbc3edb9b96c96682124dc487e1bf42" } ,
{ file = "fonttools-4.49.0-cp39-cp39-musllinux_1_1_aarch64.whl" , hash = "sha256:d00af0884c0e65f60dfaf9340e26658836b935052fdd0439952ae42e44fdd2be" } ,
{ file = "fonttools-4.49.0-cp39-cp39-musllinux_1_1_x86_64.whl" , hash = "sha256:263832fae27481d48dfafcc43174644b6706639661e242902ceb30553557e16c" } ,
{ file = "fonttools-4.49.0-cp39-cp39-win32.whl" , hash = "sha256:0404faea044577a01bb82d47a8fa4bc7a54067fa7e324785dd65d200d6dd1133" } ,
{ file = "fonttools-4.49.0-cp39-cp39-win_amd64.whl" , hash = "sha256:b050d362df50fc6e38ae3954d8c29bf2da52be384649ee8245fdb5186b620836" } ,
{ file = "fonttools-4.49.0-py3-none-any.whl" , hash = "sha256:af281525e5dd7fa0b39fb1667b8d5ca0e2a9079967e14c4bfe90fd1cd13e0f18" } ,
{ file = "fonttools-4.49.0.tar.gz" , hash = "sha256:ebf46e7f01b7af7861310417d7c49591a85d99146fc23a5ba82fdb28af156321" } ,
]
[ package . extras ]
all = [ "brotli (>=1.0.1)" , "brotlicffi (>=0.8.0)" , "fs (>=2.2.0,<3)" , "lxml (>=4.0)" , "lz4 (>=1.7.4.2)" , "matplotlib" , "munkres" , "pycairo" , "scipy" , "skia-pathops (>=0.5.0)" , "sympy" , "uharfbuzz (>=0.23.0)" , "unicodedata2 (>=15.1.0)" , "xattr" , "zopfli (>=0.1.4)" ]
graphite = [ "lz4 (>=1.7.4.2)" ]
interpolatable = [ "munkres" , "pycairo" , "scipy" ]
lxml = [ "lxml (>=4.0)" ]
pathops = [ "skia-pathops (>=0.5.0)" ]
plot = [ "matplotlib" ]
repacker = [ "uharfbuzz (>=0.23.0)" ]
symfont = [ "sympy" ]
type1 = [ "xattr" ]
ufo = [ "fs (>=2.2.0,<3)" ]
unicode = [ "unicodedata2 (>=15.1.0)" ]
woff = [ "brotli (>=1.0.1)" , "brotlicffi (>=0.8.0)" , "zopfli (>=0.1.4)" ]
2023-12-11 21:53:30 +00:00
[ [ package ] ]
name = "fqdn"
version = "1.5.1"
description = "Validates fully-qualified domain names against RFC 1123, so that they are acceptable to modern bowsers"
optional = false
python-versions = ">=2.7, !=3.0, !=3.1, !=3.2, !=3.3, !=3.4, <4"
files = [
{ file = "fqdn-1.5.1-py3-none-any.whl" , hash = "sha256:3a179af3761e4df6eb2e026ff9e1a3033d3587bf980a0b1b2e1e5d08d7358014" } ,
{ file = "fqdn-1.5.1.tar.gz" , hash = "sha256:105ed3677e767fb5ca086a0c1f4bb66ebc3c100be518f0e0d755d9eae164d89f" } ,
]
[ [ package ] ]
name = "freezegun"
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
version = "1.4.0"
2023-12-11 21:53:30 +00:00
description = "Let your Python tests travel through time"
optional = false
python-versions = ">=3.7"
files = [
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
{ file = "freezegun-1.4.0-py3-none-any.whl" , hash = "sha256:55e0fc3c84ebf0a96a5aa23ff8b53d70246479e9a68863f1fcac5a3e52f19dd6" } ,
{ file = "freezegun-1.4.0.tar.gz" , hash = "sha256:10939b0ba0ff5adaecf3b06a5c2f73071d9678e507c5eaedb23c761d56ac774b" } ,
2023-12-11 21:53:30 +00:00
]
[ package . dependencies ]
python-dateutil = ">=2.7"
2024-03-15 17:10:47 +00:00
[ [ package ] ]
name = "friendli-client"
version = "1.2.4"
description = "Client of Friendli Suite."
optional = true
python-versions = ">=3.8.1,<4.0.0"
files = [
{ file = "friendli_client-1.2.4-py3-none-any.whl" , hash = "sha256:e59506bef21d447b0c8af968344107cd5fe0f63b363075bbe93e1b0463252e93" } ,
{ file = "friendli_client-1.2.4.tar.gz" , hash = "sha256:18144dbbd724a8e643993d060a0a9f1b4db22bcb3052e3bfcd50fbff3f08870d" } ,
]
[ package . dependencies ]
azure-mgmt-storage = ">=20.1.0,<21.0.0"
azure-storage-blob = ">=12.12.0,<13.0.0"
boto3 = ">=1.22.8,<2.0.0"
boto3-stubs = ">=1.26.90,<2.0.0"
botocore = ">=1.25.8,<2.0.0"
fastapi = ">=0.104.0,<0.105.0"
gql = ">=3.4.1,<4.0.0"
httpx = ">=0.24.1,<0.25.0"
injector = ">=0.21.0,<0.22.0"
jsonschema = ">=4.17.3,<5.0.0"
mypy-boto3-s3 = ">=1.26.163,<2.0.0"
pathspec = ">=0.9.0,<0.10.0"
protobuf = ">=4.24.2,<5.0.0"
pydantic = { version = ">=1.9.0,<3" , extras = [ "email" ] }
PyYaml = ">=6.0.1,<7.0.0"
requests = ">=2,<3"
rich = ">=12.2.0,<13.0.0"
tqdm = ">=4.48.0,<5.0.0"
typer = ">=0.9.0,<0.10.0"
types-protobuf = ">=4.24.0.1,<5.0.0.0"
uvicorn = ">=0.23.2,<0.24.0"
[ package . extras ]
mllib = [ "accelerate (==0.21.0)" , "datasets (==2.16.0)" , "einops (>=0.6.1,<0.7.0)" , "h5py (>=3.9.0,<4.0.0)" , "peft (==0.6.0)" , "transformers (==4.36.2)" ]
2023-12-11 21:53:30 +00:00
[ [ package ] ]
name = "frozenlist"
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
version = "1.4.1"
2023-12-11 21:53:30 +00:00
description = "A list-like structure which implements collections.abc.MutableSequence"
optional = false
python-versions = ">=3.8"
files = [
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
{ file = "frozenlist-1.4.1-cp310-cp310-macosx_10_9_universal2.whl" , hash = "sha256:f9aa1878d1083b276b0196f2dfbe00c9b7e752475ed3b682025ff20c1c1f51ac" } ,
{ file = "frozenlist-1.4.1-cp310-cp310-macosx_10_9_x86_64.whl" , hash = "sha256:29acab3f66f0f24674b7dc4736477bcd4bc3ad4b896f5f45379a67bce8b96868" } ,
{ file = "frozenlist-1.4.1-cp310-cp310-macosx_11_0_arm64.whl" , hash = "sha256:74fb4bee6880b529a0c6560885fce4dc95936920f9f20f53d99a213f7bf66776" } ,
{ file = "frozenlist-1.4.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:590344787a90ae57d62511dd7c736ed56b428f04cd8c161fcc5e7232c130c69a" } ,
{ file = "frozenlist-1.4.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:068b63f23b17df8569b7fdca5517edef76171cf3897eb68beb01341131fbd2ad" } ,
{ file = "frozenlist-1.4.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:5c849d495bf5154cd8da18a9eb15db127d4dba2968d88831aff6f0331ea9bd4c" } ,
{ file = "frozenlist-1.4.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:9750cc7fe1ae3b1611bb8cfc3f9ec11d532244235d75901fb6b8e42ce9229dfe" } ,
{ file = "frozenlist-1.4.1-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:a9b2de4cf0cdd5bd2dee4c4f63a653c61d2408055ab77b151c1957f221cabf2a" } ,
{ file = "frozenlist-1.4.1-cp310-cp310-musllinux_1_1_aarch64.whl" , hash = "sha256:0633c8d5337cb5c77acbccc6357ac49a1770b8c487e5b3505c57b949b4b82e98" } ,
{ file = "frozenlist-1.4.1-cp310-cp310-musllinux_1_1_i686.whl" , hash = "sha256:27657df69e8801be6c3638054e202a135c7f299267f1a55ed3a598934f6c0d75" } ,
{ file = "frozenlist-1.4.1-cp310-cp310-musllinux_1_1_ppc64le.whl" , hash = "sha256:f9a3ea26252bd92f570600098783d1371354d89d5f6b7dfd87359d669f2109b5" } ,
{ file = "frozenlist-1.4.1-cp310-cp310-musllinux_1_1_s390x.whl" , hash = "sha256:4f57dab5fe3407b6c0c1cc907ac98e8a189f9e418f3b6e54d65a718aaafe3950" } ,
{ file = "frozenlist-1.4.1-cp310-cp310-musllinux_1_1_x86_64.whl" , hash = "sha256:e02a0e11cf6597299b9f3bbd3f93d79217cb90cfd1411aec33848b13f5c656cc" } ,
{ file = "frozenlist-1.4.1-cp310-cp310-win32.whl" , hash = "sha256:a828c57f00f729620a442881cc60e57cfcec6842ba38e1b19fd3e47ac0ff8dc1" } ,
{ file = "frozenlist-1.4.1-cp310-cp310-win_amd64.whl" , hash = "sha256:f56e2333dda1fe0f909e7cc59f021eba0d2307bc6f012a1ccf2beca6ba362439" } ,
{ file = "frozenlist-1.4.1-cp311-cp311-macosx_10_9_universal2.whl" , hash = "sha256:a0cb6f11204443f27a1628b0e460f37fb30f624be6051d490fa7d7e26d4af3d0" } ,
{ file = "frozenlist-1.4.1-cp311-cp311-macosx_10_9_x86_64.whl" , hash = "sha256:b46c8ae3a8f1f41a0d2ef350c0b6e65822d80772fe46b653ab6b6274f61d4a49" } ,
{ file = "frozenlist-1.4.1-cp311-cp311-macosx_11_0_arm64.whl" , hash = "sha256:fde5bd59ab5357e3853313127f4d3565fc7dad314a74d7b5d43c22c6a5ed2ced" } ,
{ file = "frozenlist-1.4.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:722e1124aec435320ae01ee3ac7bec11a5d47f25d0ed6328f2273d287bc3abb0" } ,
{ file = "frozenlist-1.4.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:2471c201b70d58a0f0c1f91261542a03d9a5e088ed3dc6c160d614c01649c106" } ,
{ file = "frozenlist-1.4.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:c757a9dd70d72b076d6f68efdbb9bc943665ae954dad2801b874c8c69e185068" } ,
{ file = "frozenlist-1.4.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:f146e0911cb2f1da549fc58fc7bcd2b836a44b79ef871980d605ec392ff6b0d2" } ,
{ file = "frozenlist-1.4.1-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:4f9c515e7914626b2a2e1e311794b4c35720a0be87af52b79ff8e1429fc25f19" } ,
{ file = "frozenlist-1.4.1-cp311-cp311-musllinux_1_1_aarch64.whl" , hash = "sha256:c302220494f5c1ebeb0912ea782bcd5e2f8308037b3c7553fad0e48ebad6ad82" } ,
{ file = "frozenlist-1.4.1-cp311-cp311-musllinux_1_1_i686.whl" , hash = "sha256:442acde1e068288a4ba7acfe05f5f343e19fac87bfc96d89eb886b0363e977ec" } ,
{ file = "frozenlist-1.4.1-cp311-cp311-musllinux_1_1_ppc64le.whl" , hash = "sha256:1b280e6507ea8a4fa0c0a7150b4e526a8d113989e28eaaef946cc77ffd7efc0a" } ,
{ file = "frozenlist-1.4.1-cp311-cp311-musllinux_1_1_s390x.whl" , hash = "sha256:fe1a06da377e3a1062ae5fe0926e12b84eceb8a50b350ddca72dc85015873f74" } ,
{ file = "frozenlist-1.4.1-cp311-cp311-musllinux_1_1_x86_64.whl" , hash = "sha256:db9e724bebd621d9beca794f2a4ff1d26eed5965b004a97f1f1685a173b869c2" } ,
{ file = "frozenlist-1.4.1-cp311-cp311-win32.whl" , hash = "sha256:e774d53b1a477a67838a904131c4b0eef6b3d8a651f8b138b04f748fccfefe17" } ,
{ file = "frozenlist-1.4.1-cp311-cp311-win_amd64.whl" , hash = "sha256:fb3c2db03683b5767dedb5769b8a40ebb47d6f7f45b1b3e3b4b51ec8ad9d9825" } ,
{ file = "frozenlist-1.4.1-cp312-cp312-macosx_10_9_universal2.whl" , hash = "sha256:1979bc0aeb89b33b588c51c54ab0161791149f2461ea7c7c946d95d5f93b56ae" } ,
{ file = "frozenlist-1.4.1-cp312-cp312-macosx_10_9_x86_64.whl" , hash = "sha256:cc7b01b3754ea68a62bd77ce6020afaffb44a590c2289089289363472d13aedb" } ,
{ file = "frozenlist-1.4.1-cp312-cp312-macosx_11_0_arm64.whl" , hash = "sha256:c9c92be9fd329ac801cc420e08452b70e7aeab94ea4233a4804f0915c14eba9b" } ,
{ file = "frozenlist-1.4.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:5c3894db91f5a489fc8fa6a9991820f368f0b3cbdb9cd8849547ccfab3392d86" } ,
{ file = "frozenlist-1.4.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:ba60bb19387e13597fb059f32cd4d59445d7b18b69a745b8f8e5db0346f33480" } ,
{ file = "frozenlist-1.4.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:8aefbba5f69d42246543407ed2461db31006b0f76c4e32dfd6f42215a2c41d09" } ,
{ file = "frozenlist-1.4.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:780d3a35680ced9ce682fbcf4cb9c2bad3136eeff760ab33707b71db84664e3a" } ,
{ file = "frozenlist-1.4.1-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:9acbb16f06fe7f52f441bb6f413ebae6c37baa6ef9edd49cdd567216da8600cd" } ,
{ file = "frozenlist-1.4.1-cp312-cp312-musllinux_1_1_aarch64.whl" , hash = "sha256:23b701e65c7b36e4bf15546a89279bd4d8675faabc287d06bbcfac7d3c33e1e6" } ,
{ file = "frozenlist-1.4.1-cp312-cp312-musllinux_1_1_i686.whl" , hash = "sha256:3e0153a805a98f5ada7e09826255ba99fb4f7524bb81bf6b47fb702666484ae1" } ,
{ file = "frozenlist-1.4.1-cp312-cp312-musllinux_1_1_ppc64le.whl" , hash = "sha256:dd9b1baec094d91bf36ec729445f7769d0d0cf6b64d04d86e45baf89e2b9059b" } ,
{ file = "frozenlist-1.4.1-cp312-cp312-musllinux_1_1_s390x.whl" , hash = "sha256:1a4471094e146b6790f61b98616ab8e44f72661879cc63fa1049d13ef711e71e" } ,
{ file = "frozenlist-1.4.1-cp312-cp312-musllinux_1_1_x86_64.whl" , hash = "sha256:5667ed53d68d91920defdf4035d1cdaa3c3121dc0b113255124bcfada1cfa1b8" } ,
{ file = "frozenlist-1.4.1-cp312-cp312-win32.whl" , hash = "sha256:beee944ae828747fd7cb216a70f120767fc9f4f00bacae8543c14a6831673f89" } ,
{ file = "frozenlist-1.4.1-cp312-cp312-win_amd64.whl" , hash = "sha256:64536573d0a2cb6e625cf309984e2d873979709f2cf22839bf2d61790b448ad5" } ,
{ file = "frozenlist-1.4.1-cp38-cp38-macosx_10_9_universal2.whl" , hash = "sha256:20b51fa3f588ff2fe658663db52a41a4f7aa6c04f6201449c6c7c476bd255c0d" } ,
{ file = "frozenlist-1.4.1-cp38-cp38-macosx_10_9_x86_64.whl" , hash = "sha256:410478a0c562d1a5bcc2f7ea448359fcb050ed48b3c6f6f4f18c313a9bdb1826" } ,
{ file = "frozenlist-1.4.1-cp38-cp38-macosx_11_0_arm64.whl" , hash = "sha256:c6321c9efe29975232da3bd0af0ad216800a47e93d763ce64f291917a381b8eb" } ,
{ file = "frozenlist-1.4.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:48f6a4533887e189dae092f1cf981f2e3885175f7a0f33c91fb5b7b682b6bab6" } ,
{ file = "frozenlist-1.4.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:6eb73fa5426ea69ee0e012fb59cdc76a15b1283d6e32e4f8dc4482ec67d1194d" } ,
{ file = "frozenlist-1.4.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:fbeb989b5cc29e8daf7f976b421c220f1b8c731cbf22b9130d8815418ea45887" } ,
{ file = "frozenlist-1.4.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:32453c1de775c889eb4e22f1197fe3bdfe457d16476ea407472b9442e6295f7a" } ,
{ file = "frozenlist-1.4.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:693945278a31f2086d9bf3df0fe8254bbeaef1fe71e1351c3bd730aa7d31c41b" } ,
{ file = "frozenlist-1.4.1-cp38-cp38-musllinux_1_1_aarch64.whl" , hash = "sha256:1d0ce09d36d53bbbe566fe296965b23b961764c0bcf3ce2fa45f463745c04701" } ,
{ file = "frozenlist-1.4.1-cp38-cp38-musllinux_1_1_i686.whl" , hash = "sha256:3a670dc61eb0d0eb7080890c13de3066790f9049b47b0de04007090807c776b0" } ,
{ file = "frozenlist-1.4.1-cp38-cp38-musllinux_1_1_ppc64le.whl" , hash = "sha256:dca69045298ce5c11fd539682cff879cc1e664c245d1c64da929813e54241d11" } ,
{ file = "frozenlist-1.4.1-cp38-cp38-musllinux_1_1_s390x.whl" , hash = "sha256:a06339f38e9ed3a64e4c4e43aec7f59084033647f908e4259d279a52d3757d09" } ,
{ file = "frozenlist-1.4.1-cp38-cp38-musllinux_1_1_x86_64.whl" , hash = "sha256:b7f2f9f912dca3934c1baec2e4585a674ef16fe00218d833856408c48d5beee7" } ,
{ file = "frozenlist-1.4.1-cp38-cp38-win32.whl" , hash = "sha256:e7004be74cbb7d9f34553a5ce5fb08be14fb33bc86f332fb71cbe5216362a497" } ,
{ file = "frozenlist-1.4.1-cp38-cp38-win_amd64.whl" , hash = "sha256:5a7d70357e7cee13f470c7883a063aae5fe209a493c57d86eb7f5a6f910fae09" } ,
{ file = "frozenlist-1.4.1-cp39-cp39-macosx_10_9_universal2.whl" , hash = "sha256:bfa4a17e17ce9abf47a74ae02f32d014c5e9404b6d9ac7f729e01562bbee601e" } ,
{ file = "frozenlist-1.4.1-cp39-cp39-macosx_10_9_x86_64.whl" , hash = "sha256:b7e3ed87d4138356775346e6845cccbe66cd9e207f3cd11d2f0b9fd13681359d" } ,
{ file = "frozenlist-1.4.1-cp39-cp39-macosx_11_0_arm64.whl" , hash = "sha256:c99169d4ff810155ca50b4da3b075cbde79752443117d89429595c2e8e37fed8" } ,
{ file = "frozenlist-1.4.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:edb678da49d9f72c9f6c609fbe41a5dfb9a9282f9e6a2253d5a91e0fc382d7c0" } ,
{ file = "frozenlist-1.4.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:6db4667b187a6742b33afbbaf05a7bc551ffcf1ced0000a571aedbb4aa42fc7b" } ,
{ file = "frozenlist-1.4.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:55fdc093b5a3cb41d420884cdaf37a1e74c3c37a31f46e66286d9145d2063bd0" } ,
{ file = "frozenlist-1.4.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:82e8211d69a4f4bc360ea22cd6555f8e61a1bd211d1d5d39d3d228b48c83a897" } ,
{ file = "frozenlist-1.4.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:89aa2c2eeb20957be2d950b85974b30a01a762f3308cd02bb15e1ad632e22dc7" } ,
{ file = "frozenlist-1.4.1-cp39-cp39-musllinux_1_1_aarch64.whl" , hash = "sha256:9d3e0c25a2350080e9319724dede4f31f43a6c9779be48021a7f4ebde8b2d742" } ,
{ file = "frozenlist-1.4.1-cp39-cp39-musllinux_1_1_i686.whl" , hash = "sha256:7268252af60904bf52c26173cbadc3a071cece75f873705419c8681f24d3edea" } ,
{ file = "frozenlist-1.4.1-cp39-cp39-musllinux_1_1_ppc64le.whl" , hash = "sha256:0c250a29735d4f15321007fb02865f0e6b6a41a6b88f1f523ca1596ab5f50bd5" } ,
{ file = "frozenlist-1.4.1-cp39-cp39-musllinux_1_1_s390x.whl" , hash = "sha256:96ec70beabbd3b10e8bfe52616a13561e58fe84c0101dd031dc78f250d5128b9" } ,
{ file = "frozenlist-1.4.1-cp39-cp39-musllinux_1_1_x86_64.whl" , hash = "sha256:23b2d7679b73fe0e5a4560b672a39f98dfc6f60df63823b0a9970525325b95f6" } ,
{ file = "frozenlist-1.4.1-cp39-cp39-win32.whl" , hash = "sha256:a7496bfe1da7fb1a4e1cc23bb67c58fab69311cc7d32b5a99c2007b4b2a0e932" } ,
{ file = "frozenlist-1.4.1-cp39-cp39-win_amd64.whl" , hash = "sha256:e6a20a581f9ce92d389a8c7d7c3dd47c81fd5d6e655c8dddf341e14aa48659d0" } ,
{ file = "frozenlist-1.4.1-py3-none-any.whl" , hash = "sha256:04ced3e6a46b4cfffe20f9ae482818e34eba9b5fb0ce4056e4cc9b6e212d09b7" } ,
{ file = "frozenlist-1.4.1.tar.gz" , hash = "sha256:c037a86e8513059a2613aaba4d817bb90b9d9b6b69aace3ce9c877e8c8ed402b" } ,
2023-12-11 21:53:30 +00:00
]
[ [ package ] ]
name = "fsspec"
2024-03-08 02:20:47 +00:00
version = "2024.2.0"
2023-12-11 21:53:30 +00:00
description = "File-system specification"
optional = false
python-versions = ">=3.8"
files = [
2024-03-08 02:20:47 +00:00
{ file = "fsspec-2024.2.0-py3-none-any.whl" , hash = "sha256:817f969556fa5916bc682e02ca2045f96ff7f586d45110fcb76022063ad2c7d8" } ,
{ file = "fsspec-2024.2.0.tar.gz" , hash = "sha256:b6ad1a679f760dda52b1168c859d01b7b80648ea6f7f7c7f5a8a91dc3f3ecb84" } ,
2023-12-11 21:53:30 +00:00
]
2024-03-15 17:10:47 +00:00
[ package . dependencies ]
aiohttp = { version = "<4.0.0a0 || >4.0.0a0,<4.0.0a1 || >4.0.0a1" , optional = true , markers = "extra == \"http\"" }
2023-12-11 21:53:30 +00:00
[ package . extras ]
abfs = [ "adlfs" ]
adl = [ "adlfs" ]
arrow = [ "pyarrow (>=1)" ]
dask = [ "dask" , "distributed" ]
devel = [ "pytest" , "pytest-cov" ]
dropbox = [ "dropbox" , "dropboxdrivefs" , "requests" ]
full = [ "adlfs" , "aiohttp (!=4.0.0a0,!=4.0.0a1)" , "dask" , "distributed" , "dropbox" , "dropboxdrivefs" , "fusepy" , "gcsfs" , "libarchive-c" , "ocifs" , "panel" , "paramiko" , "pyarrow (>=1)" , "pygit2" , "requests" , "s3fs" , "smbprotocol" , "tqdm" ]
fuse = [ "fusepy" ]
gcs = [ "gcsfs" ]
git = [ "pygit2" ]
github = [ "requests" ]
gs = [ "gcsfs" ]
gui = [ "panel" ]
hdfs = [ "pyarrow (>=1)" ]
2024-03-08 02:20:47 +00:00
http = [ "aiohttp (!=4.0.0a0,!=4.0.0a1)" ]
2023-12-11 21:53:30 +00:00
libarchive = [ "libarchive-c" ]
oci = [ "ocifs" ]
s3 = [ "s3fs" ]
sftp = [ "paramiko" ]
smb = [ "smbprotocol" ]
ssh = [ "paramiko" ]
tqdm = [ "tqdm" ]
[ [ package ] ]
name = "geomet"
version = "0.2.1.post1"
description = "GeoJSON <-> WKT/WKB conversion utilities"
optional = false
python-versions = ">2.6, !=3.3.*, <4"
files = [
{ file = "geomet-0.2.1.post1-py3-none-any.whl" , hash = "sha256:a41a1e336b381416d6cbed7f1745c848e91defaa4d4c1bdc1312732e46ffad2b" } ,
{ file = "geomet-0.2.1.post1.tar.gz" , hash = "sha256:91d754f7c298cbfcabd3befdb69c641c27fe75e808b27aa55028605761d17e95" } ,
]
[ package . dependencies ]
click = "*"
six = "*"
2024-03-15 17:10:47 +00:00
[ [ package ] ]
name = "geopandas"
version = "0.13.2"
description = "Geographic pandas extensions"
optional = true
python-versions = ">=3.8"
files = [
{ file = "geopandas-0.13.2-py3-none-any.whl" , hash = "sha256:101cfd0de54bcf9e287a55b5ea17ebe0db53a5e25a28bacf100143d0507cabd9" } ,
{ file = "geopandas-0.13.2.tar.gz" , hash = "sha256:e5b56d9c20800c77bcc0c914db3f27447a37b23b2cd892be543f5001a694a968" } ,
]
[ package . dependencies ]
fiona = ">=1.8.19"
packaging = "*"
pandas = ">=1.1.0"
pyproj = ">=3.0.1"
shapely = ">=1.7.1"
[ [ package ] ]
name = "gitdb"
version = "4.0.11"
description = "Git Object Database"
optional = true
python-versions = ">=3.7"
files = [
{ file = "gitdb-4.0.11-py3-none-any.whl" , hash = "sha256:81a3407ddd2ee8df444cbacea00e2d038e40150acfa3001696fe0dcf1d3adfa4" } ,
{ file = "gitdb-4.0.11.tar.gz" , hash = "sha256:bf5421126136d6d0af55bc1e7c1af1c397a34f5b7bd79e776cd3e89785c2b04b" } ,
]
[ package . dependencies ]
smmap = ">=3.0.1,<6"
[ [ package ] ]
name = "gitpython"
version = "3.1.42"
description = "GitPython is a Python library used to interact with Git repositories"
optional = true
python-versions = ">=3.7"
files = [
{ file = "GitPython-3.1.42-py3-none-any.whl" , hash = "sha256:1bf9cd7c9e7255f77778ea54359e54ac22a72a5b51288c457c881057b7bb9ecd" } ,
{ file = "GitPython-3.1.42.tar.gz" , hash = "sha256:2d99869e0fef71a73cbd242528105af1d6c1b108c60dfabd994bf292f76c3ceb" } ,
]
[ package . dependencies ]
gitdb = ">=4.0.1,<5"
[ package . extras ]
test = [ "black" , "coverage[toml]" , "ddt (>=1.1.1,!=1.4.3)" , "mock" , "mypy" , "pre-commit" , "pytest (>=7.3.1)" , "pytest-cov" , "pytest-instafail" , "pytest-mock" , "pytest-sugar" ]
[ [ package ] ]
name = "google-api-core"
version = "2.17.1"
description = "Google API client core library"
optional = true
python-versions = ">=3.7"
files = [
{ file = "google-api-core-2.17.1.tar.gz" , hash = "sha256:9df18a1f87ee0df0bc4eea2770ebc4228392d8cc4066655b320e2cfccb15db95" } ,
{ file = "google_api_core-2.17.1-py3-none-any.whl" , hash = "sha256:610c5b90092c360736baccf17bd3efbcb30dd380e7a6dc28a71059edb8bd0d8e" } ,
]
[ package . dependencies ]
google-auth = ">=2.14.1,<3.0.dev0"
googleapis-common-protos = ">=1.56.2,<2.0.dev0"
grpcio = [
{ version = ">=1.33.2,<2.0dev" , optional = true , markers = "python_version < \"3.11\" and extra == \"grpc\"" } ,
{ version = ">=1.49.1,<2.0dev" , optional = true , markers = "python_version >= \"3.11\" and extra == \"grpc\"" } ,
]
grpcio-status = [
{ version = ">=1.33.2,<2.0.dev0" , optional = true , markers = "python_version < \"3.11\" and extra == \"grpc\"" } ,
{ version = ">=1.49.1,<2.0.dev0" , optional = true , markers = "python_version >= \"3.11\" and extra == \"grpc\"" } ,
]
protobuf = ">=3.19.5,<3.20.0 || >3.20.0,<3.20.1 || >3.20.1,<4.21.0 || >4.21.0,<4.21.1 || >4.21.1,<4.21.2 || >4.21.2,<4.21.3 || >4.21.3,<4.21.4 || >4.21.4,<4.21.5 || >4.21.5,<5.0.0.dev0"
requests = ">=2.18.0,<3.0.0.dev0"
[ package . extras ]
grpc = [ "grpcio (>=1.33.2,<2.0dev)" , "grpcio (>=1.49.1,<2.0dev)" , "grpcio-status (>=1.33.2,<2.0.dev0)" , "grpcio-status (>=1.49.1,<2.0.dev0)" ]
grpcgcp = [ "grpcio-gcp (>=0.2.2,<1.0.dev0)" ]
grpcio-gcp = [ "grpcio-gcp (>=0.2.2,<1.0.dev0)" ]
[ [ package ] ]
name = "google-auth"
version = "2.28.2"
description = "Google Authentication Library"
optional = true
python-versions = ">=3.7"
files = [
{ file = "google-auth-2.28.2.tar.gz" , hash = "sha256:80b8b4969aa9ed5938c7828308f20f035bc79f9d8fb8120bf9dc8db20b41ba30" } ,
{ file = "google_auth-2.28.2-py2.py3-none-any.whl" , hash = "sha256:9fd67bbcd40f16d9d42f950228e9cf02a2ded4ae49198b27432d0cded5a74c38" } ,
]
[ package . dependencies ]
cachetools = ">=2.0.0,<6.0"
pyasn1-modules = ">=0.2.1"
rsa = ">=3.1.4,<5"
[ package . extras ]
aiohttp = [ "aiohttp (>=3.6.2,<4.0.0.dev0)" , "requests (>=2.20.0,<3.0.0.dev0)" ]
enterprise-cert = [ "cryptography (==36.0.2)" , "pyopenssl (==22.0.0)" ]
pyopenssl = [ "cryptography (>=38.0.3)" , "pyopenssl (>=20.0.0)" ]
reauth = [ "pyu2f (>=0.1.5)" ]
requests = [ "requests (>=2.20.0,<3.0.0.dev0)" ]
[ [ package ] ]
name = "google-cloud-documentai"
version = "2.24.1"
description = "Google Cloud Documentai API client library"
optional = true
python-versions = ">=3.7"
files = [
{ file = "google-cloud-documentai-2.24.1.tar.gz" , hash = "sha256:1262c986423b03ddf3c1b213963a8defb53a4a9b8ce1500b74d5dcc390cfa3a2" } ,
{ file = "google_cloud_documentai-2.24.1-py2.py3-none-any.whl" , hash = "sha256:cb22d15d7739f8a22007276dfca3411e0920041bb8ccda46a2577799c2371c46" } ,
]
[ package . dependencies ]
google-api-core = { version = ">=1.34.1,<2.0.dev0 || >=2.11.dev0,<3.0.0dev" , extras = [ "grpc" ] }
google-auth = ">=2.14.1,<2.24.0 || >2.24.0,<2.25.0 || >2.25.0,<3.0.0dev"
proto-plus = ">=1.22.3,<2.0.0dev"
protobuf = ">=3.19.5,<3.20.0 || >3.20.0,<3.20.1 || >3.20.1,<4.21.0 || >4.21.0,<4.21.1 || >4.21.1,<4.21.2 || >4.21.2,<4.21.3 || >4.21.3,<4.21.4 || >4.21.4,<4.21.5 || >4.21.5,<5.0.0dev"
[ [ package ] ]
name = "googleapis-common-protos"
version = "1.63.0"
description = "Common protobufs used in Google APIs"
optional = true
python-versions = ">=3.7"
files = [
{ file = "googleapis-common-protos-1.63.0.tar.gz" , hash = "sha256:17ad01b11d5f1d0171c06d3ba5c04c54474e883b66b949722b4938ee2694ef4e" } ,
{ file = "googleapis_common_protos-1.63.0-py2.py3-none-any.whl" , hash = "sha256:ae45f75702f7c08b541f750854a678bd8f534a1a6bace6afe975f1d0a82d6632" } ,
]
[ package . dependencies ]
protobuf = ">=3.19.5,<3.20.0 || >3.20.0,<3.20.1 || >3.20.1,<4.21.1 || >4.21.1,<4.21.2 || >4.21.2,<4.21.3 || >4.21.3,<4.21.4 || >4.21.4,<4.21.5 || >4.21.5,<5.0.0.dev0"
[ package . extras ]
grpc = [ "grpcio (>=1.44.0,<2.0.0.dev0)" ]
[ [ package ] ]
name = "gql"
version = "3.5.0"
description = "GraphQL client for Python"
optional = true
python-versions = "*"
files = [
{ file = "gql-3.5.0-py2.py3-none-any.whl" , hash = "sha256:70dda5694a5b194a8441f077aa5fb70cc94e4ec08016117523f013680901ecb7" } ,
{ file = "gql-3.5.0.tar.gz" , hash = "sha256:ccb9c5db543682b28f577069950488218ed65d4ac70bb03b6929aaadaf636de9" } ,
]
[ package . dependencies ]
anyio = ">=3.0,<5"
backoff = ">=1.11.1,<3.0"
graphql-core = ">=3.2,<3.3"
yarl = ">=1.6,<2.0"
[ package . extras ]
aiohttp = [ "aiohttp (>=3.8.0,<4)" , "aiohttp (>=3.9.0b0,<4)" ]
all = [ "aiohttp (>=3.8.0,<4)" , "aiohttp (>=3.9.0b0,<4)" , "botocore (>=1.21,<2)" , "httpx (>=0.23.1,<1)" , "requests (>=2.26,<3)" , "requests-toolbelt (>=1.0.0,<2)" , "websockets (>=10,<12)" ]
botocore = [ "botocore (>=1.21,<2)" ]
dev = [ "aiofiles" , "aiohttp (>=3.8.0,<4)" , "aiohttp (>=3.9.0b0,<4)" , "black (==22.3.0)" , "botocore (>=1.21,<2)" , "check-manifest (>=0.42,<1)" , "flake8 (==3.8.1)" , "httpx (>=0.23.1,<1)" , "isort (==4.3.21)" , "mock (==4.0.2)" , "mypy (==0.910)" , "parse (==1.15.0)" , "pytest (==7.4.2)" , "pytest-asyncio (==0.21.1)" , "pytest-console-scripts (==1.3.1)" , "pytest-cov (==3.0.0)" , "requests (>=2.26,<3)" , "requests-toolbelt (>=1.0.0,<2)" , "sphinx (>=5.3.0,<6)" , "sphinx-argparse (==0.2.5)" , "sphinx-rtd-theme (>=0.4,<1)" , "types-aiofiles" , "types-mock" , "types-requests" , "vcrpy (==4.4.0)" , "websockets (>=10,<12)" ]
httpx = [ "httpx (>=0.23.1,<1)" ]
requests = [ "requests (>=2.26,<3)" , "requests-toolbelt (>=1.0.0,<2)" ]
test = [ "aiofiles" , "aiohttp (>=3.8.0,<4)" , "aiohttp (>=3.9.0b0,<4)" , "botocore (>=1.21,<2)" , "httpx (>=0.23.1,<1)" , "mock (==4.0.2)" , "parse (==1.15.0)" , "pytest (==7.4.2)" , "pytest-asyncio (==0.21.1)" , "pytest-console-scripts (==1.3.1)" , "pytest-cov (==3.0.0)" , "requests (>=2.26,<3)" , "requests-toolbelt (>=1.0.0,<2)" , "vcrpy (==4.4.0)" , "websockets (>=10,<12)" ]
test-no-transport = [ "aiofiles" , "mock (==4.0.2)" , "parse (==1.15.0)" , "pytest (==7.4.2)" , "pytest-asyncio (==0.21.1)" , "pytest-console-scripts (==1.3.1)" , "pytest-cov (==3.0.0)" , "vcrpy (==4.4.0)" ]
websockets = [ "websockets (>=10,<12)" ]
[ [ package ] ]
name = "gradientai"
version = "1.8.0"
description = "Gradient AI API"
optional = true
python-versions = ">=3.8.1,<4.0.0"
files = [
{ file = "gradientai-1.8.0-py3-none-any.whl" , hash = "sha256:d2d245f922d04faf7212a36f451271658c79099c87252fc4fc6c534b016bbe70" } ,
{ file = "gradientai-1.8.0.tar.gz" , hash = "sha256:d170609c62d3ab7e7bdbd247a9f2a836692090220bab84dc3ba21d33da191345" } ,
]
[ package . dependencies ]
aenum = ">=3.1.11"
pydantic = ">=1.10.5,<2.0.0"
python-dateutil = ">=2.8.2"
urllib3 = ">=1.25.3"
[ [ package ] ]
name = "graphql-core"
version = "3.2.3"
description = "GraphQL implementation for Python, a port of GraphQL.js, the JavaScript reference implementation for GraphQL."
optional = true
python-versions = ">=3.6,<4"
files = [
{ file = "graphql-core-3.2.3.tar.gz" , hash = "sha256:06d2aad0ac723e35b1cb47885d3e5c45e956a53bc1b209a9fc5369007fe46676" } ,
{ file = "graphql_core-3.2.3-py3-none-any.whl" , hash = "sha256:5766780452bd5ec8ba133f8bf287dc92713e3868ddd83aee4faab9fc3e303dc3" } ,
]
2023-12-11 21:53:30 +00:00
[ [ package ] ]
name = "greenlet"
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
version = "3.0.3"
2023-12-11 21:53:30 +00:00
description = "Lightweight in-process concurrent programming"
optional = false
python-versions = ">=3.7"
files = [
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
{ file = "greenlet-3.0.3-cp310-cp310-macosx_11_0_universal2.whl" , hash = "sha256:9da2bd29ed9e4f15955dd1595ad7bc9320308a3b766ef7f837e23ad4b4aac31a" } ,
{ file = "greenlet-3.0.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:d353cadd6083fdb056bb46ed07e4340b0869c305c8ca54ef9da3421acbdf6881" } ,
{ file = "greenlet-3.0.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:dca1e2f3ca00b84a396bc1bce13dd21f680f035314d2379c4160c98153b2059b" } ,
{ file = "greenlet-3.0.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:3ed7fb269f15dc662787f4119ec300ad0702fa1b19d2135a37c2c4de6fadfd4a" } ,
{ file = "greenlet-3.0.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:dd4f49ae60e10adbc94b45c0b5e6a179acc1736cf7a90160b404076ee283cf83" } ,
{ file = "greenlet-3.0.3-cp310-cp310-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl" , hash = "sha256:73a411ef564e0e097dbe7e866bb2dda0f027e072b04da387282b02c308807405" } ,
{ file = "greenlet-3.0.3-cp310-cp310-musllinux_1_1_aarch64.whl" , hash = "sha256:7f362975f2d179f9e26928c5b517524e89dd48530a0202570d55ad6ca5d8a56f" } ,
{ file = "greenlet-3.0.3-cp310-cp310-musllinux_1_1_x86_64.whl" , hash = "sha256:649dde7de1a5eceb258f9cb00bdf50e978c9db1b996964cd80703614c86495eb" } ,
{ file = "greenlet-3.0.3-cp310-cp310-win_amd64.whl" , hash = "sha256:68834da854554926fbedd38c76e60c4a2e3198c6fbed520b106a8986445caaf9" } ,
{ file = "greenlet-3.0.3-cp311-cp311-macosx_11_0_universal2.whl" , hash = "sha256:b1b5667cced97081bf57b8fa1d6bfca67814b0afd38208d52538316e9422fc61" } ,
{ file = "greenlet-3.0.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:52f59dd9c96ad2fc0d5724107444f76eb20aaccb675bf825df6435acb7703559" } ,
{ file = "greenlet-3.0.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:afaff6cf5200befd5cec055b07d1c0a5a06c040fe5ad148abcd11ba6ab9b114e" } ,
{ file = "greenlet-3.0.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:fe754d231288e1e64323cfad462fcee8f0288654c10bdf4f603a39ed923bef33" } ,
{ file = "greenlet-3.0.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:2797aa5aedac23af156bbb5a6aa2cd3427ada2972c828244eb7d1b9255846379" } ,
{ file = "greenlet-3.0.3-cp311-cp311-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl" , hash = "sha256:b7f009caad047246ed379e1c4dbcb8b020f0a390667ea74d2387be2998f58a22" } ,
{ file = "greenlet-3.0.3-cp311-cp311-musllinux_1_1_aarch64.whl" , hash = "sha256:c5e1536de2aad7bf62e27baf79225d0d64360d4168cf2e6becb91baf1ed074f3" } ,
{ file = "greenlet-3.0.3-cp311-cp311-musllinux_1_1_x86_64.whl" , hash = "sha256:894393ce10ceac937e56ec00bb71c4c2f8209ad516e96033e4b3b1de270e200d" } ,
{ file = "greenlet-3.0.3-cp311-cp311-win_amd64.whl" , hash = "sha256:1ea188d4f49089fc6fb283845ab18a2518d279c7cd9da1065d7a84e991748728" } ,
{ file = "greenlet-3.0.3-cp312-cp312-macosx_11_0_universal2.whl" , hash = "sha256:70fb482fdf2c707765ab5f0b6655e9cfcf3780d8d87355a063547b41177599be" } ,
{ file = "greenlet-3.0.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:d4d1ac74f5c0c0524e4a24335350edad7e5f03b9532da7ea4d3c54d527784f2e" } ,
{ file = "greenlet-3.0.3-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:149e94a2dd82d19838fe4b2259f1b6b9957d5ba1b25640d2380bea9c5df37676" } ,
{ file = "greenlet-3.0.3-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:15d79dd26056573940fcb8c7413d84118086f2ec1a8acdfa854631084393efcc" } ,
{ file = "greenlet-3.0.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:881b7db1ebff4ba09aaaeae6aa491daeb226c8150fc20e836ad00041bcb11230" } ,
{ file = "greenlet-3.0.3-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl" , hash = "sha256:fcd2469d6a2cf298f198f0487e0a5b1a47a42ca0fa4dfd1b6862c999f018ebbf" } ,
{ file = "greenlet-3.0.3-cp312-cp312-musllinux_1_1_aarch64.whl" , hash = "sha256:1f672519db1796ca0d8753f9e78ec02355e862d0998193038c7073045899f305" } ,
{ file = "greenlet-3.0.3-cp312-cp312-musllinux_1_1_x86_64.whl" , hash = "sha256:2516a9957eed41dd8f1ec0c604f1cdc86758b587d964668b5b196a9db5bfcde6" } ,
{ file = "greenlet-3.0.3-cp312-cp312-win_amd64.whl" , hash = "sha256:bba5387a6975598857d86de9eac14210a49d554a77eb8261cc68b7d082f78ce2" } ,
{ file = "greenlet-3.0.3-cp37-cp37m-macosx_11_0_universal2.whl" , hash = "sha256:5b51e85cb5ceda94e79d019ed36b35386e8c37d22f07d6a751cb659b180d5274" } ,
{ file = "greenlet-3.0.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:daf3cb43b7cf2ba96d614252ce1684c1bccee6b2183a01328c98d36fcd7d5cb0" } ,
{ file = "greenlet-3.0.3-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:99bf650dc5d69546e076f413a87481ee1d2d09aaaaaca058c9251b6d8c14783f" } ,
{ file = "greenlet-3.0.3-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:2dd6e660effd852586b6a8478a1d244b8dc90ab5b1321751d2ea15deb49ed414" } ,
{ file = "greenlet-3.0.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:e3391d1e16e2a5a1507d83e4a8b100f4ee626e8eca43cf2cadb543de69827c4c" } ,
{ file = "greenlet-3.0.3-cp37-cp37m-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl" , hash = "sha256:e1f145462f1fa6e4a4ae3c0f782e580ce44d57c8f2c7aae1b6fa88c0b2efdb41" } ,
{ file = "greenlet-3.0.3-cp37-cp37m-musllinux_1_1_aarch64.whl" , hash = "sha256:1a7191e42732df52cb5f39d3527217e7ab73cae2cb3694d241e18f53d84ea9a7" } ,
{ file = "greenlet-3.0.3-cp37-cp37m-musllinux_1_1_x86_64.whl" , hash = "sha256:0448abc479fab28b00cb472d278828b3ccca164531daab4e970a0458786055d6" } ,
{ file = "greenlet-3.0.3-cp37-cp37m-win32.whl" , hash = "sha256:b542be2440edc2d48547b5923c408cbe0fc94afb9f18741faa6ae970dbcb9b6d" } ,
{ file = "greenlet-3.0.3-cp37-cp37m-win_amd64.whl" , hash = "sha256:01bc7ea167cf943b4c802068e178bbf70ae2e8c080467070d01bfa02f337ee67" } ,
{ file = "greenlet-3.0.3-cp38-cp38-macosx_11_0_universal2.whl" , hash = "sha256:1996cb9306c8595335bb157d133daf5cf9f693ef413e7673cb07e3e5871379ca" } ,
{ file = "greenlet-3.0.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:3ddc0f794e6ad661e321caa8d2f0a55ce01213c74722587256fb6566049a8b04" } ,
{ file = "greenlet-3.0.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:c9db1c18f0eaad2f804728c67d6c610778456e3e1cc4ab4bbd5eeb8e6053c6fc" } ,
{ file = "greenlet-3.0.3-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:7170375bcc99f1a2fbd9c306f5be8764eaf3ac6b5cb968862cad4c7057756506" } ,
{ file = "greenlet-3.0.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:6b66c9c1e7ccabad3a7d037b2bcb740122a7b17a53734b7d72a344ce39882a1b" } ,
{ file = "greenlet-3.0.3-cp38-cp38-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl" , hash = "sha256:098d86f528c855ead3479afe84b49242e174ed262456c342d70fc7f972bc13c4" } ,
{ file = "greenlet-3.0.3-cp38-cp38-musllinux_1_1_aarch64.whl" , hash = "sha256:81bb9c6d52e8321f09c3d165b2a78c680506d9af285bfccbad9fb7ad5a5da3e5" } ,
{ file = "greenlet-3.0.3-cp38-cp38-musllinux_1_1_x86_64.whl" , hash = "sha256:fd096eb7ffef17c456cfa587523c5f92321ae02427ff955bebe9e3c63bc9f0da" } ,
{ file = "greenlet-3.0.3-cp38-cp38-win32.whl" , hash = "sha256:d46677c85c5ba00a9cb6f7a00b2bfa6f812192d2c9f7d9c4f6a55b60216712f3" } ,
{ file = "greenlet-3.0.3-cp38-cp38-win_amd64.whl" , hash = "sha256:419b386f84949bf0e7c73e6032e3457b82a787c1ab4a0e43732898a761cc9dbf" } ,
{ file = "greenlet-3.0.3-cp39-cp39-macosx_11_0_universal2.whl" , hash = "sha256:da70d4d51c8b306bb7a031d5cff6cc25ad253affe89b70352af5f1cb68e74b53" } ,
{ file = "greenlet-3.0.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:086152f8fbc5955df88382e8a75984e2bb1c892ad2e3c80a2508954e52295257" } ,
{ file = "greenlet-3.0.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:d73a9fe764d77f87f8ec26a0c85144d6a951a6c438dfe50487df5595c6373eac" } ,
{ file = "greenlet-3.0.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:b7dcbe92cc99f08c8dd11f930de4d99ef756c3591a5377d1d9cd7dd5e896da71" } ,
{ file = "greenlet-3.0.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:1551a8195c0d4a68fac7a4325efac0d541b48def35feb49d803674ac32582f61" } ,
{ file = "greenlet-3.0.3-cp39-cp39-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl" , hash = "sha256:64d7675ad83578e3fc149b617a444fab8efdafc9385471f868eb5ff83e446b8b" } ,
{ file = "greenlet-3.0.3-cp39-cp39-musllinux_1_1_aarch64.whl" , hash = "sha256:b37eef18ea55f2ffd8f00ff8fe7c8d3818abd3e25fb73fae2ca3b672e333a7a6" } ,
{ file = "greenlet-3.0.3-cp39-cp39-musllinux_1_1_x86_64.whl" , hash = "sha256:77457465d89b8263bca14759d7c1684df840b6811b2499838cc5b040a8b5b113" } ,
{ file = "greenlet-3.0.3-cp39-cp39-win32.whl" , hash = "sha256:57e8974f23e47dac22b83436bdcf23080ade568ce77df33159e019d161ce1d1e" } ,
2024-03-15 05:55:30 +00:00
{ file = "greenlet-3.0.3-cp39-cp39-win_amd64.whl" , hash = "sha256:c5ee858cfe08f34712f548c3c363e807e7186f03ad7a5039ebadb29e8c6be067" } ,
{ file = "greenlet-3.0.3.tar.gz" , hash = "sha256:43374442353259554ce33599da8b692d5aa96f8976d567d4badf263371fbe491" } ,
2024-03-12 21:55:29 +00:00
]
[ package . extras ]
2024-03-15 05:55:30 +00:00
docs = [ "Sphinx" , "furo" ]
test = [ "objgraph" , "psutil" ]
2023-12-11 21:53:30 +00:00
2024-03-15 17:10:47 +00:00
[ [ package ] ]
name = "grpcio"
version = "1.62.1"
description = "HTTP/2-based RPC framework"
optional = true
python-versions = ">=3.7"
files = [
{ file = "grpcio-1.62.1-cp310-cp310-linux_armv7l.whl" , hash = "sha256:179bee6f5ed7b5f618844f760b6acf7e910988de77a4f75b95bbfaa8106f3c1e" } ,
{ file = "grpcio-1.62.1-cp310-cp310-macosx_12_0_universal2.whl" , hash = "sha256:48611e4fa010e823ba2de8fd3f77c1322dd60cb0d180dc6630a7e157b205f7ea" } ,
{ file = "grpcio-1.62.1-cp310-cp310-manylinux_2_17_aarch64.whl" , hash = "sha256:b2a0e71b0a2158aa4bce48be9f8f9eb45cbd17c78c7443616d00abbe2a509f6d" } ,
{ file = "grpcio-1.62.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:fbe80577c7880911d3ad65e5ecc997416c98f354efeba2f8d0f9112a67ed65a5" } ,
{ file = "grpcio-1.62.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:58f6c693d446964e3292425e1d16e21a97a48ba9172f2d0df9d7b640acb99243" } ,
{ file = "grpcio-1.62.1-cp310-cp310-musllinux_1_1_i686.whl" , hash = "sha256:77c339403db5a20ef4fed02e4d1a9a3d9866bf9c0afc77a42234677313ea22f3" } ,
{ file = "grpcio-1.62.1-cp310-cp310-musllinux_1_1_x86_64.whl" , hash = "sha256:b5a4ea906db7dec694098435d84bf2854fe158eb3cd51e1107e571246d4d1d70" } ,
{ file = "grpcio-1.62.1-cp310-cp310-win32.whl" , hash = "sha256:4187201a53f8561c015bc745b81a1b2d278967b8de35f3399b84b0695e281d5f" } ,
{ file = "grpcio-1.62.1-cp310-cp310-win_amd64.whl" , hash = "sha256:844d1f3fb11bd1ed362d3fdc495d0770cfab75761836193af166fee113421d66" } ,
{ file = "grpcio-1.62.1-cp311-cp311-linux_armv7l.whl" , hash = "sha256:833379943d1728a005e44103f17ecd73d058d37d95783eb8f0b28ddc1f54d7b2" } ,
{ file = "grpcio-1.62.1-cp311-cp311-macosx_10_10_universal2.whl" , hash = "sha256:c7fcc6a32e7b7b58f5a7d27530669337a5d587d4066060bcb9dee7a8c833dfb7" } ,
{ file = "grpcio-1.62.1-cp311-cp311-manylinux_2_17_aarch64.whl" , hash = "sha256:fa7d28eb4d50b7cbe75bb8b45ed0da9a1dc5b219a0af59449676a29c2eed9698" } ,
{ file = "grpcio-1.62.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:48f7135c3de2f298b833be8b4ae20cafe37091634e91f61f5a7eb3d61ec6f660" } ,
{ file = "grpcio-1.62.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:71f11fd63365ade276c9d4a7b7df5c136f9030e3457107e1791b3737a9b9ed6a" } ,
{ file = "grpcio-1.62.1-cp311-cp311-musllinux_1_1_i686.whl" , hash = "sha256:4b49fd8fe9f9ac23b78437da94c54aa7e9996fbb220bac024a67469ce5d0825f" } ,
{ file = "grpcio-1.62.1-cp311-cp311-musllinux_1_1_x86_64.whl" , hash = "sha256:482ae2ae78679ba9ed5752099b32e5fe580443b4f798e1b71df412abf43375db" } ,
{ file = "grpcio-1.62.1-cp311-cp311-win32.whl" , hash = "sha256:1faa02530b6c7426404372515fe5ddf66e199c2ee613f88f025c6f3bd816450c" } ,
{ file = "grpcio-1.62.1-cp311-cp311-win_amd64.whl" , hash = "sha256:5bd90b8c395f39bc82a5fb32a0173e220e3f401ff697840f4003e15b96d1befc" } ,
{ file = "grpcio-1.62.1-cp312-cp312-linux_armv7l.whl" , hash = "sha256:b134d5d71b4e0837fff574c00e49176051a1c532d26c052a1e43231f252d813b" } ,
{ file = "grpcio-1.62.1-cp312-cp312-macosx_10_10_universal2.whl" , hash = "sha256:d1f6c96573dc09d50dbcbd91dbf71d5cf97640c9427c32584010fbbd4c0e0037" } ,
{ file = "grpcio-1.62.1-cp312-cp312-manylinux_2_17_aarch64.whl" , hash = "sha256:359f821d4578f80f41909b9ee9b76fb249a21035a061a327f91c953493782c31" } ,
{ file = "grpcio-1.62.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:a485f0c2010c696be269184bdb5ae72781344cb4e60db976c59d84dd6354fac9" } ,
{ file = "grpcio-1.62.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:b50b09b4dc01767163d67e1532f948264167cd27f49e9377e3556c3cba1268e1" } ,
{ file = "grpcio-1.62.1-cp312-cp312-musllinux_1_1_i686.whl" , hash = "sha256:3227c667dccbe38f2c4d943238b887bac588d97c104815aecc62d2fd976e014b" } ,
{ file = "grpcio-1.62.1-cp312-cp312-musllinux_1_1_x86_64.whl" , hash = "sha256:3952b581eb121324853ce2b191dae08badb75cd493cb4e0243368aa9e61cfd41" } ,
{ file = "grpcio-1.62.1-cp312-cp312-win32.whl" , hash = "sha256:83a17b303425104d6329c10eb34bba186ffa67161e63fa6cdae7776ff76df73f" } ,
{ file = "grpcio-1.62.1-cp312-cp312-win_amd64.whl" , hash = "sha256:6696ffe440333a19d8d128e88d440f91fb92c75a80ce4b44d55800e656a3ef1d" } ,
{ file = "grpcio-1.62.1-cp37-cp37m-linux_armv7l.whl" , hash = "sha256:e3393b0823f938253370ebef033c9fd23d27f3eae8eb9a8f6264900c7ea3fb5a" } ,
{ file = "grpcio-1.62.1-cp37-cp37m-macosx_10_10_universal2.whl" , hash = "sha256:83e7ccb85a74beaeae2634f10eb858a0ed1a63081172649ff4261f929bacfd22" } ,
{ file = "grpcio-1.62.1-cp37-cp37m-manylinux_2_17_aarch64.whl" , hash = "sha256:882020c87999d54667a284c7ddf065b359bd00251fcd70279ac486776dbf84ec" } ,
{ file = "grpcio-1.62.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:a10383035e864f386fe096fed5c47d27a2bf7173c56a6e26cffaaa5a361addb1" } ,
{ file = "grpcio-1.62.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:960edebedc6b9ada1ef58e1c71156f28689978188cd8cff3b646b57288a927d9" } ,
{ file = "grpcio-1.62.1-cp37-cp37m-musllinux_1_1_i686.whl" , hash = "sha256:23e2e04b83f347d0aadde0c9b616f4726c3d76db04b438fd3904b289a725267f" } ,
{ file = "grpcio-1.62.1-cp37-cp37m-musllinux_1_1_x86_64.whl" , hash = "sha256:978121758711916d34fe57c1f75b79cdfc73952f1481bb9583399331682d36f7" } ,
{ file = "grpcio-1.62.1-cp37-cp37m-win_amd64.whl" , hash = "sha256:9084086190cc6d628f282e5615f987288b95457292e969b9205e45b442276407" } ,
{ file = "grpcio-1.62.1-cp38-cp38-linux_armv7l.whl" , hash = "sha256:22bccdd7b23c420a27fd28540fb5dcbc97dc6be105f7698cb0e7d7a420d0e362" } ,
{ file = "grpcio-1.62.1-cp38-cp38-macosx_10_10_universal2.whl" , hash = "sha256:8999bf1b57172dbc7c3e4bb3c732658e918f5c333b2942243f10d0d653953ba9" } ,
{ file = "grpcio-1.62.1-cp38-cp38-manylinux_2_17_aarch64.whl" , hash = "sha256:d9e52558b8b8c2f4ac05ac86344a7417ccdd2b460a59616de49eb6933b07a0bd" } ,
{ file = "grpcio-1.62.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:1714e7bc935780bc3de1b3fcbc7674209adf5208ff825799d579ffd6cd0bd505" } ,
{ file = "grpcio-1.62.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:c8842ccbd8c0e253c1f189088228f9b433f7a93b7196b9e5b6f87dba393f5d5d" } ,
{ file = "grpcio-1.62.1-cp38-cp38-musllinux_1_1_i686.whl" , hash = "sha256:1f1e7b36bdff50103af95a80923bf1853f6823dd62f2d2a2524b66ed74103e49" } ,
{ file = "grpcio-1.62.1-cp38-cp38-musllinux_1_1_x86_64.whl" , hash = "sha256:bba97b8e8883a8038606480d6b6772289f4c907f6ba780fa1f7b7da7dfd76f06" } ,
{ file = "grpcio-1.62.1-cp38-cp38-win32.whl" , hash = "sha256:a7f615270fe534548112a74e790cd9d4f5509d744dd718cd442bf016626c22e4" } ,
{ file = "grpcio-1.62.1-cp38-cp38-win_amd64.whl" , hash = "sha256:e6c8c8693df718c5ecbc7babb12c69a4e3677fd11de8886f05ab22d4e6b1c43b" } ,
{ file = "grpcio-1.62.1-cp39-cp39-linux_armv7l.whl" , hash = "sha256:73db2dc1b201d20ab7083e7041946910bb991e7e9761a0394bbc3c2632326483" } ,
{ file = "grpcio-1.62.1-cp39-cp39-macosx_10_10_universal2.whl" , hash = "sha256:407b26b7f7bbd4f4751dbc9767a1f0716f9fe72d3d7e96bb3ccfc4aace07c8de" } ,
{ file = "grpcio-1.62.1-cp39-cp39-manylinux_2_17_aarch64.whl" , hash = "sha256:f8de7c8cef9261a2d0a62edf2ccea3d741a523c6b8a6477a340a1f2e417658de" } ,
{ file = "grpcio-1.62.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:9bd5c8a1af40ec305d001c60236308a67e25419003e9bb3ebfab5695a8d0b369" } ,
{ file = "grpcio-1.62.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:be0477cb31da67846a33b1a75c611f88bfbcd427fe17701b6317aefceee1b96f" } ,
{ file = "grpcio-1.62.1-cp39-cp39-musllinux_1_1_i686.whl" , hash = "sha256:60dcd824df166ba266ee0cfaf35a31406cd16ef602b49f5d4dfb21f014b0dedd" } ,
{ file = "grpcio-1.62.1-cp39-cp39-musllinux_1_1_x86_64.whl" , hash = "sha256:973c49086cabab773525f6077f95e5a993bfc03ba8fc32e32f2c279497780585" } ,
{ file = "grpcio-1.62.1-cp39-cp39-win32.whl" , hash = "sha256:12859468e8918d3bd243d213cd6fd6ab07208195dc140763c00dfe901ce1e1b4" } ,
{ file = "grpcio-1.62.1-cp39-cp39-win_amd64.whl" , hash = "sha256:b7209117bbeebdfa5d898205cc55153a51285757902dd73c47de498ad4d11332" } ,
{ file = "grpcio-1.62.1.tar.gz" , hash = "sha256:6c455e008fa86d9e9a9d85bb76da4277c0d7d9668a3bfa70dbe86e9f3c759947" } ,
]
[ package . extras ]
protobuf = [ "grpcio-tools (>=1.62.1)" ]
[ [ package ] ]
name = "grpcio-status"
version = "1.62.1"
description = "Status proto mapping for gRPC"
optional = true
python-versions = ">=3.6"
files = [
{ file = "grpcio-status-1.62.1.tar.gz" , hash = "sha256:3431c8abbab0054912c41df5c72f03ddf3b7a67be8a287bb3c18a3456f96ff77" } ,
{ file = "grpcio_status-1.62.1-py3-none-any.whl" , hash = "sha256:af0c3ab85da31669f21749e8d53d669c061ebc6ce5637be49a46edcb7aa8ab17" } ,
]
[ package . dependencies ]
googleapis-common-protos = ">=1.5.5"
grpcio = ">=1.62.1"
protobuf = ">=4.21.6"
[ [ package ] ]
name = "grpcio-tools"
version = "1.62.1"
description = "Protobuf code generator for gRPC"
optional = true
python-versions = ">=3.7"
files = [
{ file = "grpcio-tools-1.62.1.tar.gz" , hash = "sha256:a4991e5ee8a97ab791296d3bf7e8700b1445635cc1828cc98df945ca1802d7f2" } ,
{ file = "grpcio_tools-1.62.1-cp310-cp310-linux_armv7l.whl" , hash = "sha256:f2b404bcae7e2ef9b0b9803b2a95119eb7507e6dc80ea4a64a78be052c30cebc" } ,
{ file = "grpcio_tools-1.62.1-cp310-cp310-macosx_12_0_universal2.whl" , hash = "sha256:fdd987a580b4474769adfd40144486f54bcc73838d5ec5d3647a17883ea78e76" } ,
{ file = "grpcio_tools-1.62.1-cp310-cp310-manylinux_2_17_aarch64.whl" , hash = "sha256:07af1a6442e2313cff22af93c2c4dd37ae32b5239b38e0d99e2cbf93de65429f" } ,
{ file = "grpcio_tools-1.62.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:41384c9ee18e61ef20cad2774ef71bd8854b63efce263b5177aa06fccb84df1f" } ,
{ file = "grpcio_tools-1.62.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:5c38006f7702d2ff52122e4c77a47348709374050c76216e84b30a9f06e45afa" } ,
{ file = "grpcio_tools-1.62.1-cp310-cp310-musllinux_1_1_i686.whl" , hash = "sha256:08fecc3c5b4e6dd3278f2b9d12837e423c7dcff551ca1e587018b4a0fc5f8019" } ,
{ file = "grpcio_tools-1.62.1-cp310-cp310-musllinux_1_1_x86_64.whl" , hash = "sha256:a01e8dcd0f041f6fa6d815c54a2017d032950e310c41d514a8bc041e872c4d12" } ,
{ file = "grpcio_tools-1.62.1-cp310-cp310-win32.whl" , hash = "sha256:dd933b8e0b3c13fe3543d58f849a6a5e0d7987688cb6801834278378c724f695" } ,
{ file = "grpcio_tools-1.62.1-cp310-cp310-win_amd64.whl" , hash = "sha256:2b04844a9382f1bde4b4174e476e654ab3976168d2469cb4b29e352f4f35a5aa" } ,
{ file = "grpcio_tools-1.62.1-cp311-cp311-linux_armv7l.whl" , hash = "sha256:024380536ba71a96cdf736f0954f6ad03f5da609c09edbcc2ca02fdd639e0eed" } ,
{ file = "grpcio_tools-1.62.1-cp311-cp311-macosx_10_10_universal2.whl" , hash = "sha256:21f14b99e0cd38ad56754cc0b62b2bf3cf75f9f7fc40647da54669e0da0726fe" } ,
{ file = "grpcio_tools-1.62.1-cp311-cp311-manylinux_2_17_aarch64.whl" , hash = "sha256:975ac5fb482c23f3608c16e06a43c8bab4d79c2e2564cdbc25cf753c6e998775" } ,
{ file = "grpcio_tools-1.62.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:50739aaab0c8076ad5957204e71f2e0c9876e11fd8338f7f09de12c2d75163c5" } ,
{ file = "grpcio_tools-1.62.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:598c54318f0326cf5020aa43fc95a15e933aba4a71943d3bff2677d2d21ddfa1" } ,
{ file = "grpcio_tools-1.62.1-cp311-cp311-musllinux_1_1_i686.whl" , hash = "sha256:f309bdb33a61f8e049480d41498ee2e525cfb5e959958b326abfdf552bf9b9cb" } ,
{ file = "grpcio_tools-1.62.1-cp311-cp311-musllinux_1_1_x86_64.whl" , hash = "sha256:f358effd3c11d66c150e0227f983d54a5cd30e14038566dadcf25f9f6844e6e8" } ,
{ file = "grpcio_tools-1.62.1-cp311-cp311-win32.whl" , hash = "sha256:b76aead9b73f1650a091870fe4e9ed15ac4d8ed136f962042367255199c23594" } ,
{ file = "grpcio_tools-1.62.1-cp311-cp311-win_amd64.whl" , hash = "sha256:d66a5d47eaa427039752fa0a83a425ff2a487b6a0ac30556fd3be2f3a27a0130" } ,
{ file = "grpcio_tools-1.62.1-cp312-cp312-linux_armv7l.whl" , hash = "sha256:575535d039b97d63e6a9abee626d6c7cd47bd8cb73dd00a5c84a98254a2164a4" } ,
{ file = "grpcio_tools-1.62.1-cp312-cp312-macosx_10_10_universal2.whl" , hash = "sha256:22644c90e43d1a888477899af917979e17364fdd6e9bbb92679cd6a54c4d36c3" } ,
{ file = "grpcio_tools-1.62.1-cp312-cp312-manylinux_2_17_aarch64.whl" , hash = "sha256:156d3e1b227c16e903003a56881dbe60e40f2b4bd66f0bc3b27c53e466e6384d" } ,
{ file = "grpcio_tools-1.62.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:5ad7c5691625a85327e5b683443baf73ae790fd5afc938252041ed5cd665e377" } ,
{ file = "grpcio_tools-1.62.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:0e140bbc08eea8abf51c0274f45fb1e8350220e64758998d7f3c7f985a0b2496" } ,
{ file = "grpcio_tools-1.62.1-cp312-cp312-musllinux_1_1_i686.whl" , hash = "sha256:7444fcab861911525470d398e5638b70d5cbea3b4674a3de92b5c58c5c515d4d" } ,
{ file = "grpcio_tools-1.62.1-cp312-cp312-musllinux_1_1_x86_64.whl" , hash = "sha256:e643cd14a5d1e59865cba68a5a6f0175d987f36c5f4cb0db80dee9ed60b4c174" } ,
{ file = "grpcio_tools-1.62.1-cp312-cp312-win32.whl" , hash = "sha256:1344a773d2caa9bb7fbea7e879b84f33740c808c34a5bd2a2768e526117a6b44" } ,
{ file = "grpcio_tools-1.62.1-cp312-cp312-win_amd64.whl" , hash = "sha256:2eea1db3748b2f37b4dce84d8e0c15d9bc811094807cabafe7b0ea47f424dfd5" } ,
{ file = "grpcio_tools-1.62.1-cp37-cp37m-linux_armv7l.whl" , hash = "sha256:45d2e6cf04d27286b6f73e6e20ba3f0a1f6d8f5535e5dcb1356200419bb457f4" } ,
{ file = "grpcio_tools-1.62.1-cp37-cp37m-macosx_10_10_universal2.whl" , hash = "sha256:46ae58e6926773e7315e9005f0f17aacedbc0895a8752bec087d24efa2f1fb21" } ,
{ file = "grpcio_tools-1.62.1-cp37-cp37m-manylinux_2_17_aarch64.whl" , hash = "sha256:4c28086df31478023a36f45e50767872ab3aed2419afff09814cb61c88b77db4" } ,
{ file = "grpcio_tools-1.62.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:a4fba5b339f4797548591036c9481e6895bf920fab7d3dc664d2697f8fb7c0bf" } ,
{ file = "grpcio_tools-1.62.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:23eb3d47f78f509fcd201749b1f1e44b76f447913f7fbb3b8bae20f109086295" } ,
{ file = "grpcio_tools-1.62.1-cp37-cp37m-musllinux_1_1_i686.whl" , hash = "sha256:fd5d47707bd6bc2b707ece765c362d2a1d2e8f6cd92b04c99fab49a929f3610c" } ,
{ file = "grpcio_tools-1.62.1-cp37-cp37m-musllinux_1_1_x86_64.whl" , hash = "sha256:d1924a6a943df7c73b9ef0048302327c75962b567451479710da729ead241228" } ,
{ file = "grpcio_tools-1.62.1-cp37-cp37m-win_amd64.whl" , hash = "sha256:fe71ca30aabe42591e84ecb9694c0297dc699cc20c5b24d2cb267fb0fc01f947" } ,
{ file = "grpcio_tools-1.62.1-cp38-cp38-linux_armv7l.whl" , hash = "sha256:1819fd055c1ae672d1d725ec75eefd1f700c18acba0ed9332202be31d69c401d" } ,
{ file = "grpcio_tools-1.62.1-cp38-cp38-macosx_10_10_universal2.whl" , hash = "sha256:5dbe1f7481dd14b6d477b4bace96d275090bc7636b9883975a08b802c94e7b78" } ,
{ file = "grpcio_tools-1.62.1-cp38-cp38-manylinux_2_17_aarch64.whl" , hash = "sha256:771c051c5ece27ad03e4f2e33624a925f0ad636c01757ab7dbb04a37964af4ba" } ,
{ file = "grpcio_tools-1.62.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:98209c438b38b6f1276dbc27b1c04e346a75bfaafe72a25a548f2dc5ce71d226" } ,
{ file = "grpcio_tools-1.62.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:2152308e5321cb90fb45aaa84d03d6dedb19735a8779aaf36c624f97b831842d" } ,
{ file = "grpcio_tools-1.62.1-cp38-cp38-musllinux_1_1_i686.whl" , hash = "sha256:ed1f27dc2b2262c8b8d9036276619c1bb18791311c16ccbf1f31b660f2aad7cf" } ,
{ file = "grpcio_tools-1.62.1-cp38-cp38-musllinux_1_1_x86_64.whl" , hash = "sha256:2744947b6c5e907af21133431809ccca535a037356864e32c122efed8cb9de1f" } ,
{ file = "grpcio_tools-1.62.1-cp38-cp38-win32.whl" , hash = "sha256:13b20e269d14ad629ff9a2c9a2450f3dbb119d5948de63b27ffe624fa7aea85a" } ,
{ file = "grpcio_tools-1.62.1-cp38-cp38-win_amd64.whl" , hash = "sha256:999823758e9eacd0095863d06cd6d388be769f80c9abb65cdb11c4f2cfce3fea" } ,
{ file = "grpcio_tools-1.62.1-cp39-cp39-linux_armv7l.whl" , hash = "sha256:941f8a5c31986053e75fa466bcfa743c2bf1b513b7978cf1f4ab4e96a8219d27" } ,
{ file = "grpcio_tools-1.62.1-cp39-cp39-macosx_10_10_universal2.whl" , hash = "sha256:b9c02c88c77ef6057c6cbeea8922d7c2424aabf46bfc40ddf42a32765ba91061" } ,
{ file = "grpcio_tools-1.62.1-cp39-cp39-manylinux_2_17_aarch64.whl" , hash = "sha256:6abd4eb3ccb444383a40156139acc3aaa73745d395139cb6bc8e2a3429e1e627" } ,
{ file = "grpcio_tools-1.62.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:449503213d142f8470b331a1c2f346f8457f16c7fe20f531bc2500e271f7c14c" } ,
{ file = "grpcio_tools-1.62.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:9a11bcf609d00cfc9baed77ab308223cabc1f0b22a05774a26dd4c94c0c80f1f" } ,
{ file = "grpcio_tools-1.62.1-cp39-cp39-musllinux_1_1_i686.whl" , hash = "sha256:5d7bdea33354b55acf40bb4dd3ba7324d6f1ef6b4a1a4da0807591f8c7e87b9a" } ,
{ file = "grpcio_tools-1.62.1-cp39-cp39-musllinux_1_1_x86_64.whl" , hash = "sha256:d03b645852d605f43003020e78fe6d573cae6ee6b944193e36b8b317e7549a20" } ,
{ file = "grpcio_tools-1.62.1-cp39-cp39-win32.whl" , hash = "sha256:52b185dfc3bf32e70929310367dbc66185afba60492a6a75a9b1141d407e160c" } ,
{ file = "grpcio_tools-1.62.1-cp39-cp39-win_amd64.whl" , hash = "sha256:63a273b70896d3640b7a883eb4a080c3c263d91662d870a2e9c84b7bbd978e7b" } ,
]
[ package . dependencies ]
grpcio = ">=1.62.1"
protobuf = ">=4.21.6,<5.0dev"
setuptools = "*"
2023-12-11 21:53:30 +00:00
[ [ package ] ]
name = "h11"
version = "0.14.0"
description = "A pure-Python, bring-your-own-I/O implementation of HTTP/1.1"
optional = false
python-versions = ">=3.7"
files = [
{ file = "h11-0.14.0-py3-none-any.whl" , hash = "sha256:e3fe4ac4b851c468cc8363d500db52c2ead036020723024a109d37346efaa761" } ,
{ file = "h11-0.14.0.tar.gz" , hash = "sha256:8f19fbbe99e72420ff35c00b27a34cb9937e902a8b810e2c88300c6f0a3b699d" } ,
]
2024-03-15 17:10:47 +00:00
[ [ package ] ]
name = "hdbcli"
version = "2.19.21"
description = "SAP HANA Python Client"
optional = true
python-versions = "*"
files = [
{ file = "hdbcli-2.19.21-cp27-cp27m-macosx_10_7_x86_64.whl" , hash = "sha256:3028f04b86de2d9834a69f3fec2abb58201be3f1cbc357a63af18d4becaab1d3" } ,
{ file = "hdbcli-2.19.21-cp27-cp27m-manylinux1_x86_64.whl" , hash = "sha256:f5e5ad76e77eff67ffad4f7db4a9cbe3e6b9c0399e39bd31ffeb4136d2192bc0" } ,
{ file = "hdbcli-2.19.21-cp27-cp27m-manylinux2014_ppc64le.whl" , hash = "sha256:a8ceca28c6b80c5e6f8fc80a3517d7e843b9c3288f8b03c49316be68468d3848" } ,
{ file = "hdbcli-2.19.21-cp27-cp27m-win_amd64.whl" , hash = "sha256:c963a8fa2f3405024051812048479bdd527d730351473f354d85e7fd933bf7ce" } ,
{ file = "hdbcli-2.19.21-cp27-cp27mu-macosx_10_7_x86_64.whl" , hash = "sha256:98e72291fd5c226b22636274c3ccadb93ff2e3b54b98bff3f37e402ecfd73151" } ,
{ file = "hdbcli-2.19.21-cp27-cp27mu-manylinux1_x86_64.whl" , hash = "sha256:9773cc00cfd72ac7c2ad102560ca747bd5077437bed8bbb812071fa0ceb195a2" } ,
{ file = "hdbcli-2.19.21-cp27-cp27mu-manylinux2014_ppc64le.whl" , hash = "sha256:ba5cf42ea026a1b1677c2c8bdbf2e6b77fbbabb7506671485740e675a6a5345a" } ,
{ file = "hdbcli-2.19.21-cp34-abi3-macosx_10_11_x86_64.whl" , hash = "sha256:fac185d39a7a143a3c505c3e4260d0fc1b244589d4bea126e248e70e9e994e2b" } ,
{ file = "hdbcli-2.19.21-cp34-abi3-manylinux1_x86_64.whl" , hash = "sha256:3c20763ba687acab151680c296c9daddbbbb7107a9790cf953da9bc527e373b9" } ,
{ file = "hdbcli-2.19.21-cp34-abi3-manylinux2014_ppc64le.whl" , hash = "sha256:e20a3f60039875d03165c5790993952f5e2ec8efe141e051f7e154d96afc79a4" } ,
{ file = "hdbcli-2.19.21-cp36-abi3-manylinux2014_aarch64.whl" , hash = "sha256:7c7c50e89fe03be434460d407f2b74196eadde21db4046d52175a22b879ffa28" } ,
{ file = "hdbcli-2.19.21-cp36-abi3-win32.whl" , hash = "sha256:d8529099b535b2c02ddb923ef8006132cf548e358f0bb0afdef3d4d81adc74d0" } ,
{ file = "hdbcli-2.19.21-cp36-abi3-win_amd64.whl" , hash = "sha256:7c631a467f15cbb0d91655c2059b3c421e2fa0451ffeb500a3461aa4456e3fa2" } ,
{ file = "hdbcli-2.19.21-cp38-abi3-macosx_11_0_arm64.whl" , hash = "sha256:f8607479efef3dea5fc4181806a20ffe6552ef0212efc371c93a15bf2d50c3b4" } ,
]
[ [ package ] ]
name = "hologres-vector"
version = "0.0.6"
description = ""
optional = true
python-versions = ">=3.7"
files = [
{ file = "hologres_vector-0.0.6-py3-none-any.whl" , hash = "sha256:c506eaafd9ae8c529955605fae71856e95191a64dde144d0a25b06536e6544a4" } ,
{ file = "hologres_vector-0.0.6.tar.gz" , hash = "sha256:13251b74bcb9ef2af61cc39c6f155e16452e03891c2f0a07f708f0157baf7b08" } ,
]
[ package . dependencies ]
psycopg2-binary = "*"
typing = "*"
uuid = "*"
[ [ package ] ]
name = "html2text"
version = "2020.1.16"
description = "Turn HTML into equivalent Markdown-structured text."
optional = true
python-versions = ">=3.5"
files = [
{ file = "html2text-2020.1.16-py3-none-any.whl" , hash = "sha256:c7c629882da0cf377d66f073329ccf34a12ed2adf0169b9285ae4e63ef54c82b" } ,
{ file = "html2text-2020.1.16.tar.gz" , hash = "sha256:e296318e16b059ddb97f7a8a1d6a5c1d7af4544049a01e261731d2d5cc277bbb" } ,
]
2023-12-11 21:53:30 +00:00
[ [ package ] ]
name = "httpcore"
2024-03-15 17:10:47 +00:00
version = "0.17.3"
2023-12-11 21:53:30 +00:00
description = "A minimal low-level HTTP client."
optional = false
2024-03-15 17:10:47 +00:00
python-versions = ">=3.7"
2023-12-11 21:53:30 +00:00
files = [
2024-03-15 17:10:47 +00:00
{ file = "httpcore-0.17.3-py3-none-any.whl" , hash = "sha256:c2789b767ddddfa2a5782e3199b2b7f6894540b17b16ec26b2c4d8e103510b87" } ,
{ file = "httpcore-0.17.3.tar.gz" , hash = "sha256:a6f30213335e34c1ade7be6ec7c47f19f50c56db36abef1a9dfa3815b1cb3888" } ,
2023-12-11 21:53:30 +00:00
]
[ package . dependencies ]
2024-03-15 17:10:47 +00:00
anyio = ">=3.0,<5.0"
2023-12-11 21:53:30 +00:00
certifi = "*"
h11 = ">=0.13,<0.15"
2024-03-15 17:10:47 +00:00
sniffio = "==1.*"
2023-12-11 21:53:30 +00:00
[ package . extras ]
http2 = [ "h2 (>=3,<5)" ]
socks = [ "socksio (==1.*)" ]
[ [ package ] ]
name = "httpx"
2024-03-15 17:10:47 +00:00
version = "0.24.1"
2023-12-11 21:53:30 +00:00
description = "The next generation HTTP client."
optional = false
2024-03-15 17:10:47 +00:00
python-versions = ">=3.7"
2023-12-11 21:53:30 +00:00
files = [
2024-03-15 17:10:47 +00:00
{ file = "httpx-0.24.1-py3-none-any.whl" , hash = "sha256:06781eb9ac53cde990577af654bd990a4949de37a28bdb4a230d434f3a30b9bd" } ,
{ file = "httpx-0.24.1.tar.gz" , hash = "sha256:5853a43053df830c20f8110c5e69fe44d035d850b2dfe795e196f00fdb774bdd" } ,
2023-12-11 21:53:30 +00:00
]
[ package . dependencies ]
certifi = "*"
2024-03-15 17:10:47 +00:00
httpcore = ">=0.15.0,<0.18.0"
2023-12-11 21:53:30 +00:00
idna = "*"
sniffio = "*"
[ package . extras ]
brotli = [ "brotli" , "brotlicffi" ]
cli = [ "click (==8.*)" , "pygments (==2.*)" , "rich (>=10,<14)" ]
http2 = [ "h2 (>=3,<5)" ]
socks = [ "socksio (==1.*)" ]
[ [ package ] ]
name = "httpx-sse"
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
version = "0.4.0"
2023-12-11 21:53:30 +00:00
description = "Consume Server-Sent Event (SSE) messages with HTTPX."
optional = false
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
python-versions = ">=3.8"
2023-12-11 21:53:30 +00:00
files = [
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
{ file = "httpx-sse-0.4.0.tar.gz" , hash = "sha256:1e81a3a3070ce322add1d3529ed42eb5f70817f45ed6ec915ab753f961139721" } ,
{ file = "httpx_sse-0.4.0-py3-none-any.whl" , hash = "sha256:f329af6eae57eaa2bdfd962b42524764af68075ea87370a2de920af5341e318f" } ,
2023-12-11 21:53:30 +00:00
]
[ [ package ] ]
name = "huggingface-hub"
2024-03-08 02:20:47 +00:00
version = "0.21.4"
2023-12-11 21:53:30 +00:00
description = "Client library to download and publish models, datasets and other repos on the huggingface.co hub"
optional = false
python-versions = ">=3.8.0"
files = [
2024-03-08 02:20:47 +00:00
{ file = "huggingface_hub-0.21.4-py3-none-any.whl" , hash = "sha256:df37c2c37fc6c82163cdd8a67ede261687d80d1e262526d6c0ce73b6b3630a7b" } ,
{ file = "huggingface_hub-0.21.4.tar.gz" , hash = "sha256:e1f4968c93726565a80edf6dc309763c7b546d0cfe79aa221206034d50155531" } ,
2023-12-11 21:53:30 +00:00
]
[ package . dependencies ]
filelock = "*"
fsspec = ">=2023.5.0"
packaging = ">=20.9"
pyyaml = ">=5.1"
requests = "*"
tqdm = ">=4.42.1"
typing-extensions = ">=3.7.4.3"
[ package . extras ]
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
all = [ "InquirerPy (==0.3.4)" , "Jinja2" , "Pillow" , "aiohttp" , "gradio" , "jedi" , "mypy (==1.5.1)" , "numpy" , "pydantic (>1.1,<2.0)" , "pydantic (>1.1,<3.0)" , "pytest" , "pytest-asyncio" , "pytest-cov" , "pytest-env" , "pytest-rerunfailures" , "pytest-vcr" , "pytest-xdist" , "ruff (>=0.1.3)" , "soundfile" , "types-PyYAML" , "types-requests" , "types-simplejson" , "types-toml" , "types-tqdm" , "types-urllib3" , "typing-extensions (>=4.8.0)" , "urllib3 (<2.0)" ]
2023-12-11 21:53:30 +00:00
cli = [ "InquirerPy (==0.3.4)" ]
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
dev = [ "InquirerPy (==0.3.4)" , "Jinja2" , "Pillow" , "aiohttp" , "gradio" , "jedi" , "mypy (==1.5.1)" , "numpy" , "pydantic (>1.1,<2.0)" , "pydantic (>1.1,<3.0)" , "pytest" , "pytest-asyncio" , "pytest-cov" , "pytest-env" , "pytest-rerunfailures" , "pytest-vcr" , "pytest-xdist" , "ruff (>=0.1.3)" , "soundfile" , "types-PyYAML" , "types-requests" , "types-simplejson" , "types-toml" , "types-tqdm" , "types-urllib3" , "typing-extensions (>=4.8.0)" , "urllib3 (<2.0)" ]
2023-12-11 21:53:30 +00:00
fastai = [ "fastai (>=2.4)" , "fastcore (>=1.3.27)" , "toml" ]
2024-03-08 02:20:47 +00:00
hf-transfer = [ "hf-transfer (>=0.1.4)" ]
2023-12-11 21:53:30 +00:00
inference = [ "aiohttp" , "pydantic (>1.1,<2.0)" , "pydantic (>1.1,<3.0)" ]
quality = [ "mypy (==1.5.1)" , "ruff (>=0.1.3)" ]
tensorflow = [ "graphviz" , "pydot" , "tensorflow" ]
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
testing = [ "InquirerPy (==0.3.4)" , "Jinja2" , "Pillow" , "aiohttp" , "gradio" , "jedi" , "numpy" , "pydantic (>1.1,<2.0)" , "pydantic (>1.1,<3.0)" , "pytest" , "pytest-asyncio" , "pytest-cov" , "pytest-env" , "pytest-rerunfailures" , "pytest-vcr" , "pytest-xdist" , "soundfile" , "urllib3 (<2.0)" ]
2024-03-08 02:20:47 +00:00
torch = [ "safetensors" , "torch" ]
2023-12-11 21:53:30 +00:00
typing = [ "types-PyYAML" , "types-requests" , "types-simplejson" , "types-toml" , "types-tqdm" , "types-urllib3" , "typing-extensions (>=4.8.0)" ]
2024-03-15 17:10:47 +00:00
[ [ package ] ]
name = "humanfriendly"
version = "10.0"
description = "Human friendly output for text interfaces using Python"
optional = true
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*"
files = [
{ file = "humanfriendly-10.0-py2.py3-none-any.whl" , hash = "sha256:1697e1a8a8f550fd43c2865cd84542fc175a61dcb779b6fee18cf6b6ccba1477" } ,
{ file = "humanfriendly-10.0.tar.gz" , hash = "sha256:6b0b831ce8f15f7300721aa49829fc4e83921a9a301cc7f606be6686a2288ddc" } ,
]
[ package . dependencies ]
pyreadline3 = { version = "*" , markers = "sys_platform == \"win32\" and python_version >= \"3.8\"" }
2023-12-11 21:53:30 +00:00
[ [ package ] ]
name = "idna"
version = "3.6"
description = "Internationalized Domain Names in Applications (IDNA)"
optional = false
python-versions = ">=3.5"
files = [
{ file = "idna-3.6-py3-none-any.whl" , hash = "sha256:c05567e9c24a6b9faaa835c4821bad0590fbb9d5779e7caa6e1cc4978e7eb24f" } ,
{ file = "idna-3.6.tar.gz" , hash = "sha256:9ecdbbd083b06798ae1e86adcbfe8ab1479cf864e4ee30fe4e46a003d12491ca" } ,
]
[ [ package ] ]
name = "importlib-metadata"
2024-03-15 17:10:47 +00:00
version = "6.11.0"
2023-12-11 21:53:30 +00:00
description = "Read metadata from Python packages"
optional = false
python-versions = ">=3.8"
files = [
2024-03-15 17:10:47 +00:00
{ file = "importlib_metadata-6.11.0-py3-none-any.whl" , hash = "sha256:f0afba6205ad8f8947c7d338b5342d5db2afbfd82f9cbef7879a9539cc12eb9b" } ,
{ file = "importlib_metadata-6.11.0.tar.gz" , hash = "sha256:1231cf92d825c9e03cfc4da076a16de6422c863558229ea0b22b675657463443" } ,
2023-12-11 21:53:30 +00:00
]
[ package . dependencies ]
zipp = ">=0.5"
[ package . extras ]
2024-03-15 17:10:47 +00:00
docs = [ "furo" , "jaraco.packaging (>=9.3)" , "jaraco.tidelift (>=1.4)" , "rst.linker (>=1.9)" , "sphinx (<7.2.5)" , "sphinx (>=3.5)" , "sphinx-lint" ]
2023-12-11 21:53:30 +00:00
perf = [ "ipython" ]
2024-03-15 17:10:47 +00:00
testing = [ "flufl.flake8" , "importlib-resources (>=1.3)" , "packaging" , "pyfakefs" , "pytest (>=6)" , "pytest-black (>=0.3.7)" , "pytest-checkdocs (>=2.4)" , "pytest-cov" , "pytest-enabler (>=2.2)" , "pytest-mypy (>=0.9.1)" , "pytest-perf (>=0.9.2)" , "pytest-ruff" ]
2023-12-11 21:53:30 +00:00
[ [ package ] ]
name = "importlib-resources"
2024-03-15 17:10:47 +00:00
version = "6.2.0"
2023-12-11 21:53:30 +00:00
description = "Read resources from Python packages"
optional = false
python-versions = ">=3.8"
files = [
2024-03-15 17:10:47 +00:00
{ file = "importlib_resources-6.2.0-py3-none-any.whl" , hash = "sha256:8d035473d681d9bb95d06a31ad18594962933405519d36f4af1565fe6f998ad6" } ,
{ file = "importlib_resources-6.2.0.tar.gz" , hash = "sha256:4351403cba8e3a1c03ff15b6bbea1cde4c6de00c705f49ea13909b404b415b9c" } ,
2023-12-11 21:53:30 +00:00
]
[ package . dependencies ]
zipp = { version = ">=3.1.0" , markers = "python_version < \"3.10\"" }
[ package . extras ]
docs = [ "furo" , "jaraco.packaging (>=9.3)" , "jaraco.tidelift (>=1.4)" , "rst.linker (>=1.9)" , "sphinx (<7.2.5)" , "sphinx (>=3.5)" , "sphinx-lint" ]
2024-03-08 02:20:47 +00:00
testing = [ "jaraco.collections" , "pytest (>=6)" , "pytest-checkdocs (>=2.4)" , "pytest-cov" , "pytest-enabler (>=2.2)" , "pytest-mypy" , "pytest-ruff (>=0.2.1)" , "zipp (>=3.17)" ]
2023-12-11 21:53:30 +00:00
2024-03-15 17:10:47 +00:00
[ [ package ] ]
name = "inflection"
version = "0.5.1"
description = "A port of Ruby on Rails inflector to Python"
optional = true
python-versions = ">=3.5"
files = [
{ file = "inflection-0.5.1-py2.py3-none-any.whl" , hash = "sha256:f38b2b640938a4f35ade69ac3d053042959b62a0f1076a5bbaa1b9526605a8a2" } ,
{ file = "inflection-0.5.1.tar.gz" , hash = "sha256:1a29730d366e996aaacffb2f1f1cb9593dc38e2ddd30c91250c6dde09ea9b417" } ,
]
2023-12-11 21:53:30 +00:00
[ [ package ] ]
name = "iniconfig"
version = "2.0.0"
description = "brain-dead simple config-ini parsing"
optional = false
python-versions = ">=3.7"
files = [
{ file = "iniconfig-2.0.0-py3-none-any.whl" , hash = "sha256:b6a85871a79d2e3b22d2d1b94ac2824226a63c6b741c88f7ae975f18b6778374" } ,
{ file = "iniconfig-2.0.0.tar.gz" , hash = "sha256:2d91e135bf72d31a410b17c16da610a82cb55f6b0477d1a902134b24a455b8b3" } ,
]
2024-03-15 17:10:47 +00:00
[ [ package ] ]
name = "injector"
version = "0.21.0"
description = "Injector - Python dependency injection framework, inspired by Guice"
optional = true
python-versions = "*"
files = [
{ file = "injector-0.21.0-py2.py3-none-any.whl" , hash = "sha256:3942c5e4c501d390d5ad1b8d7d486ef93b844934afeeb17211acb6c4ca29eeb4" } ,
{ file = "injector-0.21.0.tar.gz" , hash = "sha256:919eb6b9f96f40bf98fda34c79762b217bd1544d9adc35805ff2948e92356c9c" } ,
]
[ package . dependencies ]
typing-extensions = { version = ">=3.7.4" , markers = "python_version < \"3.9\"" }
[ package . extras ]
dev = [ "black (==23.3.0)" , "build (==0.10.0)" , "check-manifest (==0.49)" , "click (==8.1.3)" , "coverage (==7.2.7)" , "exceptiongroup (==1.1.1)" , "iniconfig (==2.0.0)" , "mypy (==1.4.1)" , "mypy-extensions (==1.0.0)" , "packaging (==23.1)" , "pathspec (==0.11.1)" , "platformdirs (==3.8.0)" , "pluggy (==1.2.0)" , "pyproject-hooks (==1.0.0)" , "pytest (==7.4.0)" , "pytest-cov (==4.1.0)" , "tomli (==2.0.1)" , "typing-extensions (==4.7.0)" ]
2023-12-11 21:53:30 +00:00
[ [ package ] ]
name = "ipykernel"
2024-03-08 02:20:47 +00:00
version = "6.29.3"
2023-12-11 21:53:30 +00:00
description = "IPython Kernel for Jupyter"
optional = false
python-versions = ">=3.8"
files = [
2024-03-08 02:20:47 +00:00
{ file = "ipykernel-6.29.3-py3-none-any.whl" , hash = "sha256:5aa086a4175b0229d4eca211e181fb473ea78ffd9869af36ba7694c947302a21" } ,
{ file = "ipykernel-6.29.3.tar.gz" , hash = "sha256:e14c250d1f9ea3989490225cc1a542781b095a18a19447fcf2b5eaf7d0ac5bd2" } ,
2023-12-11 21:53:30 +00:00
]
[ package . dependencies ]
appnope = { version = "*" , markers = "platform_system == \"Darwin\"" }
comm = ">=0.1.1"
debugpy = ">=1.6.5"
ipython = ">=7.23.1"
jupyter-client = ">=6.1.12"
jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0"
matplotlib-inline = ">=0.1"
nest-asyncio = "*"
packaging = "*"
psutil = "*"
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
pyzmq = ">=24"
2023-12-11 21:53:30 +00:00
tornado = ">=6.1"
traitlets = ">=5.4.0"
[ package . extras ]
cov = [ "coverage[toml]" , "curio" , "matplotlib" , "pytest-cov" , "trio" ]
docs = [ "myst-parser" , "pydata-sphinx-theme" , "sphinx" , "sphinx-autodoc-typehints" , "sphinxcontrib-github-alt" , "sphinxcontrib-spelling" , "trio" ]
pyqt5 = [ "pyqt5" ]
pyside6 = [ "pyside6" ]
2024-03-08 02:20:47 +00:00
test = [ "flaky" , "ipyparallel" , "pre-commit" , "pytest (>=7.0)" , "pytest-asyncio (>=0.23.5)" , "pytest-cov" , "pytest-timeout" ]
2023-12-11 21:53:30 +00:00
[ [ package ] ]
name = "ipython"
version = "8.12.3"
description = "IPython: Productive Interactive Computing"
optional = false
python-versions = ">=3.8"
files = [
{ file = "ipython-8.12.3-py3-none-any.whl" , hash = "sha256:b0340d46a933d27c657b211a329d0be23793c36595acf9e6ef4164bc01a1804c" } ,
{ file = "ipython-8.12.3.tar.gz" , hash = "sha256:3910c4b54543c2ad73d06579aa771041b7d5707b033bd488669b4cf544e3b363" } ,
]
[ package . dependencies ]
appnope = { version = "*" , markers = "sys_platform == \"darwin\"" }
backcall = "*"
colorama = { version = "*" , markers = "sys_platform == \"win32\"" }
decorator = "*"
jedi = ">=0.16"
matplotlib-inline = "*"
pexpect = { version = ">4.3" , markers = "sys_platform != \"win32\"" }
pickleshare = "*"
prompt-toolkit = ">=3.0.30,<3.0.37 || >3.0.37,<3.1.0"
pygments = ">=2.4.0"
stack-data = "*"
traitlets = ">=5"
typing-extensions = { version = "*" , markers = "python_version < \"3.10\"" }
[ package . extras ]
all = [ "black" , "curio" , "docrepr" , "ipykernel" , "ipyparallel" , "ipywidgets" , "matplotlib" , "matplotlib (!=3.2.0)" , "nbconvert" , "nbformat" , "notebook" , "numpy (>=1.21)" , "pandas" , "pytest (<7)" , "pytest (<7.1)" , "pytest-asyncio" , "qtconsole" , "setuptools (>=18.5)" , "sphinx (>=1.3)" , "sphinx-rtd-theme" , "stack-data" , "testpath" , "trio" , "typing-extensions" ]
black = [ "black" ]
doc = [ "docrepr" , "ipykernel" , "matplotlib" , "pytest (<7)" , "pytest (<7.1)" , "pytest-asyncio" , "setuptools (>=18.5)" , "sphinx (>=1.3)" , "sphinx-rtd-theme" , "stack-data" , "testpath" , "typing-extensions" ]
kernel = [ "ipykernel" ]
nbconvert = [ "nbconvert" ]
nbformat = [ "nbformat" ]
notebook = [ "ipywidgets" , "notebook" ]
parallel = [ "ipyparallel" ]
qtconsole = [ "qtconsole" ]
test = [ "pytest (<7.1)" , "pytest-asyncio" , "testpath" ]
test-extra = [ "curio" , "matplotlib (!=3.2.0)" , "nbformat" , "numpy (>=1.21)" , "pandas" , "pytest (<7.1)" , "pytest-asyncio" , "testpath" , "trio" ]
[ [ package ] ]
name = "ipywidgets"
2024-03-08 02:20:47 +00:00
version = "8.1.2"
2023-12-11 21:53:30 +00:00
description = "Jupyter interactive widgets"
optional = false
python-versions = ">=3.7"
files = [
2024-03-08 02:20:47 +00:00
{ file = "ipywidgets-8.1.2-py3-none-any.whl" , hash = "sha256:bbe43850d79fb5e906b14801d6c01402857996864d1e5b6fa62dd2ee35559f60" } ,
{ file = "ipywidgets-8.1.2.tar.gz" , hash = "sha256:d0b9b41e49bae926a866e613a39b0f0097745d2b9f1f3dd406641b4a57ec42c9" } ,
2023-12-11 21:53:30 +00:00
]
[ package . dependencies ]
comm = ">=0.1.3"
ipython = ">=6.1.0"
2024-03-08 02:20:47 +00:00
jupyterlab-widgets = ">=3.0.10,<3.1.0"
2023-12-11 21:53:30 +00:00
traitlets = ">=4.3.1"
2024-03-08 02:20:47 +00:00
widgetsnbextension = ">=4.0.10,<4.1.0"
2023-12-11 21:53:30 +00:00
[ package . extras ]
test = [ "ipykernel" , "jsonschema" , "pytest (>=3.6.0)" , "pytest-cov" , "pytz" ]
2024-03-15 17:10:47 +00:00
[ [ package ] ]
name = "isodate"
version = "0.6.1"
description = "An ISO 8601 date/time/duration parser and formatter"
optional = true
python-versions = "*"
files = [
{ file = "isodate-0.6.1-py2.py3-none-any.whl" , hash = "sha256:0751eece944162659049d35f4f549ed815792b38793f07cf73381c1c87cbed96" } ,
{ file = "isodate-0.6.1.tar.gz" , hash = "sha256:48c5881de7e8b0a0d648cb024c8062dc84e7b840ed81e864c7614fd3c127bde9" } ,
]
[ package . dependencies ]
six = "*"
2023-12-11 21:53:30 +00:00
[ [ package ] ]
name = "isoduration"
version = "20.11.0"
description = "Operations with ISO 8601 durations"
optional = false
python-versions = ">=3.7"
files = [
{ file = "isoduration-20.11.0-py3-none-any.whl" , hash = "sha256:b2904c2a4228c3d44f409c8ae8e2370eb21a26f7ac2ec5446df141dde3452042" } ,
{ file = "isoduration-20.11.0.tar.gz" , hash = "sha256:ac2f9015137935279eac671f94f89eb00584f940f5dc49462a0c4ee692ba1bd9" } ,
]
[ package . dependencies ]
arrow = ">=0.15.0"
2024-03-15 17:10:47 +00:00
[ [ package ] ]
name = "javelin-sdk"
version = "0.1.8"
description = "Python client for Javelin"
optional = true
python-versions = ">=3.8,<4.0"
files = [
{ file = "javelin_sdk-0.1.8-py3-none-any.whl" , hash = "sha256:7843e278f99fa04fcc659b31844f6205141b956e24f331a1cac1ae30d9eb3a55" } ,
{ file = "javelin_sdk-0.1.8.tar.gz" , hash = "sha256:57fa669c68f75296fdce20242023429a79755be22e0d3182dbad62d8f6bb1dd7" } ,
]
[ package . dependencies ]
httpx = ">=0.24.0,<0.25.0"
pydantic = ">=1.10.7,<2.0.0"
2023-12-11 21:53:30 +00:00
[ [ package ] ]
name = "jedi"
version = "0.19.1"
description = "An autocompletion tool for Python that can be used for text editors."
optional = false
python-versions = ">=3.6"
files = [
{ file = "jedi-0.19.1-py2.py3-none-any.whl" , hash = "sha256:e983c654fe5c02867aef4cdfce5a2fbb4a50adc0af145f70504238f18ef5e7e0" } ,
{ file = "jedi-0.19.1.tar.gz" , hash = "sha256:cf0496f3651bc65d7174ac1b7d043eff454892c708a87d1b683e57b569927ffd" } ,
]
[ package . dependencies ]
parso = ">=0.8.3,<0.9.0"
[ package . extras ]
docs = [ "Jinja2 (==2.11.3)" , "MarkupSafe (==1.1.1)" , "Pygments (==2.8.1)" , "alabaster (==0.7.12)" , "babel (==2.9.1)" , "chardet (==4.0.0)" , "commonmark (==0.8.1)" , "docutils (==0.17.1)" , "future (==0.18.2)" , "idna (==2.10)" , "imagesize (==1.2.0)" , "mock (==1.0.1)" , "packaging (==20.9)" , "pyparsing (==2.4.7)" , "pytz (==2021.1)" , "readthedocs-sphinx-ext (==2.1.4)" , "recommonmark (==0.5.0)" , "requests (==2.25.1)" , "six (==1.15.0)" , "snowballstemmer (==2.1.0)" , "sphinx (==1.8.5)" , "sphinx-rtd-theme (==0.4.3)" , "sphinxcontrib-serializinghtml (==1.1.4)" , "sphinxcontrib-websupport (==1.2.4)" , "urllib3 (==1.26.4)" ]
qa = [ "flake8 (==5.0.4)" , "mypy (==0.971)" , "types-setuptools (==67.2.0.1)" ]
testing = [ "Django" , "attrs" , "colorama" , "docopt" , "pytest (<7.0.0)" ]
2024-03-15 17:10:47 +00:00
[ [ package ] ]
name = "jieba3k"
version = "0.35.1"
description = "Chinese Words Segementation Utilities"
optional = true
python-versions = "*"
files = [
{ file = "jieba3k-0.35.1.zip" , hash = "sha256:980a4f2636b778d312518066be90c7697d410dd5a472385f5afced71a2db1c10" } ,
]
2023-12-11 21:53:30 +00:00
[ [ package ] ]
name = "jinja2"
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
version = "3.1.3"
2023-12-11 21:53:30 +00:00
description = "A very fast and expressive template engine."
optional = false
python-versions = ">=3.7"
files = [
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
{ file = "Jinja2-3.1.3-py3-none-any.whl" , hash = "sha256:7d6d50dd97d52cbc355597bd845fabfbac3f551e1f99619e39a35ce8c370b5fa" } ,
{ file = "Jinja2-3.1.3.tar.gz" , hash = "sha256:ac8bd6544d4bb2c9792bf3a159e80bba8fda7f07e81bc3aed565432d5925ba90" } ,
2023-12-11 21:53:30 +00:00
]
[ package . dependencies ]
MarkupSafe = ">=2.0"
[ package . extras ]
i18n = [ "Babel (>=2.7)" ]
2024-03-15 17:10:47 +00:00
[ [ package ] ]
name = "jmespath"
version = "1.0.1"
description = "JSON Matching Expressions"
optional = true
python-versions = ">=3.7"
files = [
{ file = "jmespath-1.0.1-py3-none-any.whl" , hash = "sha256:02e2e4cc71b5bcab88332eebf907519190dd9e6e82107fa7f83b1003a6252980" } ,
{ file = "jmespath-1.0.1.tar.gz" , hash = "sha256:90261b206d6defd58fdd5e85f478bf633a2901798906be2ad389150c5c60edbe" } ,
]
[ [ package ] ]
name = "joblib"
version = "1.3.2"
description = "Lightweight pipelining with Python functions"
optional = true
python-versions = ">=3.7"
files = [
{ file = "joblib-1.3.2-py3-none-any.whl" , hash = "sha256:ef4331c65f239985f3f2220ecc87db222f08fd22097a3dd5698f693875f8cbb9" } ,
{ file = "joblib-1.3.2.tar.gz" , hash = "sha256:92f865e621e17784e7955080b6d042489e3b8e294949cc44c6eac304f59772b1" } ,
]
[ [ package ] ]
name = "jq"
version = "1.6.0"
description = "jq is a lightweight and flexible JSON processor."
optional = true
python-versions = ">=3.5"
files = [
{ file = "jq-1.6.0-cp310-cp310-macosx_10_9_x86_64.whl" , hash = "sha256:5773851cfb9ec6525f362f5bf7f18adab5c1fd1f0161c3599264cd0118c799da" } ,
{ file = "jq-1.6.0-cp310-cp310-macosx_11_0_arm64.whl" , hash = "sha256:a758df4eae767a21ebd8466dfd0066d99c9741d9f7fd4a7e1d5b5227e1924af7" } ,
{ file = "jq-1.6.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:15cf9dd3e7fb40d029f12f60cf418374c0b830a6ea6267dd285b48809069d6af" } ,
{ file = "jq-1.6.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:c7e768cf5c25d703d944ef81c787d745da0eb266a97768f3003f91c4c828118d" } ,
{ file = "jq-1.6.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:85a697b3cdc65e787f90faa1237caa44c117b6b2853f21263c3f0b16661b192c" } ,
{ file = "jq-1.6.0-cp310-cp310-musllinux_1_1_aarch64.whl" , hash = "sha256:944e081c328501ddc0a22a8f08196df72afe7910ca11e1a1f21244410dbdd3b3" } ,
{ file = "jq-1.6.0-cp310-cp310-musllinux_1_1_i686.whl" , hash = "sha256:09262d0e0cafb03acc968622e6450bb08abfb14c793bab47afd2732b47c655fd" } ,
{ file = "jq-1.6.0-cp310-cp310-musllinux_1_1_x86_64.whl" , hash = "sha256:611f460f616f957d57e0da52ac6e1e6294b073c72a89651da5546a31347817bd" } ,
{ file = "jq-1.6.0-cp311-cp311-macosx_10_9_x86_64.whl" , hash = "sha256:aba35b5cc07cd75202148e55f47ede3f4d0819b51c80f6d0c82a2ca47db07189" } ,
{ file = "jq-1.6.0-cp311-cp311-macosx_11_0_arm64.whl" , hash = "sha256:ef5ddb76b03610df19a53583348aed3604f21d0ba6b583ee8d079e8df026cd47" } ,
{ file = "jq-1.6.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:872f322ff7bfd7daff41b7e8248d414a88722df0e82d1027f3b091a438543e63" } ,
{ file = "jq-1.6.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:ca7a2982ff26f4620ac03099542a0230dabd8787af3f03ac93660598e26acbf0" } ,
{ file = "jq-1.6.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:316affc6debf15eb05b7fd8e84ebf8993042b10b840e8d2a504659fb3ba07992" } ,
{ file = "jq-1.6.0-cp311-cp311-musllinux_1_1_aarch64.whl" , hash = "sha256:9bc42ade4de77fe4370c0e8e105ef10ad1821ef74d61dcc70982178b9ecfdc72" } ,
{ file = "jq-1.6.0-cp311-cp311-musllinux_1_1_i686.whl" , hash = "sha256:02da59230912b886ed45489f3693ce75877f3e99c9e490c0a2dbcf0db397e0df" } ,
{ file = "jq-1.6.0-cp311-cp311-musllinux_1_1_x86_64.whl" , hash = "sha256:7ea39f89aa469eb12145ddd686248916cd6d186647aa40b319af8444b1f45a2d" } ,
{ file = "jq-1.6.0-cp312-cp312-macosx_10_9_x86_64.whl" , hash = "sha256:6e9016f5ba064fabc527adb609ebae1f27cac20c8e0da990abae1cfb12eca706" } ,
{ file = "jq-1.6.0-cp312-cp312-macosx_11_0_arm64.whl" , hash = "sha256:022be104a548f7fbddf103ce749937956df9d37a4f2f1650396dacad73bce7ee" } ,
{ file = "jq-1.6.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:1d5a7f31f779e1aa3d165eaec237d74c7f5728227e81023a576c939ba3da34f8" } ,
{ file = "jq-1.6.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:5f1533a2a15c42be3368878b4031b12f30441246878e0b5f6bedfdd7828cdb1f" } ,
{ file = "jq-1.6.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:8aa67a304e58aa85c550ec011a68754ae49abe227b37d63a351feef4eea4c7a7" } ,
{ file = "jq-1.6.0-cp312-cp312-musllinux_1_1_aarch64.whl" , hash = "sha256:0893d1590cfa6facaf787cc6c28ac51e47d0d06a303613f84d4943ac0ca98e32" } ,
{ file = "jq-1.6.0-cp312-cp312-musllinux_1_1_i686.whl" , hash = "sha256:63db80b4803905a4f4f6c87a17aa1816c530f6262bc795773ebe60f8ab259092" } ,
{ file = "jq-1.6.0-cp312-cp312-musllinux_1_1_x86_64.whl" , hash = "sha256:e2c1f429e644cb962e846a6157b5352c3c556fbd0b22bba9fc2fea0710333369" } ,
{ file = "jq-1.6.0-cp36-cp36m-macosx_10_9_x86_64.whl" , hash = "sha256:bcf574f28809ec63b8df6456fdd4a981751b7466851e80621993b4e9d3e3c8ee" } ,
{ file = "jq-1.6.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:49dbe0f003b411ca52b5d0afaf09cad8e430a1011181c86f2ef720a0956f31c1" } ,
{ file = "jq-1.6.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:9f5a9c4185269a5faf395aa7ca086c7b02c9c8b448d542be3b899041d06e0970" } ,
{ file = "jq-1.6.0-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:8265f3badcd125f234e55dfc02a078c5decdc6faafcd453fde04d4c0d2699886" } ,
{ file = "jq-1.6.0-cp36-cp36m-musllinux_1_1_aarch64.whl" , hash = "sha256:c6c39b53d000d2f7f9f6338061942b83c9034d04f3bc99acae0867d23c9e7127" } ,
{ file = "jq-1.6.0-cp36-cp36m-musllinux_1_1_i686.whl" , hash = "sha256:9897931ea7b9a46f8165ee69737ece4a2e6dbc8e10ececb81f459d51d71401df" } ,
{ file = "jq-1.6.0-cp36-cp36m-musllinux_1_1_x86_64.whl" , hash = "sha256:6312237159e88e92775ea497e0c739590528062d4074544aacf12a08d252f966" } ,
{ file = "jq-1.6.0-cp37-cp37m-macosx_10_9_x86_64.whl" , hash = "sha256:aa786a60bdd1a3571f092a4021dd9abf6c46798530fa99f19ecf4f0fceaa7eaf" } ,
{ file = "jq-1.6.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:22495573d8221320d3433e1aeded40132bd8e1726845629558bd73aaa66eef7b" } ,
{ file = "jq-1.6.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:711eabc5d33ef3ec581e0744d9cff52f43896d84847a2692c287a0140a29c915" } ,
{ file = "jq-1.6.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:57e75c1563d083b0424690b3c3ef2bb519e670770931fe633101ede16615d6ee" } ,
{ file = "jq-1.6.0-cp37-cp37m-musllinux_1_1_aarch64.whl" , hash = "sha256:c795f175b1a13bd716a0c180d062cc8e305271f47bbdb9eb0f0f62f7e4f5def4" } ,
{ file = "jq-1.6.0-cp37-cp37m-musllinux_1_1_i686.whl" , hash = "sha256:227b178b22a7f91ae88525810441791b1ca1fc71c86f03190911793be15cec3d" } ,
{ file = "jq-1.6.0-cp37-cp37m-musllinux_1_1_x86_64.whl" , hash = "sha256:780eb6383fbae12afa819ef676fc93e1548ae4b076c004a393af26a04b460742" } ,
{ file = "jq-1.6.0-cp38-cp38-macosx_10_9_x86_64.whl" , hash = "sha256:08ded6467f4ef89fec35b2bf310f210f8cd13fbd9d80e521500889edf8d22441" } ,
{ file = "jq-1.6.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:984f33862af285ad3e41e23179ac4795f1701822473e1a26bf87ff023e5a89ea" } ,
{ file = "jq-1.6.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:f42264fafc6166efb5611b5d4cb01058887d050a6c19334f6a3f8a13bb369df5" } ,
{ file = "jq-1.6.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:a67154f150aaf76cc1294032ed588436eb002097dd4fd1e283824bf753a05080" } ,
{ file = "jq-1.6.0-cp38-cp38-musllinux_1_1_aarch64.whl" , hash = "sha256:1b3b95d5fd20e51f18a42647fdb52e5d8aaf150b7a666dd659cf282a2221ee3f" } ,
{ file = "jq-1.6.0-cp38-cp38-musllinux_1_1_i686.whl" , hash = "sha256:3a8d98f72111043e75610cad7fa9ec5aec0b1ee2f7332dc7fd0f6603ea8144f8" } ,
{ file = "jq-1.6.0-cp38-cp38-musllinux_1_1_x86_64.whl" , hash = "sha256:487483f10ae8f70e6acf7723f31b329736de4b421ce56b2f43b46d5cbd7337b0" } ,
{ file = "jq-1.6.0-cp39-cp39-macosx_10_9_x86_64.whl" , hash = "sha256:18a700f55b7ef83a1382edf0a48cb176b22bacd155e097375ef2345ff8621d97" } ,
{ file = "jq-1.6.0-cp39-cp39-macosx_11_0_arm64.whl" , hash = "sha256:68aec8534ac3c4705e524b4ef54f66b8bdc867df9e0af2c3895e82c6774b5374" } ,
{ file = "jq-1.6.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:b7a164748dbd03bb06d23bab7ead7ba7e5c4fcfebea7b082bdcd21d14136931e" } ,
{ file = "jq-1.6.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:aa22d24740276a8ce82411e4960ed2b5fab476230f913f9d9cf726f766a22208" } ,
{ file = "jq-1.6.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:4c1a6fae1b74b3e0478e281eb6addedad7b32421221ac685e21c1d49af5e997f" } ,
{ file = "jq-1.6.0-cp39-cp39-musllinux_1_1_aarch64.whl" , hash = "sha256:ce628546c22792b8870b9815086f65873ebb78d7bf617b5a16dd839adba36538" } ,
{ file = "jq-1.6.0-cp39-cp39-musllinux_1_1_i686.whl" , hash = "sha256:7bb685f337cf5d4f4fe210c46220e31a7baec02a0ca0df3ace3dd4780328fc30" } ,
{ file = "jq-1.6.0-cp39-cp39-musllinux_1_1_x86_64.whl" , hash = "sha256:bdbbc509a35ee6082d79c1f25eb97c08f1c59043d21e0772cd24baa909505899" } ,
{ file = "jq-1.6.0-pp310-pypy310_pp73-macosx_10_9_x86_64.whl" , hash = "sha256:1b332dfdf0d81fb7faf3d12aabf997565d7544bec9812e0ac5ee55e60ef4df8c" } ,
{ file = "jq-1.6.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl" , hash = "sha256:3a4f6ef8c0bd19beae56074c50026665d66345d1908f050e5c442ceac2efe398" } ,
{ file = "jq-1.6.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:5184c2fcca40f8f2ab1b14662721accf68b4b5e772e2f5336fec24aa58fe235a" } ,
{ file = "jq-1.6.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:689429fe1e07a2d6041daba2c21ced3a24895b2745326deb0c90ccab9386e116" } ,
{ file = "jq-1.6.0-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:8405d1c996c83711570f16aac32e3bf2c116d6fa4254a820276b87aed544d7e8" } ,
{ file = "jq-1.6.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl" , hash = "sha256:138d56c7efc8bb162c1cfc3806bd6b4d779115943af36c9e3b8ca644dde856c2" } ,
{ file = "jq-1.6.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:fd28f8395687e45bba56dc771284ebb6492b02037f74f450176c102f3f4e86a3" } ,
{ file = "jq-1.6.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:b2c783288bf10e67aad321b58735e663f4975d7ddfbfb0a5bca8428eee283bde" } ,
{ file = "jq-1.6.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:206391ac5b2eb556720b94f0f131558cbf8d82d8cc7e0404e733eeef48bcd823" } ,
{ file = "jq-1.6.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl" , hash = "sha256:35090fea1283402abc3a13b43261468162199d8b5dcdaba2d1029e557ed23070" } ,
{ file = "jq-1.6.0-pp38-pypy38_pp73-macosx_11_0_arm64.whl" , hash = "sha256:201c6384603aec87a744ad7b393cc4f1c58ece23d6e0a6c216a47bfcc405d231" } ,
{ file = "jq-1.6.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:a3d8b075351c29653f29a1fec5d31bc88aa198a0843c0a9550b9be74d8fab33b" } ,
{ file = "jq-1.6.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:132e41f6e988c42b91c04b1b60dd8fa185a5c0681de5438ea1e6c64f5329768c" } ,
{ file = "jq-1.6.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:e1cb4751808b1d0dbddd37319e0c574fb0c3a29910d52ba35890b1343a1f1e59" } ,
{ file = "jq-1.6.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl" , hash = "sha256:bd158911ed5f5c644f557ad94d6424c411560632a885eae47d105f290f0109cb" } ,
{ file = "jq-1.6.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl" , hash = "sha256:64bc09ae6a9d9b82b78e15d142f90b816228bd3ee48833ddca3ff8c08e163fa7" } ,
{ file = "jq-1.6.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:f4eed167322662f4b7e65235723c54aa6879f6175b6f9b68bc24887549637ffb" } ,
{ file = "jq-1.6.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:64bb4b305e2fabe5b5161b599bf934aceb0e0e7d3dd8f79246737ea91a2bc9ae" } ,
{ file = "jq-1.6.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:165bfbe29bf73878d073edf75f384b7da8a9657ba0ab9fb1e5fe6be65ab7debb" } ,
{ file = "jq-1.6.0.tar.gz" , hash = "sha256:c7711f0c913a826a00990736efa6ffc285f8ef433414516bb14b7df971d6c1ea" } ,
]
2023-12-11 21:53:30 +00:00
[ [ package ] ]
name = "json5"
2024-03-08 02:20:47 +00:00
version = "0.9.22"
2023-12-11 21:53:30 +00:00
description = "A Python implementation of the JSON5 data format."
optional = false
2024-03-08 02:20:47 +00:00
python-versions = ">=3.8"
2023-12-11 21:53:30 +00:00
files = [
2024-03-08 02:20:47 +00:00
{ file = "json5-0.9.22-py3-none-any.whl" , hash = "sha256:6621007c70897652f8b5d03885f732771c48d1925591ad989aa80c7e0e5ad32f" } ,
{ file = "json5-0.9.22.tar.gz" , hash = "sha256:b729bde7650b2196a35903a597d2b704b8fdf8648bfb67368cfb79f1174a17bd" } ,
2023-12-11 21:53:30 +00:00
]
[ package . extras ]
dev = [ "hypothesis" ]
2024-03-15 17:10:47 +00:00
[ [ package ] ]
name = "jsonable"
version = "0.3.1"
description = "An abstract class that supports jsonserialization/deserialization."
optional = true
python-versions = "*"
files = [
{ file = "jsonable-0.3.1-py2.py3-none-any.whl" , hash = "sha256:f7754dd27b4734e42e7f8a61c2336bc98082f715e31e29a061a95843b102dc3a" } ,
{ file = "jsonable-0.3.1.tar.gz" , hash = "sha256:137b676e8e5819fa58518678c3d1f5463cab7e8466f69b3641cbc438042eaee4" } ,
]
2023-12-11 21:53:30 +00:00
[ [ package ] ]
name = "jsonpatch"
version = "1.33"
description = "Apply JSON-Patches (RFC 6902)"
optional = false
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*, !=3.5.*, !=3.6.*"
files = [
{ file = "jsonpatch-1.33-py2.py3-none-any.whl" , hash = "sha256:0ae28c0cd062bbd8b8ecc26d7d164fbbea9652a1a3693f3b956c1eae5145dade" } ,
{ file = "jsonpatch-1.33.tar.gz" , hash = "sha256:9fcd4009c41e6d12348b4a0ff2563ba56a2923a7dfee731d004e212e1ee5030c" } ,
]
[ package . dependencies ]
jsonpointer = ">=1.9"
[ [ package ] ]
name = "jsonpointer"
version = "2.4"
description = "Identify specific nodes in a JSON document (RFC 6901)"
optional = false
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*, !=3.5.*, !=3.6.*"
files = [
{ file = "jsonpointer-2.4-py2.py3-none-any.whl" , hash = "sha256:15d51bba20eea3165644553647711d150376234112651b4f1811022aecad7d7a" } ,
2024-02-19 19:13:33 +00:00
{ file = "jsonpointer-2.4.tar.gz" , hash = "sha256:585cee82b70211fa9e6043b7bb89db6e1aa49524340dde8ad6b63206ea689d88" } ,
2023-12-11 21:53:30 +00:00
]
[ [ package ] ]
name = "jsonschema"
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
version = "4.21.1"
2023-12-11 21:53:30 +00:00
description = "An implementation of JSON Schema validation for Python"
optional = false
python-versions = ">=3.8"
files = [
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
{ file = "jsonschema-4.21.1-py3-none-any.whl" , hash = "sha256:7996507afae316306f9e2290407761157c6f78002dcf7419acb99822143d1c6f" } ,
{ file = "jsonschema-4.21.1.tar.gz" , hash = "sha256:85727c00279f5fa6bedbe6238d2aa6403bedd8b4864ab11207d07df3cc1b2ee5" } ,
2023-12-11 21:53:30 +00:00
]
[ package . dependencies ]
attrs = ">=22.2.0"
fqdn = { version = "*" , optional = true , markers = "extra == \"format-nongpl\"" }
idna = { version = "*" , optional = true , markers = "extra == \"format-nongpl\"" }
importlib-resources = { version = ">=1.4.0" , markers = "python_version < \"3.9\"" }
isoduration = { version = "*" , optional = true , markers = "extra == \"format-nongpl\"" }
jsonpointer = { version = ">1.13" , optional = true , markers = "extra == \"format-nongpl\"" }
jsonschema-specifications = ">=2023.03.6"
pkgutil-resolve-name = { version = ">=1.3.10" , markers = "python_version < \"3.9\"" }
referencing = ">=0.28.4"
rfc3339-validator = { version = "*" , optional = true , markers = "extra == \"format-nongpl\"" }
rfc3986-validator = { version = ">0.1.0" , optional = true , markers = "extra == \"format-nongpl\"" }
rpds-py = ">=0.7.1"
uri-template = { version = "*" , optional = true , markers = "extra == \"format-nongpl\"" }
webcolors = { version = ">=1.11" , optional = true , markers = "extra == \"format-nongpl\"" }
[ package . extras ]
format = [ "fqdn" , "idna" , "isoduration" , "jsonpointer (>1.13)" , "rfc3339-validator" , "rfc3987" , "uri-template" , "webcolors (>=1.11)" ]
format-nongpl = [ "fqdn" , "idna" , "isoduration" , "jsonpointer (>1.13)" , "rfc3339-validator" , "rfc3986-validator (>0.1.0)" , "uri-template" , "webcolors (>=1.11)" ]
[ [ package ] ]
name = "jsonschema-specifications"
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
version = "2023.12.1"
2023-12-11 21:53:30 +00:00
description = "The JSON Schema meta-schemas and vocabularies, exposed as a Registry"
optional = false
python-versions = ">=3.8"
files = [
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
{ file = "jsonschema_specifications-2023.12.1-py3-none-any.whl" , hash = "sha256:87e4fdf3a94858b8a2ba2778d9ba57d8a9cafca7c7489c46ba0d30a8bc6a9c3c" } ,
{ file = "jsonschema_specifications-2023.12.1.tar.gz" , hash = "sha256:48a76787b3e70f5ed53f1160d2b81f586e4ca6d1548c5de7085d1682674764cc" } ,
2023-12-11 21:53:30 +00:00
]
[ package . dependencies ]
importlib-resources = { version = ">=1.4.0" , markers = "python_version < \"3.9\"" }
referencing = ">=0.31.0"
[ [ package ] ]
name = "jupyter"
version = "1.0.0"
description = "Jupyter metapackage. Install all the Jupyter components in one go."
optional = false
python-versions = "*"
files = [
{ file = "jupyter-1.0.0-py2.py3-none-any.whl" , hash = "sha256:5b290f93b98ffbc21c0c7e749f054b3267782166d72fa5e3ed1ed4eaf34a2b78" } ,
{ file = "jupyter-1.0.0.tar.gz" , hash = "sha256:d9dc4b3318f310e34c82951ea5d6683f67bed7def4b259fafbfe4f1beb1d8e5f" } ,
{ file = "jupyter-1.0.0.zip" , hash = "sha256:3e1f86076bbb7c8c207829390305a2b1fe836d471ed54be66a3b8c41e7f46cc7" } ,
]
[ package . dependencies ]
ipykernel = "*"
ipywidgets = "*"
jupyter-console = "*"
nbconvert = "*"
notebook = "*"
qtconsole = "*"
[ [ package ] ]
name = "jupyter-client"
2024-03-12 21:55:29 +00:00
version = "8.6.1"
2023-12-11 21:53:30 +00:00
description = "Jupyter protocol implementation and client libraries"
optional = false
python-versions = ">=3.8"
files = [
2024-03-12 21:55:29 +00:00
{ file = "jupyter_client-8.6.1-py3-none-any.whl" , hash = "sha256:3b7bd22f058434e3b9a7ea4b1500ed47de2713872288c0d511d19926f99b459f" } ,
{ file = "jupyter_client-8.6.1.tar.gz" , hash = "sha256:e842515e2bab8e19186d89fdfea7abd15e39dd581f94e399f00e2af5a1652d3f" } ,
2023-12-11 21:53:30 +00:00
]
[ package . dependencies ]
importlib-metadata = { version = ">=4.8.3" , markers = "python_version < \"3.10\"" }
jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0"
python-dateutil = ">=2.8.2"
pyzmq = ">=23.0"
tornado = ">=6.2"
traitlets = ">=5.3"
[ package . extras ]
docs = [ "ipykernel" , "myst-parser" , "pydata-sphinx-theme" , "sphinx (>=4)" , "sphinx-autodoc-typehints" , "sphinxcontrib-github-alt" , "sphinxcontrib-spelling" ]
test = [ "coverage" , "ipykernel (>=6.14)" , "mypy" , "paramiko" , "pre-commit" , "pytest" , "pytest-cov" , "pytest-jupyter[client] (>=0.4.1)" , "pytest-timeout" ]
[ [ package ] ]
name = "jupyter-console"
version = "6.6.3"
description = "Jupyter terminal console"
optional = false
python-versions = ">=3.7"
files = [
{ file = "jupyter_console-6.6.3-py3-none-any.whl" , hash = "sha256:309d33409fcc92ffdad25f0bcdf9a4a9daa61b6f341177570fdac03de5352485" } ,
{ file = "jupyter_console-6.6.3.tar.gz" , hash = "sha256:566a4bf31c87adbfadf22cdf846e3069b59a71ed5da71d6ba4d8aaad14a53539" } ,
]
[ package . dependencies ]
ipykernel = ">=6.14"
ipython = "*"
jupyter-client = ">=7.0.0"
jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0"
prompt-toolkit = ">=3.0.30"
pygments = "*"
pyzmq = ">=17"
traitlets = ">=5.4"
[ package . extras ]
test = [ "flaky" , "pexpect" , "pytest" ]
[ [ package ] ]
name = "jupyter-core"
2024-03-12 21:55:29 +00:00
version = "5.7.2"
2023-12-11 21:53:30 +00:00
description = "Jupyter core package. A base package on which Jupyter projects rely."
optional = false
python-versions = ">=3.8"
files = [
2024-03-12 21:55:29 +00:00
{ file = "jupyter_core-5.7.2-py3-none-any.whl" , hash = "sha256:4f7315d2f6b4bcf2e3e7cb6e46772eba760ae459cd1f59d29eb57b0a01bd7409" } ,
{ file = "jupyter_core-5.7.2.tar.gz" , hash = "sha256:aa5f8d32bbf6b431ac830496da7392035d6f61b4f54872f15c4bd2a9c3f536d9" } ,
2023-12-11 21:53:30 +00:00
]
[ package . dependencies ]
platformdirs = ">=2.5"
pywin32 = { version = ">=300" , markers = "sys_platform == \"win32\" and platform_python_implementation != \"PyPy\"" }
traitlets = ">=5.3"
[ package . extras ]
docs = [ "myst-parser" , "pydata-sphinx-theme" , "sphinx-autodoc-typehints" , "sphinxcontrib-github-alt" , "sphinxcontrib-spelling" , "traitlets" ]
2024-03-12 21:55:29 +00:00
test = [ "ipykernel" , "pre-commit" , "pytest (<8)" , "pytest-cov" , "pytest-timeout" ]
2023-12-11 21:53:30 +00:00
[ [ package ] ]
name = "jupyter-events"
2024-03-12 21:55:29 +00:00
version = "0.9.1"
2023-12-11 21:53:30 +00:00
description = "Jupyter Event System library"
optional = false
python-versions = ">=3.8"
files = [
2024-03-12 21:55:29 +00:00
{ file = "jupyter_events-0.9.1-py3-none-any.whl" , hash = "sha256:e51f43d2c25c2ddf02d7f7a5045f71fc1d5cb5ad04ef6db20da961c077654b9b" } ,
{ file = "jupyter_events-0.9.1.tar.gz" , hash = "sha256:a52e86f59eb317ee71ff2d7500c94b963b8a24f0b7a1517e2e653e24258e15c7" } ,
2023-12-11 21:53:30 +00:00
]
[ package . dependencies ]
jsonschema = { version = ">=4.18.0" , extras = [ "format-nongpl" ] }
python-json-logger = ">=2.0.4"
pyyaml = ">=5.3"
referencing = "*"
rfc3339-validator = "*"
rfc3986-validator = ">=0.1.1"
traitlets = ">=5.3"
[ package . extras ]
cli = [ "click" , "rich" ]
docs = [ "jupyterlite-sphinx" , "myst-parser" , "pydata-sphinx-theme" , "sphinxcontrib-spelling" ]
test = [ "click" , "pre-commit" , "pytest (>=7.0)" , "pytest-asyncio (>=0.19.0)" , "pytest-console-scripts" , "rich" ]
[ [ package ] ]
name = "jupyter-lsp"
2024-03-08 02:20:47 +00:00
version = "2.2.4"
2023-12-11 21:53:30 +00:00
description = "Multi-Language Server WebSocket proxy for Jupyter Notebook/Lab server"
optional = false
python-versions = ">=3.8"
files = [
2024-03-08 02:20:47 +00:00
{ file = "jupyter-lsp-2.2.4.tar.gz" , hash = "sha256:5e50033149344065348e688608f3c6d654ef06d9856b67655bd7b6bac9ee2d59" } ,
{ file = "jupyter_lsp-2.2.4-py3-none-any.whl" , hash = "sha256:da61cb63a16b6dff5eac55c2699cc36eac975645adee02c41bdfc03bf4802e77" } ,
2023-12-11 21:53:30 +00:00
]
[ package . dependencies ]
importlib-metadata = { version = ">=4.8.3" , markers = "python_version < \"3.10\"" }
jupyter-server = ">=1.1.2"
[ [ package ] ]
name = "jupyter-server"
2024-03-08 02:20:47 +00:00
version = "2.13.0"
2023-12-11 21:53:30 +00:00
description = "The backend—i.e. core services, APIs, and REST endpoints—to Jupyter web applications."
optional = false
python-versions = ">=3.8"
files = [
2024-03-08 02:20:47 +00:00
{ file = "jupyter_server-2.13.0-py3-none-any.whl" , hash = "sha256:77b2b49c3831fbbfbdb5048cef4350d12946191f833a24e5f83e5f8f4803e97b" } ,
{ file = "jupyter_server-2.13.0.tar.gz" , hash = "sha256:c80bfb049ea20053c3d9641c2add4848b38073bf79f1729cea1faed32fc1c78e" } ,
2023-12-11 21:53:30 +00:00
]
[ package . dependencies ]
anyio = ">=3.1.0"
argon2-cffi = "*"
jinja2 = "*"
jupyter-client = ">=7.4.4"
jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0"
jupyter-events = ">=0.9.0"
jupyter-server-terminals = "*"
nbconvert = ">=6.4.4"
nbformat = ">=5.3.0"
overrides = "*"
packaging = "*"
prometheus-client = "*"
pywinpty = { version = "*" , markers = "os_name == \"nt\"" }
pyzmq = ">=24"
send2trash = ">=1.8.2"
terminado = ">=0.8.3"
tornado = ">=6.2.0"
traitlets = ">=5.6.0"
websocket-client = "*"
[ package . extras ]
docs = [ "ipykernel" , "jinja2" , "jupyter-client" , "jupyter-server" , "myst-parser" , "nbformat" , "prometheus-client" , "pydata-sphinx-theme" , "send2trash" , "sphinx-autodoc-typehints" , "sphinxcontrib-github-alt" , "sphinxcontrib-openapi (>=0.8.0)" , "sphinxcontrib-spelling" , "sphinxemoji" , "tornado" , "typing-extensions" ]
2024-03-08 02:20:47 +00:00
test = [ "flaky" , "ipykernel" , "pre-commit" , "pytest (>=7.0)" , "pytest-console-scripts" , "pytest-jupyter[server] (>=0.7)" , "pytest-timeout" , "requests" ]
2023-12-11 21:53:30 +00:00
[ [ package ] ]
name = "jupyter-server-terminals"
2024-03-12 21:55:29 +00:00
version = "0.5.3"
2023-12-11 21:53:30 +00:00
description = "A Jupyter Server Extension Providing Terminals."
optional = false
python-versions = ">=3.8"
files = [
2024-03-12 21:55:29 +00:00
{ file = "jupyter_server_terminals-0.5.3-py3-none-any.whl" , hash = "sha256:41ee0d7dc0ebf2809c668e0fc726dfaf258fcd3e769568996ca731b6194ae9aa" } ,
{ file = "jupyter_server_terminals-0.5.3.tar.gz" , hash = "sha256:5ae0295167220e9ace0edcfdb212afd2b01ee8d179fe6f23c899590e9b8a5269" } ,
2023-12-11 21:53:30 +00:00
]
[ package . dependencies ]
pywinpty = { version = ">=2.0.3" , markers = "os_name == \"nt\"" }
terminado = ">=0.8.3"
[ package . extras ]
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
docs = [ "jinja2" , "jupyter-server" , "mistune (<4.0)" , "myst-parser" , "nbformat" , "packaging" , "pydata-sphinx-theme" , "sphinxcontrib-github-alt" , "sphinxcontrib-openapi" , "sphinxcontrib-spelling" , "sphinxemoji" , "tornado" ]
test = [ "jupyter-server (>=2.0.0)" , "pytest (>=7.0)" , "pytest-jupyter[server] (>=0.5.3)" , "pytest-timeout" ]
2023-12-11 21:53:30 +00:00
[ [ package ] ]
name = "jupyterlab"
2024-03-15 17:10:47 +00:00
version = "4.0.13"
2023-12-11 21:53:30 +00:00
description = "JupyterLab computational environment"
optional = false
python-versions = ">=3.8"
files = [
2024-03-15 17:10:47 +00:00
{ file = "jupyterlab-4.0.13-py3-none-any.whl" , hash = "sha256:3aa81c364d50cc715f6c2935674c7cca8936bd74b5898d6ad6598aef08c43808" } ,
{ file = "jupyterlab-4.0.13.tar.gz" , hash = "sha256:e8950f94e0d8ab8aa7d8166b19db27f4d4fea5000ee04ba372c50116e98fb733" } ,
2023-12-11 21:53:30 +00:00
]
[ package . dependencies ]
async-lru = ">=1.0.0"
importlib-metadata = { version = ">=4.8.3" , markers = "python_version < \"3.10\"" }
importlib-resources = { version = ">=1.4" , markers = "python_version < \"3.9\"" }
ipykernel = "*"
jinja2 = ">=3.0.3"
jupyter-core = "*"
jupyter-lsp = ">=2.0.0"
jupyter-server = ">=2.4.0,<3"
jupyterlab-server = ">=2.19.0,<3"
notebook-shim = ">=0.2"
packaging = "*"
tomli = { version = "*" , markers = "python_version < \"3.11\"" }
tornado = ">=6.2.0"
traitlets = "*"
[ package . extras ]
2024-03-08 02:20:47 +00:00
dev = [ "build" , "bump2version" , "coverage" , "hatch" , "pre-commit" , "pytest-cov" , "ruff (==0.2.0)" ]
2024-03-15 17:10:47 +00:00
docs = [ "jsx-lexer" , "myst-parser" , "pydata-sphinx-theme (>=0.13.0)" , "pytest" , "pytest-check-links" , "pytest-tornasync" , "sphinx (>=1.8,<7.2.0)" , "sphinx-copybutton" ]
docs-screenshots = [ "altair (==5.0.1)" , "ipython (==8.14.0)" , "ipywidgets (==8.0.6)" , "jupyterlab-geojson (==3.4.0)" , "jupyterlab-language-pack-zh-cn (==4.0.post0)" , "matplotlib (==3.7.1)" , "nbconvert (>=7.0.0)" , "pandas (==2.2.0)" , "scipy (==1.12.0)" , "vega-datasets (==0.9.0)" ]
2023-12-11 21:53:30 +00:00
test = [ "coverage" , "pytest (>=7.0)" , "pytest-check-links (>=0.7)" , "pytest-console-scripts" , "pytest-cov" , "pytest-jupyter (>=0.5.3)" , "pytest-timeout" , "pytest-tornasync" , "requests" , "requests-cache" , "virtualenv" ]
[ [ package ] ]
name = "jupyterlab-pygments"
version = "0.3.0"
description = "Pygments theme using JupyterLab CSS variables"
optional = false
python-versions = ">=3.8"
files = [
{ file = "jupyterlab_pygments-0.3.0-py3-none-any.whl" , hash = "sha256:841a89020971da1d8693f1a99997aefc5dc424bb1b251fd6322462a1b8842780" } ,
{ file = "jupyterlab_pygments-0.3.0.tar.gz" , hash = "sha256:721aca4d9029252b11cfa9d185e5b5af4d54772bb8072f9b7036f4170054d35d" } ,
]
[ [ package ] ]
name = "jupyterlab-server"
2024-03-12 21:55:29 +00:00
version = "2.25.4"
2023-12-11 21:53:30 +00:00
description = "A set of server components for JupyterLab and JupyterLab like applications."
optional = false
python-versions = ">=3.8"
files = [
2024-03-12 21:55:29 +00:00
{ file = "jupyterlab_server-2.25.4-py3-none-any.whl" , hash = "sha256:eb645ecc8f9b24bac5decc7803b6d5363250e16ec5af814e516bc2c54dd88081" } ,
{ file = "jupyterlab_server-2.25.4.tar.gz" , hash = "sha256:2098198e1e82e0db982440f9b5136175d73bea2cd42a6480aa6fd502cb23c4f9" } ,
2023-12-11 21:53:30 +00:00
]
[ package . dependencies ]
babel = ">=2.10"
importlib-metadata = { version = ">=4.8.3" , markers = "python_version < \"3.10\"" }
jinja2 = ">=3.0.3"
json5 = ">=0.9.0"
jsonschema = ">=4.18.0"
jupyter-server = ">=1.21,<3"
packaging = ">=21.3"
requests = ">=2.31"
[ package . extras ]
docs = [ "autodoc-traits" , "jinja2 (<3.2.0)" , "mistune (<4)" , "myst-parser" , "pydata-sphinx-theme" , "sphinx" , "sphinx-copybutton" , "sphinxcontrib-openapi (>0.8)" ]
openapi = [ "openapi-core (>=0.18.0,<0.19.0)" , "ruamel-yaml" ]
2024-03-12 21:55:29 +00:00
test = [ "hatch" , "ipykernel" , "openapi-core (>=0.18.0,<0.19.0)" , "openapi-spec-validator (>=0.6.0,<0.8.0)" , "pytest (>=7.0,<8)" , "pytest-console-scripts" , "pytest-cov" , "pytest-jupyter[server] (>=0.6.2)" , "pytest-timeout" , "requests-mock" , "ruamel-yaml" , "sphinxcontrib-spelling" , "strict-rfc3339" , "werkzeug" ]
2023-12-11 21:53:30 +00:00
[ [ package ] ]
name = "jupyterlab-widgets"
2024-03-08 02:20:47 +00:00
version = "3.0.10"
2023-12-11 21:53:30 +00:00
description = "Jupyter interactive widgets for JupyterLab"
optional = false
python-versions = ">=3.7"
files = [
2024-03-08 02:20:47 +00:00
{ file = "jupyterlab_widgets-3.0.10-py3-none-any.whl" , hash = "sha256:dd61f3ae7a5a7f80299e14585ce6cf3d6925a96c9103c978eda293197730cb64" } ,
{ file = "jupyterlab_widgets-3.0.10.tar.gz" , hash = "sha256:04f2ac04976727e4f9d0fa91cdc2f1ab860f965e504c29dbd6a65c882c9d04c0" } ,
2023-12-11 21:53:30 +00:00
]
2024-03-15 17:10:47 +00:00
[ [ package ] ]
name = "kiwisolver"
version = "1.4.5"
description = "A fast implementation of the Cassowary constraint solver"
optional = true
python-versions = ">=3.7"
files = [
{ file = "kiwisolver-1.4.5-cp310-cp310-macosx_10_9_universal2.whl" , hash = "sha256:05703cf211d585109fcd72207a31bb170a0f22144d68298dc5e61b3c946518af" } ,
{ file = "kiwisolver-1.4.5-cp310-cp310-macosx_10_9_x86_64.whl" , hash = "sha256:146d14bebb7f1dc4d5fbf74f8a6cb15ac42baadee8912eb84ac0b3b2a3dc6ac3" } ,
{ file = "kiwisolver-1.4.5-cp310-cp310-macosx_11_0_arm64.whl" , hash = "sha256:6ef7afcd2d281494c0a9101d5c571970708ad911d028137cd558f02b851c08b4" } ,
{ file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl" , hash = "sha256:9eaa8b117dc8337728e834b9c6e2611f10c79e38f65157c4c38e9400286f5cb1" } ,
{ file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl" , hash = "sha256:ec20916e7b4cbfb1f12380e46486ec4bcbaa91a9c448b97023fde0d5bbf9e4ff" } ,
{ file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:39b42c68602539407884cf70d6a480a469b93b81b7701378ba5e2328660c847a" } ,
{ file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:aa12042de0171fad672b6c59df69106d20d5596e4f87b5e8f76df757a7c399aa" } ,
{ file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:2a40773c71d7ccdd3798f6489aaac9eee213d566850a9533f8d26332d626b82c" } ,
{ file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_aarch64.whl" , hash = "sha256:19df6e621f6d8b4b9c4d45f40a66839294ff2bb235e64d2178f7522d9170ac5b" } ,
{ file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_i686.whl" , hash = "sha256:83d78376d0d4fd884e2c114d0621624b73d2aba4e2788182d286309ebdeed770" } ,
{ file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_ppc64le.whl" , hash = "sha256:e391b1f0a8a5a10ab3b9bb6afcfd74f2175f24f8975fb87ecae700d1503cdee0" } ,
{ file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_s390x.whl" , hash = "sha256:852542f9481f4a62dbb5dd99e8ab7aedfeb8fb6342349a181d4036877410f525" } ,
{ file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_x86_64.whl" , hash = "sha256:59edc41b24031bc25108e210c0def6f6c2191210492a972d585a06ff246bb79b" } ,
{ file = "kiwisolver-1.4.5-cp310-cp310-win32.whl" , hash = "sha256:a6aa6315319a052b4ee378aa171959c898a6183f15c1e541821c5c59beaa0238" } ,
{ file = "kiwisolver-1.4.5-cp310-cp310-win_amd64.whl" , hash = "sha256:d0ef46024e6a3d79c01ff13801cb19d0cad7fd859b15037aec74315540acc276" } ,
{ file = "kiwisolver-1.4.5-cp311-cp311-macosx_10_9_universal2.whl" , hash = "sha256:11863aa14a51fd6ec28688d76f1735f8f69ab1fabf388851a595d0721af042f5" } ,
{ file = "kiwisolver-1.4.5-cp311-cp311-macosx_10_9_x86_64.whl" , hash = "sha256:8ab3919a9997ab7ef2fbbed0cc99bb28d3c13e6d4b1ad36e97e482558a91be90" } ,
{ file = "kiwisolver-1.4.5-cp311-cp311-macosx_11_0_arm64.whl" , hash = "sha256:fcc700eadbbccbf6bc1bcb9dbe0786b4b1cb91ca0dcda336eef5c2beed37b797" } ,
{ file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:dfdd7c0b105af050eb3d64997809dc21da247cf44e63dc73ff0fd20b96be55a9" } ,
{ file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:76c6a5964640638cdeaa0c359382e5703e9293030fe730018ca06bc2010c4437" } ,
{ file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:bbea0db94288e29afcc4c28afbf3a7ccaf2d7e027489c449cf7e8f83c6346eb9" } ,
{ file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:ceec1a6bc6cab1d6ff5d06592a91a692f90ec7505d6463a88a52cc0eb58545da" } ,
{ file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:040c1aebeda72197ef477a906782b5ab0d387642e93bda547336b8957c61022e" } ,
{ file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_aarch64.whl" , hash = "sha256:f91de7223d4c7b793867797bacd1ee53bfe7359bd70d27b7b58a04efbb9436c8" } ,
{ file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_i686.whl" , hash = "sha256:faae4860798c31530dd184046a900e652c95513796ef51a12bc086710c2eec4d" } ,
{ file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_ppc64le.whl" , hash = "sha256:b0157420efcb803e71d1b28e2c287518b8808b7cf1ab8af36718fd0a2c453eb0" } ,
{ file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_s390x.whl" , hash = "sha256:06f54715b7737c2fecdbf140d1afb11a33d59508a47bf11bb38ecf21dc9ab79f" } ,
{ file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_x86_64.whl" , hash = "sha256:fdb7adb641a0d13bdcd4ef48e062363d8a9ad4a182ac7647ec88f695e719ae9f" } ,
{ file = "kiwisolver-1.4.5-cp311-cp311-win32.whl" , hash = "sha256:bb86433b1cfe686da83ce32a9d3a8dd308e85c76b60896d58f082136f10bffac" } ,
{ file = "kiwisolver-1.4.5-cp311-cp311-win_amd64.whl" , hash = "sha256:6c08e1312a9cf1074d17b17728d3dfce2a5125b2d791527f33ffbe805200a355" } ,
{ file = "kiwisolver-1.4.5-cp312-cp312-macosx_10_9_universal2.whl" , hash = "sha256:32d5cf40c4f7c7b3ca500f8985eb3fb3a7dfc023215e876f207956b5ea26632a" } ,
{ file = "kiwisolver-1.4.5-cp312-cp312-macosx_10_9_x86_64.whl" , hash = "sha256:f846c260f483d1fd217fe5ed7c173fb109efa6b1fc8381c8b7552c5781756192" } ,
{ file = "kiwisolver-1.4.5-cp312-cp312-macosx_11_0_arm64.whl" , hash = "sha256:5ff5cf3571589b6d13bfbfd6bcd7a3f659e42f96b5fd1c4830c4cf21d4f5ef45" } ,
{ file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:7269d9e5f1084a653d575c7ec012ff57f0c042258bf5db0954bf551c158466e7" } ,
{ file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:da802a19d6e15dffe4b0c24b38b3af68e6c1a68e6e1d8f30148c83864f3881db" } ,
{ file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:3aba7311af82e335dd1e36ffff68aaca609ca6290c2cb6d821a39aa075d8e3ff" } ,
{ file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:763773d53f07244148ccac5b084da5adb90bfaee39c197554f01b286cf869228" } ,
{ file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:2270953c0d8cdab5d422bee7d2007f043473f9d2999631c86a223c9db56cbd16" } ,
{ file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_aarch64.whl" , hash = "sha256:d099e745a512f7e3bbe7249ca835f4d357c586d78d79ae8f1dcd4d8adeb9bda9" } ,
{ file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_i686.whl" , hash = "sha256:74db36e14a7d1ce0986fa104f7d5637aea5c82ca6326ed0ec5694280942d1162" } ,
{ file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_ppc64le.whl" , hash = "sha256:7e5bab140c309cb3a6ce373a9e71eb7e4873c70c2dda01df6820474f9889d6d4" } ,
{ file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_s390x.whl" , hash = "sha256:0f114aa76dc1b8f636d077979c0ac22e7cd8f3493abbab152f20eb8d3cda71f3" } ,
{ file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_x86_64.whl" , hash = "sha256:88a2df29d4724b9237fc0c6eaf2a1adae0cdc0b3e9f4d8e7dc54b16812d2d81a" } ,
{ file = "kiwisolver-1.4.5-cp312-cp312-win32.whl" , hash = "sha256:72d40b33e834371fd330fb1472ca19d9b8327acb79a5821d4008391db8e29f20" } ,
{ file = "kiwisolver-1.4.5-cp312-cp312-win_amd64.whl" , hash = "sha256:2c5674c4e74d939b9d91dda0fae10597ac7521768fec9e399c70a1f27e2ea2d9" } ,
{ file = "kiwisolver-1.4.5-cp37-cp37m-macosx_10_9_x86_64.whl" , hash = "sha256:3a2b053a0ab7a3960c98725cfb0bf5b48ba82f64ec95fe06f1d06c99b552e130" } ,
{ file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:3cd32d6c13807e5c66a7cbb79f90b553642f296ae4518a60d8d76243b0ad2898" } ,
{ file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:59ec7b7c7e1a61061850d53aaf8e93db63dce0c936db1fda2658b70e4a1be709" } ,
{ file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:da4cfb373035def307905d05041c1d06d8936452fe89d464743ae7fb8371078b" } ,
{ file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl" , hash = "sha256:2400873bccc260b6ae184b2b8a4fec0e4082d30648eadb7c3d9a13405d861e89" } ,
{ file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl" , hash = "sha256:1b04139c4236a0f3aff534479b58f6f849a8b351e1314826c2d230849ed48985" } ,
{ file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_aarch64.whl" , hash = "sha256:4e66e81a5779b65ac21764c295087de82235597a2293d18d943f8e9e32746265" } ,
{ file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_i686.whl" , hash = "sha256:7931d8f1f67c4be9ba1dd9c451fb0eeca1a25b89e4d3f89e828fe12a519b782a" } ,
{ file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_ppc64le.whl" , hash = "sha256:b3f7e75f3015df442238cca659f8baa5f42ce2a8582727981cbfa15fee0ee205" } ,
{ file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_s390x.whl" , hash = "sha256:bbf1d63eef84b2e8c89011b7f2235b1e0bf7dacc11cac9431fc6468e99ac77fb" } ,
{ file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_x86_64.whl" , hash = "sha256:4c380469bd3f970ef677bf2bcba2b6b0b4d5c75e7a020fb863ef75084efad66f" } ,
{ file = "kiwisolver-1.4.5-cp37-cp37m-win32.whl" , hash = "sha256:9408acf3270c4b6baad483865191e3e582b638b1654a007c62e3efe96f09a9a3" } ,
{ file = "kiwisolver-1.4.5-cp37-cp37m-win_amd64.whl" , hash = "sha256:5b94529f9b2591b7af5f3e0e730a4e0a41ea174af35a4fd067775f9bdfeee01a" } ,
{ file = "kiwisolver-1.4.5-cp38-cp38-macosx_10_9_universal2.whl" , hash = "sha256:11c7de8f692fc99816e8ac50d1d1aef4f75126eefc33ac79aac02c099fd3db71" } ,
{ file = "kiwisolver-1.4.5-cp38-cp38-macosx_10_9_x86_64.whl" , hash = "sha256:53abb58632235cd154176ced1ae8f0d29a6657aa1aa9decf50b899b755bc2b93" } ,
{ file = "kiwisolver-1.4.5-cp38-cp38-macosx_11_0_arm64.whl" , hash = "sha256:88b9f257ca61b838b6f8094a62418421f87ac2a1069f7e896c36a7d86b5d4c29" } ,
{ file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:3195782b26fc03aa9c6913d5bad5aeb864bdc372924c093b0f1cebad603dd712" } ,
{ file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:fc579bf0f502e54926519451b920e875f433aceb4624a3646b3252b5caa9e0b6" } ,
{ file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:5a580c91d686376f0f7c295357595c5a026e6cbc3d77b7c36e290201e7c11ecb" } ,
{ file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl" , hash = "sha256:cfe6ab8da05c01ba6fbea630377b5da2cd9bcbc6338510116b01c1bc939a2c18" } ,
{ file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl" , hash = "sha256:d2e5a98f0ec99beb3c10e13b387f8db39106d53993f498b295f0c914328b1333" } ,
{ file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_aarch64.whl" , hash = "sha256:a51a263952b1429e429ff236d2f5a21c5125437861baeed77f5e1cc2d2c7c6da" } ,
{ file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_i686.whl" , hash = "sha256:3edd2fa14e68c9be82c5b16689e8d63d89fe927e56debd6e1dbce7a26a17f81b" } ,
{ file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_ppc64le.whl" , hash = "sha256:74d1b44c6cfc897df648cc9fdaa09bc3e7679926e6f96df05775d4fb3946571c" } ,
{ file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_s390x.whl" , hash = "sha256:76d9289ed3f7501012e05abb8358bbb129149dbd173f1f57a1bf1c22d19ab7cc" } ,
{ file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_x86_64.whl" , hash = "sha256:92dea1ffe3714fa8eb6a314d2b3c773208d865a0e0d35e713ec54eea08a66250" } ,
{ file = "kiwisolver-1.4.5-cp38-cp38-win32.whl" , hash = "sha256:5c90ae8c8d32e472be041e76f9d2f2dbff4d0b0be8bd4041770eddb18cf49a4e" } ,
{ file = "kiwisolver-1.4.5-cp38-cp38-win_amd64.whl" , hash = "sha256:c7940c1dc63eb37a67721b10d703247552416f719c4188c54e04334321351ced" } ,
{ file = "kiwisolver-1.4.5-cp39-cp39-macosx_10_9_universal2.whl" , hash = "sha256:9407b6a5f0d675e8a827ad8742e1d6b49d9c1a1da5d952a67d50ef5f4170b18d" } ,
{ file = "kiwisolver-1.4.5-cp39-cp39-macosx_10_9_x86_64.whl" , hash = "sha256:15568384086b6df3c65353820a4473575dbad192e35010f622c6ce3eebd57af9" } ,
{ file = "kiwisolver-1.4.5-cp39-cp39-macosx_11_0_arm64.whl" , hash = "sha256:0dc9db8e79f0036e8173c466d21ef18e1befc02de8bf8aa8dc0813a6dc8a7046" } ,
{ file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl" , hash = "sha256:cdc8a402aaee9a798b50d8b827d7ecf75edc5fb35ea0f91f213ff927c15f4ff0" } ,
{ file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl" , hash = "sha256:6c3bd3cde54cafb87d74d8db50b909705c62b17c2099b8f2e25b461882e544ff" } ,
{ file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:955e8513d07a283056b1396e9a57ceddbd272d9252c14f154d450d227606eb54" } ,
{ file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:346f5343b9e3f00b8db8ba359350eb124b98c99efd0b408728ac6ebf38173958" } ,
{ file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:b9098e0049e88c6a24ff64545cdfc50807818ba6c1b739cae221bbbcbc58aad3" } ,
{ file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_aarch64.whl" , hash = "sha256:00bd361b903dc4bbf4eb165f24d1acbee754fce22ded24c3d56eec268658a5cf" } ,
{ file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_i686.whl" , hash = "sha256:7b8b454bac16428b22560d0a1cf0a09875339cab69df61d7805bf48919415901" } ,
{ file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_ppc64le.whl" , hash = "sha256:f1d072c2eb0ad60d4c183f3fb44ac6f73fb7a8f16a2694a91f988275cbf352f9" } ,
{ file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_s390x.whl" , hash = "sha256:31a82d498054cac9f6d0b53d02bb85811185bcb477d4b60144f915f3b3126342" } ,
{ file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_x86_64.whl" , hash = "sha256:6512cb89e334e4700febbffaaa52761b65b4f5a3cf33f960213d5656cea36a77" } ,
{ file = "kiwisolver-1.4.5-cp39-cp39-win32.whl" , hash = "sha256:9db8ea4c388fdb0f780fe91346fd438657ea602d58348753d9fb265ce1bca67f" } ,
{ file = "kiwisolver-1.4.5-cp39-cp39-win_amd64.whl" , hash = "sha256:59415f46a37f7f2efeec758353dd2eae1b07640d8ca0f0c42548ec4125492635" } ,
{ file = "kiwisolver-1.4.5-pp37-pypy37_pp73-macosx_10_9_x86_64.whl" , hash = "sha256:5c7b3b3a728dc6faf3fc372ef24f21d1e3cee2ac3e9596691d746e5a536de920" } ,
{ file = "kiwisolver-1.4.5-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl" , hash = "sha256:620ced262a86244e2be10a676b646f29c34537d0d9cc8eb26c08f53d98013390" } ,
{ file = "kiwisolver-1.4.5-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl" , hash = "sha256:378a214a1e3bbf5ac4a8708304318b4f890da88c9e6a07699c4ae7174c09a68d" } ,
{ file = "kiwisolver-1.4.5-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:aaf7be1207676ac608a50cd08f102f6742dbfc70e8d60c4db1c6897f62f71523" } ,
{ file = "kiwisolver-1.4.5-pp37-pypy37_pp73-win_amd64.whl" , hash = "sha256:ba55dce0a9b8ff59495ddd050a0225d58bd0983d09f87cfe2b6aec4f2c1234e4" } ,
{ file = "kiwisolver-1.4.5-pp38-pypy38_pp73-macosx_10_9_x86_64.whl" , hash = "sha256:fd32ea360bcbb92d28933fc05ed09bffcb1704ba3fc7942e81db0fd4f81a7892" } ,
{ file = "kiwisolver-1.4.5-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl" , hash = "sha256:5e7139af55d1688f8b960ee9ad5adafc4ac17c1c473fe07133ac092310d76544" } ,
{ file = "kiwisolver-1.4.5-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl" , hash = "sha256:dced8146011d2bc2e883f9bd68618b8247387f4bbec46d7392b3c3b032640126" } ,
{ file = "kiwisolver-1.4.5-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:c9bf3325c47b11b2e51bca0824ea217c7cd84491d8ac4eefd1e409705ef092bd" } ,
{ file = "kiwisolver-1.4.5-pp38-pypy38_pp73-win_amd64.whl" , hash = "sha256:5794cf59533bc3f1b1c821f7206a3617999db9fbefc345360aafe2e067514929" } ,
{ file = "kiwisolver-1.4.5-pp39-pypy39_pp73-macosx_10_9_x86_64.whl" , hash = "sha256:e368f200bbc2e4f905b8e71eb38b3c04333bddaa6a2464a6355487b02bb7fb09" } ,
{ file = "kiwisolver-1.4.5-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:e5d706eba36b4c4d5bc6c6377bb6568098765e990cfc21ee16d13963fab7b3e7" } ,
{ file = "kiwisolver-1.4.5-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:85267bd1aa8880a9c88a8cb71e18d3d64d2751a790e6ca6c27b8ccc724bcd5ad" } ,
{ file = "kiwisolver-1.4.5-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:210ef2c3a1f03272649aff1ef992df2e724748918c4bc2d5a90352849eb40bea" } ,
{ file = "kiwisolver-1.4.5-pp39-pypy39_pp73-win_amd64.whl" , hash = "sha256:11d011a7574eb3b82bcc9c1a1d35c1d7075677fdd15de527d91b46bd35e935ee" } ,
{ file = "kiwisolver-1.4.5.tar.gz" , hash = "sha256:e57e563a57fb22a142da34f38acc2fc1a5c864bc29ca1517a88abc963e60d6ec" } ,
]
2023-12-11 21:53:30 +00:00
[ [ package ] ]
name = "langchain-core"
2024-03-15 17:10:47 +00:00
version = "0.1.31"
2023-12-11 21:53:30 +00:00
description = "Building applications with LLMs through composability"
optional = false
python-versions = ">=3.8.1,<4.0"
files = [ ]
develop = true
[ package . dependencies ]
anyio = ">=3,<5"
jsonpatch = "^1.33"
2024-02-16 06:17:59 +00:00
langsmith = "^0.1.0"
2023-12-11 21:53:30 +00:00
packaging = "^23.2"
pydantic = ">=1,<3"
PyYAML = ">=5.3"
requests = "^2"
tenacity = "^8.1.0"
2024-03-15 17:10:47 +00:00
[ package . extras ]
extended-testing = [ "jinja2 (>=3,<4)" ]
2023-12-11 21:53:30 +00:00
[ package . source ]
type = "directory"
url = "../core"
2024-03-01 02:33:21 +00:00
[ [ package ] ]
name = "langchain-text-splitters"
version = "0.0.1"
description = "LangChain text splitting utilities"
optional = false
python-versions = ">=3.8.1,<4.0"
files = [ ]
develop = true
[ package . dependencies ]
langchain-core = "^0.1.28"
2024-03-15 17:10:47 +00:00
[ package . extras ]
extended-testing = [ "lxml (>=5.1.0,<6.0.0)" ]
2024-03-01 02:33:21 +00:00
[ package . source ]
type = "directory"
url = "../text-splitters"
2023-12-11 21:53:30 +00:00
[ [ package ] ]
name = "langsmith"
2024-03-15 17:10:47 +00:00
version = "0.1.23"
2023-12-11 21:53:30 +00:00
description = "Client library to connect to the LangSmith LLM Tracing and Evaluation Platform."
optional = false
python-versions = ">=3.8.1,<4.0"
files = [
2024-03-15 17:10:47 +00:00
{ file = "langsmith-0.1.23-py3-none-any.whl" , hash = "sha256:69984268b9867cb31b875965b3f86b6f56ba17dd5454d487d3a1a999bdaeea69" } ,
{ file = "langsmith-0.1.23.tar.gz" , hash = "sha256:327c66ec0de8c1bc57bfa47bbc70a29ef749e97c3e5571b9baf754d1e0644220" } ,
2023-12-11 21:53:30 +00:00
]
[ package . dependencies ]
2024-03-08 02:20:47 +00:00
orjson = ">=3.9.14,<4.0.0"
2023-12-11 21:53:30 +00:00
pydantic = ">=1,<3"
requests = ">=2,<3"
[ [ package ] ]
name = "lark"
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
version = "1.1.9"
2023-12-11 21:53:30 +00:00
description = "a modern parsing library"
optional = false
python-versions = ">=3.6"
files = [
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
{ file = "lark-1.1.9-py3-none-any.whl" , hash = "sha256:a0dd3a87289f8ccbb325901e4222e723e7d745dbfc1803eaf5f3d2ace19cf2db" } ,
{ file = "lark-1.1.9.tar.gz" , hash = "sha256:15fa5236490824c2c4aba0e22d2d6d823575dcaf4cdd1848e34b6ad836240fba" } ,
2023-12-11 21:53:30 +00:00
]
[ package . extras ]
atomic-cache = [ "atomicwrites" ]
interegular = [ "interegular (>=0.3.1,<0.4.0)" ]
nearley = [ "js2py" ]
regex = [ "regex" ]
2024-03-15 17:10:47 +00:00
[ [ package ] ]
name = "lxml"
version = "4.9.4"
description = "Powerful and Pythonic XML processing library combining libxml2/libxslt with the ElementTree API."
optional = true
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, != 3.4.*"
files = [
{ file = "lxml-4.9.4-cp27-cp27m-manylinux_2_5_i686.manylinux1_i686.whl" , hash = "sha256:e214025e23db238805a600f1f37bf9f9a15413c7bf5f9d6ae194f84980c78722" } ,
{ file = "lxml-4.9.4-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl" , hash = "sha256:ec53a09aee61d45e7dbe7e91252ff0491b6b5fee3d85b2d45b173d8ab453efc1" } ,
{ file = "lxml-4.9.4-cp27-cp27m-win32.whl" , hash = "sha256:7d1d6c9e74c70ddf524e3c09d9dc0522aba9370708c2cb58680ea40174800013" } ,
{ file = "lxml-4.9.4-cp27-cp27m-win_amd64.whl" , hash = "sha256:cb53669442895763e61df5c995f0e8361b61662f26c1b04ee82899c2789c8f69" } ,
{ file = "lxml-4.9.4-cp27-cp27mu-manylinux_2_5_i686.manylinux1_i686.whl" , hash = "sha256:647bfe88b1997d7ae8d45dabc7c868d8cb0c8412a6e730a7651050b8c7289cf2" } ,
{ file = "lxml-4.9.4-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl" , hash = "sha256:4d973729ce04784906a19108054e1fd476bc85279a403ea1a72fdb051c76fa48" } ,
{ file = "lxml-4.9.4-cp310-cp310-macosx_11_0_x86_64.whl" , hash = "sha256:056a17eaaf3da87a05523472ae84246f87ac2f29a53306466c22e60282e54ff8" } ,
{ file = "lxml-4.9.4-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_24_i686.whl" , hash = "sha256:aaa5c173a26960fe67daa69aa93d6d6a1cd714a6eb13802d4e4bd1d24a530644" } ,
{ file = "lxml-4.9.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl" , hash = "sha256:647459b23594f370c1c01768edaa0ba0959afc39caeeb793b43158bb9bb6a663" } ,
{ file = "lxml-4.9.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl" , hash = "sha256:bdd9abccd0927673cffe601d2c6cdad1c9321bf3437a2f507d6b037ef91ea307" } ,
{ file = "lxml-4.9.4-cp310-cp310-manylinux_2_28_x86_64.whl" , hash = "sha256:00e91573183ad273e242db5585b52670eddf92bacad095ce25c1e682da14ed91" } ,
{ file = "lxml-4.9.4-cp310-cp310-musllinux_1_1_aarch64.whl" , hash = "sha256:a602ed9bd2c7d85bd58592c28e101bd9ff9c718fbde06545a70945ffd5d11868" } ,
{ file = "lxml-4.9.4-cp310-cp310-musllinux_1_1_x86_64.whl" , hash = "sha256:de362ac8bc962408ad8fae28f3967ce1a262b5d63ab8cefb42662566737f1dc7" } ,
{ file = "lxml-4.9.4-cp310-cp310-win32.whl" , hash = "sha256:33714fcf5af4ff7e70a49731a7cc8fd9ce910b9ac194f66eaa18c3cc0a4c02be" } ,
{ file = "lxml-4.9.4-cp310-cp310-win_amd64.whl" , hash = "sha256:d3caa09e613ece43ac292fbed513a4bce170681a447d25ffcbc1b647d45a39c5" } ,
{ file = "lxml-4.9.4-cp311-cp311-macosx_11_0_universal2.whl" , hash = "sha256:359a8b09d712df27849e0bcb62c6a3404e780b274b0b7e4c39a88826d1926c28" } ,
{ file = "lxml-4.9.4-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_24_i686.whl" , hash = "sha256:43498ea734ccdfb92e1886dfedaebeb81178a241d39a79d5351ba2b671bff2b2" } ,
{ file = "lxml-4.9.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl" , hash = "sha256:4855161013dfb2b762e02b3f4d4a21cc7c6aec13c69e3bffbf5022b3e708dd97" } ,
{ file = "lxml-4.9.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl" , hash = "sha256:c71b5b860c5215fdbaa56f715bc218e45a98477f816b46cfde4a84d25b13274e" } ,
{ file = "lxml-4.9.4-cp311-cp311-manylinux_2_28_aarch64.whl" , hash = "sha256:9a2b5915c333e4364367140443b59f09feae42184459b913f0f41b9fed55794a" } ,
{ file = "lxml-4.9.4-cp311-cp311-manylinux_2_28_x86_64.whl" , hash = "sha256:d82411dbf4d3127b6cde7da0f9373e37ad3a43e89ef374965465928f01c2b979" } ,
{ file = "lxml-4.9.4-cp311-cp311-musllinux_1_1_aarch64.whl" , hash = "sha256:273473d34462ae6e97c0f4e517bd1bf9588aa67a1d47d93f760a1282640e24ac" } ,
{ file = "lxml-4.9.4-cp311-cp311-musllinux_1_1_x86_64.whl" , hash = "sha256:389d2b2e543b27962990ab529ac6720c3dded588cc6d0f6557eec153305a3622" } ,
{ file = "lxml-4.9.4-cp311-cp311-win32.whl" , hash = "sha256:8aecb5a7f6f7f8fe9cac0bcadd39efaca8bbf8d1bf242e9f175cbe4c925116c3" } ,
{ file = "lxml-4.9.4-cp311-cp311-win_amd64.whl" , hash = "sha256:c7721a3ef41591341388bb2265395ce522aba52f969d33dacd822da8f018aff8" } ,
{ file = "lxml-4.9.4-cp312-cp312-macosx_11_0_universal2.whl" , hash = "sha256:dbcb2dc07308453db428a95a4d03259bd8caea97d7f0776842299f2d00c72fc8" } ,
{ file = "lxml-4.9.4-cp312-cp312-manylinux_2_28_aarch64.whl" , hash = "sha256:01bf1df1db327e748dcb152d17389cf6d0a8c5d533ef9bab781e9d5037619229" } ,
{ file = "lxml-4.9.4-cp312-cp312-manylinux_2_28_x86_64.whl" , hash = "sha256:e8f9f93a23634cfafbad6e46ad7d09e0f4a25a2400e4a64b1b7b7c0fbaa06d9d" } ,
{ file = "lxml-4.9.4-cp312-cp312-musllinux_1_1_aarch64.whl" , hash = "sha256:3f3f00a9061605725df1816f5713d10cd94636347ed651abdbc75828df302b20" } ,
{ file = "lxml-4.9.4-cp312-cp312-musllinux_1_1_x86_64.whl" , hash = "sha256:953dd5481bd6252bd480d6ec431f61d7d87fdcbbb71b0d2bdcfc6ae00bb6fb10" } ,
{ file = "lxml-4.9.4-cp312-cp312-win32.whl" , hash = "sha256:266f655d1baff9c47b52f529b5f6bec33f66042f65f7c56adde3fcf2ed62ae8b" } ,
{ file = "lxml-4.9.4-cp312-cp312-win_amd64.whl" , hash = "sha256:f1faee2a831fe249e1bae9cbc68d3cd8a30f7e37851deee4d7962b17c410dd56" } ,
{ file = "lxml-4.9.4-cp35-cp35m-manylinux_2_5_i686.manylinux1_i686.whl" , hash = "sha256:23d891e5bdc12e2e506e7d225d6aa929e0a0368c9916c1fddefab88166e98b20" } ,
{ file = "lxml-4.9.4-cp35-cp35m-manylinux_2_5_x86_64.manylinux1_x86_64.whl" , hash = "sha256:e96a1788f24d03e8d61679f9881a883ecdf9c445a38f9ae3f3f193ab6c591c66" } ,
{ file = "lxml-4.9.4-cp36-cp36m-macosx_11_0_x86_64.whl" , hash = "sha256:5557461f83bb7cc718bc9ee1f7156d50e31747e5b38d79cf40f79ab1447afd2d" } ,
{ file = "lxml-4.9.4-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_24_i686.whl" , hash = "sha256:fdb325b7fba1e2c40b9b1db407f85642e32404131c08480dd652110fc908561b" } ,
{ file = "lxml-4.9.4-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:3d74d4a3c4b8f7a1f676cedf8e84bcc57705a6d7925e6daef7a1e54ae543a197" } ,
{ file = "lxml-4.9.4-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl" , hash = "sha256:ac7674d1638df129d9cb4503d20ffc3922bd463c865ef3cb412f2c926108e9a4" } ,
{ file = "lxml-4.9.4-cp36-cp36m-manylinux_2_28_x86_64.whl" , hash = "sha256:ddd92e18b783aeb86ad2132d84a4b795fc5ec612e3545c1b687e7747e66e2b53" } ,
{ file = "lxml-4.9.4-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.whl" , hash = "sha256:2bd9ac6e44f2db368ef8986f3989a4cad3de4cd55dbdda536e253000c801bcc7" } ,
{ file = "lxml-4.9.4-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl" , hash = "sha256:bc354b1393dce46026ab13075f77b30e40b61b1a53e852e99d3cc5dd1af4bc85" } ,
{ file = "lxml-4.9.4-cp36-cp36m-musllinux_1_1_aarch64.whl" , hash = "sha256:f836f39678cb47c9541f04d8ed4545719dc31ad850bf1832d6b4171e30d65d23" } ,
{ file = "lxml-4.9.4-cp36-cp36m-musllinux_1_1_x86_64.whl" , hash = "sha256:9c131447768ed7bc05a02553d939e7f0e807e533441901dd504e217b76307745" } ,
{ file = "lxml-4.9.4-cp36-cp36m-win32.whl" , hash = "sha256:bafa65e3acae612a7799ada439bd202403414ebe23f52e5b17f6ffc2eb98c2be" } ,
{ file = "lxml-4.9.4-cp36-cp36m-win_amd64.whl" , hash = "sha256:6197c3f3c0b960ad033b9b7d611db11285bb461fc6b802c1dd50d04ad715c225" } ,
{ file = "lxml-4.9.4-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_24_i686.whl" , hash = "sha256:7b378847a09d6bd46047f5f3599cdc64fcb4cc5a5a2dd0a2af610361fbe77b16" } ,
{ file = "lxml-4.9.4-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl" , hash = "sha256:1343df4e2e6e51182aad12162b23b0a4b3fd77f17527a78c53f0f23573663545" } ,
{ file = "lxml-4.9.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl" , hash = "sha256:6dbdacf5752fbd78ccdb434698230c4f0f95df7dd956d5f205b5ed6911a1367c" } ,
{ file = "lxml-4.9.4-cp37-cp37m-manylinux_2_28_x86_64.whl" , hash = "sha256:506becdf2ecaebaf7f7995f776394fcc8bd8a78022772de66677c84fb02dd33d" } ,
{ file = "lxml-4.9.4-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl" , hash = "sha256:ca8e44b5ba3edb682ea4e6185b49661fc22b230cf811b9c13963c9f982d1d964" } ,
{ file = "lxml-4.9.4-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl" , hash = "sha256:9d9d5726474cbbef279fd709008f91a49c4f758bec9c062dfbba88eab00e3ff9" } ,
{ file = "lxml-4.9.4-cp37-cp37m-musllinux_1_1_aarch64.whl" , hash = "sha256:bbdd69e20fe2943b51e2841fc1e6a3c1de460d630f65bde12452d8c97209464d" } ,
{ file = "lxml-4.9.4-cp37-cp37m-musllinux_1_1_x86_64.whl" , hash = "sha256:8671622256a0859f5089cbe0ce4693c2af407bc053dcc99aadff7f5310b4aa02" } ,
{ file = "lxml-4.9.4-cp37-cp37m-win32.whl" , hash = "sha256:dd4fda67f5faaef4f9ee5383435048ee3e11ad996901225ad7615bc92245bc8e" } ,
{ file = "lxml-4.9.4-cp37-cp37m-win_amd64.whl" , hash = "sha256:6bee9c2e501d835f91460b2c904bc359f8433e96799f5c2ff20feebd9bb1e590" } ,
{ file = "lxml-4.9.4-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_24_i686.whl" , hash = "sha256:1f10f250430a4caf84115b1e0f23f3615566ca2369d1962f82bef40dd99cd81a" } ,
{ file = "lxml-4.9.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl" , hash = "sha256:3b505f2bbff50d261176e67be24e8909e54b5d9d08b12d4946344066d66b3e43" } ,
{ file = "lxml-4.9.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl" , hash = "sha256:1449f9451cd53e0fd0a7ec2ff5ede4686add13ac7a7bfa6988ff6d75cff3ebe2" } ,
{ file = "lxml-4.9.4-cp38-cp38-manylinux_2_28_x86_64.whl" , hash = "sha256:4ece9cca4cd1c8ba889bfa67eae7f21d0d1a2e715b4d5045395113361e8c533d" } ,
{ file = "lxml-4.9.4-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl" , hash = "sha256:59bb5979f9941c61e907ee571732219fa4774d5a18f3fa5ff2df963f5dfaa6bc" } ,
{ file = "lxml-4.9.4-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl" , hash = "sha256:b1980dbcaad634fe78e710c8587383e6e3f61dbe146bcbfd13a9c8ab2d7b1192" } ,
{ file = "lxml-4.9.4-cp38-cp38-musllinux_1_1_aarch64.whl" , hash = "sha256:9ae6c3363261021144121427b1552b29e7b59de9d6a75bf51e03bc072efb3c37" } ,
{ file = "lxml-4.9.4-cp38-cp38-musllinux_1_1_x86_64.whl" , hash = "sha256:bcee502c649fa6351b44bb014b98c09cb00982a475a1912a9881ca28ab4f9cd9" } ,
{ file = "lxml-4.9.4-cp38-cp38-win32.whl" , hash = "sha256:a8edae5253efa75c2fc79a90068fe540b197d1c7ab5803b800fccfe240eed33c" } ,
{ file = "lxml-4.9.4-cp38-cp38-win_amd64.whl" , hash = "sha256:701847a7aaefef121c5c0d855b2affa5f9bd45196ef00266724a80e439220e46" } ,
{ file = "lxml-4.9.4-cp39-cp39-macosx_11_0_x86_64.whl" , hash = "sha256:f610d980e3fccf4394ab3806de6065682982f3d27c12d4ce3ee46a8183d64a6a" } ,
{ file = "lxml-4.9.4-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_24_i686.whl" , hash = "sha256:aa9b5abd07f71b081a33115d9758ef6077924082055005808f68feccb27616bd" } ,
{ file = "lxml-4.9.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_24_aarch64.whl" , hash = "sha256:365005e8b0718ea6d64b374423e870648ab47c3a905356ab6e5a5ff03962b9a9" } ,
{ file = "lxml-4.9.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl" , hash = "sha256:16b9ec51cc2feab009e800f2c6327338d6ee4e752c76e95a35c4465e80390ccd" } ,
{ file = "lxml-4.9.4-cp39-cp39-manylinux_2_28_x86_64.whl" , hash = "sha256:a905affe76f1802edcac554e3ccf68188bea16546071d7583fb1b693f9cf756b" } ,
{ file = "lxml-4.9.4-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl" , hash = "sha256:fd814847901df6e8de13ce69b84c31fc9b3fb591224d6762d0b256d510cbf382" } ,
{ file = "lxml-4.9.4-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl" , hash = "sha256:91bbf398ac8bb7d65a5a52127407c05f75a18d7015a270fdd94bbcb04e65d573" } ,
{ file = "lxml-4.9.4-cp39-cp39-musllinux_1_1_aarch64.whl" , hash = "sha256:f99768232f036b4776ce419d3244a04fe83784bce871b16d2c2e984c7fcea847" } ,
{ file = "lxml-4.9.4-cp39-cp39-musllinux_1_1_x86_64.whl" , hash = "sha256:bb5bd6212eb0edfd1e8f254585290ea1dadc3687dd8fd5e2fd9a87c31915cdab" } ,
{ file = "lxml-4.9.4-cp39-cp39-win32.whl" , hash = "sha256:88f7c383071981c74ec1998ba9b437659e4fd02a3c4a4d3efc16774eb108d0ec" } ,
{ file = "lxml-4.9.4-cp39-cp39-win_amd64.whl" , hash = "sha256:936e8880cc00f839aa4173f94466a8406a96ddce814651075f95837316369899" } ,
{ file = "lxml-4.9.4-pp310-pypy310_pp73-macosx_11_0_x86_64.whl" , hash = "sha256:f6c35b2f87c004270fa2e703b872fcc984d714d430b305145c39d53074e1ffe0" } ,
{ file = "lxml-4.9.4-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl" , hash = "sha256:606d445feeb0856c2b424405236a01c71af7c97e5fe42fbc778634faef2b47e4" } ,
{ file = "lxml-4.9.4-pp310-pypy310_pp73-win_amd64.whl" , hash = "sha256:a1bdcbebd4e13446a14de4dd1825f1e778e099f17f79718b4aeaf2403624b0f7" } ,
{ file = "lxml-4.9.4-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_24_i686.whl" , hash = "sha256:0a08c89b23117049ba171bf51d2f9c5f3abf507d65d016d6e0fa2f37e18c0fc5" } ,
{ file = "lxml-4.9.4-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl" , hash = "sha256:232fd30903d3123be4c435fb5159938c6225ee8607b635a4d3fca847003134ba" } ,
{ file = "lxml-4.9.4-pp37-pypy37_pp73-manylinux_2_28_x86_64.whl" , hash = "sha256:231142459d32779b209aa4b4d460b175cadd604fed856f25c1571a9d78114771" } ,
{ file = "lxml-4.9.4-pp38-pypy38_pp73-macosx_11_0_x86_64.whl" , hash = "sha256:520486f27f1d4ce9654154b4494cf9307b495527f3a2908ad4cb48e4f7ed7ef7" } ,
{ file = "lxml-4.9.4-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_24_i686.whl" , hash = "sha256:562778586949be7e0d7435fcb24aca4810913771f845d99145a6cee64d5b67ca" } ,
{ file = "lxml-4.9.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl" , hash = "sha256:a9e7c6d89c77bb2770c9491d988f26a4b161d05c8ca58f63fb1f1b6b9a74be45" } ,
{ file = "lxml-4.9.4-pp38-pypy38_pp73-manylinux_2_28_x86_64.whl" , hash = "sha256:786d6b57026e7e04d184313c1359ac3d68002c33e4b1042ca58c362f1d09ff58" } ,
{ file = "lxml-4.9.4-pp38-pypy38_pp73-win_amd64.whl" , hash = "sha256:95ae6c5a196e2f239150aa4a479967351df7f44800c93e5a975ec726fef005e2" } ,
{ file = "lxml-4.9.4-pp39-pypy39_pp73-macosx_11_0_x86_64.whl" , hash = "sha256:9b556596c49fa1232b0fff4b0e69b9d4083a502e60e404b44341e2f8fb7187f5" } ,
{ file = "lxml-4.9.4-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_24_i686.whl" , hash = "sha256:cc02c06e9e320869d7d1bd323df6dd4281e78ac2e7f8526835d3d48c69060683" } ,
{ file = "lxml-4.9.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl" , hash = "sha256:857d6565f9aa3464764c2cb6a2e3c2e75e1970e877c188f4aeae45954a314e0c" } ,
{ file = "lxml-4.9.4-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl" , hash = "sha256:c42ae7e010d7d6bc51875d768110c10e8a59494855c3d4c348b068f5fb81fdcd" } ,
{ file = "lxml-4.9.4-pp39-pypy39_pp73-win_amd64.whl" , hash = "sha256:f10250bb190fb0742e3e1958dd5c100524c2cc5096c67c8da51233f7448dc137" } ,
{ file = "lxml-4.9.4.tar.gz" , hash = "sha256:b1541e50b78e15fa06a2670157a1962ef06591d4c998b998047fff5e3236880e" } ,
]
[ package . extras ]
cssselect = [ "cssselect (>=0.7)" ]
html5 = [ "html5lib" ]
htmlsoup = [ "BeautifulSoup4" ]
source = [ "Cython (==0.29.37)" ]
[ [ package ] ]
name = "markdown"
version = "3.5.2"
description = "Python implementation of John Gruber's Markdown."
optional = true
python-versions = ">=3.8"
files = [
{ file = "Markdown-3.5.2-py3-none-any.whl" , hash = "sha256:d43323865d89fc0cb9b20c75fc8ad313af307cc087e84b657d9eec768eddeadd" } ,
{ file = "Markdown-3.5.2.tar.gz" , hash = "sha256:e1ac7b3dc550ee80e602e71c1d168002f062e49f1b11e26a36264dafd4df2ef8" } ,
]
[ package . dependencies ]
importlib-metadata = { version = ">=4.4" , markers = "python_version < \"3.10\"" }
[ package . extras ]
docs = [ "mdx-gh-links (>=0.2)" , "mkdocs (>=1.5)" , "mkdocs-gen-files" , "mkdocs-literate-nav" , "mkdocs-nature (>=0.6)" , "mkdocs-section-index" , "mkdocstrings[python]" ]
testing = [ "coverage" , "pyyaml" ]
[ [ package ] ]
name = "markdownify"
version = "0.11.6"
description = "Convert HTML to markdown."
optional = true
python-versions = "*"
files = [
{ file = "markdownify-0.11.6-py3-none-any.whl" , hash = "sha256:ba35fe289d5e9073bcd7d2cad629278fe25f1a93741fcdc0bfb4f009076d8324" } ,
{ file = "markdownify-0.11.6.tar.gz" , hash = "sha256:009b240e0c9f4c8eaf1d085625dcd4011e12f0f8cec55dedf9ea6f7655e49bfe" } ,
]
[ package . dependencies ]
beautifulsoup4 = ">=4.9,<5"
six = ">=1.15,<2"
2023-12-11 21:53:30 +00:00
[ [ package ] ]
name = "markupsafe"
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
version = "2.1.5"
2023-12-11 21:53:30 +00:00
description = "Safely add untrusted strings to HTML/XML markup."
optional = false
python-versions = ">=3.7"
files = [
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
{ file = "MarkupSafe-2.1.5-cp310-cp310-macosx_10_9_universal2.whl" , hash = "sha256:a17a92de5231666cfbe003f0e4b9b3a7ae3afb1ec2845aadc2bacc93ff85febc" } ,
{ file = "MarkupSafe-2.1.5-cp310-cp310-macosx_10_9_x86_64.whl" , hash = "sha256:72b6be590cc35924b02c78ef34b467da4ba07e4e0f0454a2c5907f473fc50ce5" } ,
{ file = "MarkupSafe-2.1.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:e61659ba32cf2cf1481e575d0462554625196a1f2fc06a1c777d3f48e8865d46" } ,
{ file = "MarkupSafe-2.1.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:2174c595a0d73a3080ca3257b40096db99799265e1c27cc5a610743acd86d62f" } ,
{ file = "MarkupSafe-2.1.5-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:ae2ad8ae6ebee9d2d94b17fb62763125f3f374c25618198f40cbb8b525411900" } ,
{ file = "MarkupSafe-2.1.5-cp310-cp310-musllinux_1_1_aarch64.whl" , hash = "sha256:075202fa5b72c86ad32dc7d0b56024ebdbcf2048c0ba09f1cde31bfdd57bcfff" } ,
{ file = "MarkupSafe-2.1.5-cp310-cp310-musllinux_1_1_i686.whl" , hash = "sha256:598e3276b64aff0e7b3451b72e94fa3c238d452e7ddcd893c3ab324717456bad" } ,
{ file = "MarkupSafe-2.1.5-cp310-cp310-musllinux_1_1_x86_64.whl" , hash = "sha256:fce659a462a1be54d2ffcacea5e3ba2d74daa74f30f5f143fe0c58636e355fdd" } ,
{ file = "MarkupSafe-2.1.5-cp310-cp310-win32.whl" , hash = "sha256:d9fad5155d72433c921b782e58892377c44bd6252b5af2f67f16b194987338a4" } ,
{ file = "MarkupSafe-2.1.5-cp310-cp310-win_amd64.whl" , hash = "sha256:bf50cd79a75d181c9181df03572cdce0fbb75cc353bc350712073108cba98de5" } ,
{ file = "MarkupSafe-2.1.5-cp311-cp311-macosx_10_9_universal2.whl" , hash = "sha256:629ddd2ca402ae6dbedfceeba9c46d5f7b2a61d9749597d4307f943ef198fc1f" } ,
{ file = "MarkupSafe-2.1.5-cp311-cp311-macosx_10_9_x86_64.whl" , hash = "sha256:5b7b716f97b52c5a14bffdf688f971b2d5ef4029127f1ad7a513973cfd818df2" } ,
{ file = "MarkupSafe-2.1.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:6ec585f69cec0aa07d945b20805be741395e28ac1627333b1c5b0105962ffced" } ,
{ file = "MarkupSafe-2.1.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:b91c037585eba9095565a3556f611e3cbfaa42ca1e865f7b8015fe5c7336d5a5" } ,
{ file = "MarkupSafe-2.1.5-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:7502934a33b54030eaf1194c21c692a534196063db72176b0c4028e140f8f32c" } ,
{ file = "MarkupSafe-2.1.5-cp311-cp311-musllinux_1_1_aarch64.whl" , hash = "sha256:0e397ac966fdf721b2c528cf028494e86172b4feba51d65f81ffd65c63798f3f" } ,
{ file = "MarkupSafe-2.1.5-cp311-cp311-musllinux_1_1_i686.whl" , hash = "sha256:c061bb86a71b42465156a3ee7bd58c8c2ceacdbeb95d05a99893e08b8467359a" } ,
{ file = "MarkupSafe-2.1.5-cp311-cp311-musllinux_1_1_x86_64.whl" , hash = "sha256:3a57fdd7ce31c7ff06cdfbf31dafa96cc533c21e443d57f5b1ecc6cdc668ec7f" } ,
{ file = "MarkupSafe-2.1.5-cp311-cp311-win32.whl" , hash = "sha256:397081c1a0bfb5124355710fe79478cdbeb39626492b15d399526ae53422b906" } ,
{ file = "MarkupSafe-2.1.5-cp311-cp311-win_amd64.whl" , hash = "sha256:2b7c57a4dfc4f16f7142221afe5ba4e093e09e728ca65c51f5620c9aaeb9a617" } ,
{ file = "MarkupSafe-2.1.5-cp312-cp312-macosx_10_9_universal2.whl" , hash = "sha256:8dec4936e9c3100156f8a2dc89c4b88d5c435175ff03413b443469c7c8c5f4d1" } ,
{ file = "MarkupSafe-2.1.5-cp312-cp312-macosx_10_9_x86_64.whl" , hash = "sha256:3c6b973f22eb18a789b1460b4b91bf04ae3f0c4234a0a6aa6b0a92f6f7b951d4" } ,
{ file = "MarkupSafe-2.1.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:ac07bad82163452a6884fe8fa0963fb98c2346ba78d779ec06bd7a6262132aee" } ,
{ file = "MarkupSafe-2.1.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:f5dfb42c4604dddc8e4305050aa6deb084540643ed5804d7455b5df8fe16f5e5" } ,
{ file = "MarkupSafe-2.1.5-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:ea3d8a3d18833cf4304cd2fc9cbb1efe188ca9b5efef2bdac7adc20594a0e46b" } ,
{ file = "MarkupSafe-2.1.5-cp312-cp312-musllinux_1_1_aarch64.whl" , hash = "sha256:d050b3361367a06d752db6ead6e7edeb0009be66bc3bae0ee9d97fb326badc2a" } ,
{ file = "MarkupSafe-2.1.5-cp312-cp312-musllinux_1_1_i686.whl" , hash = "sha256:bec0a414d016ac1a18862a519e54b2fd0fc8bbfd6890376898a6c0891dd82e9f" } ,
{ file = "MarkupSafe-2.1.5-cp312-cp312-musllinux_1_1_x86_64.whl" , hash = "sha256:58c98fee265677f63a4385256a6d7683ab1832f3ddd1e66fe948d5880c21a169" } ,
{ file = "MarkupSafe-2.1.5-cp312-cp312-win32.whl" , hash = "sha256:8590b4ae07a35970728874632fed7bd57b26b0102df2d2b233b6d9d82f6c62ad" } ,
{ file = "MarkupSafe-2.1.5-cp312-cp312-win_amd64.whl" , hash = "sha256:823b65d8706e32ad2df51ed89496147a42a2a6e01c13cfb6ffb8b1e92bc910bb" } ,
{ file = "MarkupSafe-2.1.5-cp37-cp37m-macosx_10_9_x86_64.whl" , hash = "sha256:c8b29db45f8fe46ad280a7294f5c3ec36dbac9491f2d1c17345be8e69cc5928f" } ,
{ file = "MarkupSafe-2.1.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:ec6a563cff360b50eed26f13adc43e61bc0c04d94b8be985e6fb24b81f6dcfdf" } ,
{ file = "MarkupSafe-2.1.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:a549b9c31bec33820e885335b451286e2969a2d9e24879f83fe904a5ce59d70a" } ,
{ file = "MarkupSafe-2.1.5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:4f11aa001c540f62c6166c7726f71f7573b52c68c31f014c25cc7901deea0b52" } ,
{ file = "MarkupSafe-2.1.5-cp37-cp37m-musllinux_1_1_aarch64.whl" , hash = "sha256:7b2e5a267c855eea6b4283940daa6e88a285f5f2a67f2220203786dfa59b37e9" } ,
{ file = "MarkupSafe-2.1.5-cp37-cp37m-musllinux_1_1_i686.whl" , hash = "sha256:2d2d793e36e230fd32babe143b04cec8a8b3eb8a3122d2aceb4a371e6b09b8df" } ,
{ file = "MarkupSafe-2.1.5-cp37-cp37m-musllinux_1_1_x86_64.whl" , hash = "sha256:ce409136744f6521e39fd8e2a24c53fa18ad67aa5bc7c2cf83645cce5b5c4e50" } ,
{ file = "MarkupSafe-2.1.5-cp37-cp37m-win32.whl" , hash = "sha256:4096e9de5c6fdf43fb4f04c26fb114f61ef0bf2e5604b6ee3019d51b69e8c371" } ,
{ file = "MarkupSafe-2.1.5-cp37-cp37m-win_amd64.whl" , hash = "sha256:4275d846e41ecefa46e2015117a9f491e57a71ddd59bbead77e904dc02b1bed2" } ,
{ file = "MarkupSafe-2.1.5-cp38-cp38-macosx_10_9_universal2.whl" , hash = "sha256:656f7526c69fac7f600bd1f400991cc282b417d17539a1b228617081106feb4a" } ,
{ file = "MarkupSafe-2.1.5-cp38-cp38-macosx_10_9_x86_64.whl" , hash = "sha256:97cafb1f3cbcd3fd2b6fbfb99ae11cdb14deea0736fc2b0952ee177f2b813a46" } ,
{ file = "MarkupSafe-2.1.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:1f3fbcb7ef1f16e48246f704ab79d79da8a46891e2da03f8783a5b6fa41a9532" } ,
{ file = "MarkupSafe-2.1.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:fa9db3f79de01457b03d4f01b34cf91bc0048eb2c3846ff26f66687c2f6d16ab" } ,
{ file = "MarkupSafe-2.1.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:ffee1f21e5ef0d712f9033568f8344d5da8cc2869dbd08d87c84656e6a2d2f68" } ,
{ file = "MarkupSafe-2.1.5-cp38-cp38-musllinux_1_1_aarch64.whl" , hash = "sha256:5dedb4db619ba5a2787a94d877bc8ffc0566f92a01c0ef214865e54ecc9ee5e0" } ,
{ file = "MarkupSafe-2.1.5-cp38-cp38-musllinux_1_1_i686.whl" , hash = "sha256:30b600cf0a7ac9234b2638fbc0fb6158ba5bdcdf46aeb631ead21248b9affbc4" } ,
{ file = "MarkupSafe-2.1.5-cp38-cp38-musllinux_1_1_x86_64.whl" , hash = "sha256:8dd717634f5a044f860435c1d8c16a270ddf0ef8588d4887037c5028b859b0c3" } ,
{ file = "MarkupSafe-2.1.5-cp38-cp38-win32.whl" , hash = "sha256:daa4ee5a243f0f20d528d939d06670a298dd39b1ad5f8a72a4275124a7819eff" } ,
{ file = "MarkupSafe-2.1.5-cp38-cp38-win_amd64.whl" , hash = "sha256:619bc166c4f2de5caa5a633b8b7326fbe98e0ccbfacabd87268a2b15ff73a029" } ,
{ file = "MarkupSafe-2.1.5-cp39-cp39-macosx_10_9_universal2.whl" , hash = "sha256:7a68b554d356a91cce1236aa7682dc01df0edba8d043fd1ce607c49dd3c1edcf" } ,
{ file = "MarkupSafe-2.1.5-cp39-cp39-macosx_10_9_x86_64.whl" , hash = "sha256:db0b55e0f3cc0be60c1f19efdde9a637c32740486004f20d1cff53c3c0ece4d2" } ,
{ file = "MarkupSafe-2.1.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:3e53af139f8579a6d5f7b76549125f0d94d7e630761a2111bc431fd820e163b8" } ,
{ file = "MarkupSafe-2.1.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:17b950fccb810b3293638215058e432159d2b71005c74371d784862b7e4683f3" } ,
{ file = "MarkupSafe-2.1.5-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:4c31f53cdae6ecfa91a77820e8b151dba54ab528ba65dfd235c80b086d68a465" } ,
{ file = "MarkupSafe-2.1.5-cp39-cp39-musllinux_1_1_aarch64.whl" , hash = "sha256:bff1b4290a66b490a2f4719358c0cdcd9bafb6b8f061e45c7a2460866bf50c2e" } ,
{ file = "MarkupSafe-2.1.5-cp39-cp39-musllinux_1_1_i686.whl" , hash = "sha256:bc1667f8b83f48511b94671e0e441401371dfd0f0a795c7daa4a3cd1dde55bea" } ,
{ file = "MarkupSafe-2.1.5-cp39-cp39-musllinux_1_1_x86_64.whl" , hash = "sha256:5049256f536511ee3f7e1b3f87d1d1209d327e818e6ae1365e8653d7e3abb6a6" } ,
{ file = "MarkupSafe-2.1.5-cp39-cp39-win32.whl" , hash = "sha256:00e046b6dd71aa03a41079792f8473dc494d564611a8f89bbbd7cb93295ebdcf" } ,
{ file = "MarkupSafe-2.1.5-cp39-cp39-win_amd64.whl" , hash = "sha256:fa173ec60341d6bb97a89f5ea19c85c5643c1e7dedebc22f5181eb73573142c5" } ,
{ file = "MarkupSafe-2.1.5.tar.gz" , hash = "sha256:d283d37a890ba4c1ae73ffadf8046435c76e7bc2247bbb63c00bd1a709c6544b" } ,
2023-12-11 21:53:30 +00:00
]
[ [ package ] ]
name = "marshmallow"
2024-03-08 02:20:47 +00:00
version = "3.21.1"
2023-12-11 21:53:30 +00:00
description = "A lightweight library for converting complex datatypes to and from native Python datatypes."
optional = false
python-versions = ">=3.8"
files = [
2024-03-08 02:20:47 +00:00
{ file = "marshmallow-3.21.1-py3-none-any.whl" , hash = "sha256:f085493f79efb0644f270a9bf2892843142d80d7174bbbd2f3713f2a589dc633" } ,
{ file = "marshmallow-3.21.1.tar.gz" , hash = "sha256:4e65e9e0d80fc9e609574b9983cf32579f305c718afb30d7233ab818571768c3" } ,
2023-12-11 21:53:30 +00:00
]
[ package . dependencies ]
packaging = ">=17.0"
[ package . extras ]
2024-03-08 02:20:47 +00:00
dev = [ "marshmallow[tests]" , "pre-commit (>=3.5,<4.0)" , "tox" ]
docs = [ "alabaster (==0.7.16)" , "autodocsumm (==0.2.12)" , "sphinx (==7.2.6)" , "sphinx-issues (==4.0.0)" , "sphinx-version-warning (==1.1.2)" ]
2023-12-11 21:53:30 +00:00
tests = [ "pytest" , "pytz" , "simplejson" ]
2024-03-15 17:10:47 +00:00
[ [ package ] ]
name = "matplotlib"
version = "3.7.5"
description = "Python plotting package"
optional = true
python-versions = ">=3.8"
files = [
{ file = "matplotlib-3.7.5-cp310-cp310-macosx_10_12_universal2.whl" , hash = "sha256:4a87b69cb1cb20943010f63feb0b2901c17a3b435f75349fd9865713bfa63925" } ,
{ file = "matplotlib-3.7.5-cp310-cp310-macosx_10_12_x86_64.whl" , hash = "sha256:d3ce45010fefb028359accebb852ca0c21bd77ec0f281952831d235228f15810" } ,
{ file = "matplotlib-3.7.5-cp310-cp310-macosx_11_0_arm64.whl" , hash = "sha256:fbea1e762b28400393d71be1a02144aa16692a3c4c676ba0178ce83fc2928fdd" } ,
{ file = "matplotlib-3.7.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:ec0e1adc0ad70ba8227e957551e25a9d2995e319c29f94a97575bb90fa1d4469" } ,
{ file = "matplotlib-3.7.5-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:6738c89a635ced486c8a20e20111d33f6398a9cbebce1ced59c211e12cd61455" } ,
{ file = "matplotlib-3.7.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:1210b7919b4ed94b5573870f316bca26de3e3b07ffdb563e79327dc0e6bba515" } ,
{ file = "matplotlib-3.7.5-cp310-cp310-win32.whl" , hash = "sha256:068ebcc59c072781d9dcdb82f0d3f1458271c2de7ca9c78f5bd672141091e9e1" } ,
{ file = "matplotlib-3.7.5-cp310-cp310-win_amd64.whl" , hash = "sha256:f098ffbaab9df1e3ef04e5a5586a1e6b1791380698e84938d8640961c79b1fc0" } ,
{ file = "matplotlib-3.7.5-cp311-cp311-macosx_10_12_universal2.whl" , hash = "sha256:f65342c147572673f02a4abec2d5a23ad9c3898167df9b47c149f32ce61ca078" } ,
{ file = "matplotlib-3.7.5-cp311-cp311-macosx_10_12_x86_64.whl" , hash = "sha256:4ddf7fc0e0dc553891a117aa083039088d8a07686d4c93fb8a810adca68810af" } ,
{ file = "matplotlib-3.7.5-cp311-cp311-macosx_11_0_arm64.whl" , hash = "sha256:0ccb830fc29442360d91be48527809f23a5dcaee8da5f4d9b2d5b867c1b087b8" } ,
{ file = "matplotlib-3.7.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:efc6bb28178e844d1f408dd4d6341ee8a2e906fc9e0fa3dae497da4e0cab775d" } ,
{ file = "matplotlib-3.7.5-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:3b15c4c2d374f249f324f46e883340d494c01768dd5287f8bc00b65b625ab56c" } ,
{ file = "matplotlib-3.7.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:3d028555421912307845e59e3de328260b26d055c5dac9b182cc9783854e98fb" } ,
{ file = "matplotlib-3.7.5-cp311-cp311-win32.whl" , hash = "sha256:fe184b4625b4052fa88ef350b815559dd90cc6cc8e97b62f966e1ca84074aafa" } ,
{ file = "matplotlib-3.7.5-cp311-cp311-win_amd64.whl" , hash = "sha256:084f1f0f2f1010868c6f1f50b4e1c6f2fb201c58475494f1e5b66fed66093647" } ,
{ file = "matplotlib-3.7.5-cp312-cp312-macosx_10_12_universal2.whl" , hash = "sha256:34bceb9d8ddb142055ff27cd7135f539f2f01be2ce0bafbace4117abe58f8fe4" } ,
{ file = "matplotlib-3.7.5-cp312-cp312-macosx_10_12_x86_64.whl" , hash = "sha256:c5a2134162273eb8cdfd320ae907bf84d171de948e62180fa372a3ca7cf0f433" } ,
{ file = "matplotlib-3.7.5-cp312-cp312-macosx_11_0_arm64.whl" , hash = "sha256:039ad54683a814002ff37bf7981aa1faa40b91f4ff84149beb53d1eb64617980" } ,
{ file = "matplotlib-3.7.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:4d742ccd1b09e863b4ca58291728db645b51dab343eebb08d5d4b31b308296ce" } ,
{ file = "matplotlib-3.7.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:743b1c488ca6a2bc7f56079d282e44d236bf375968bfd1b7ba701fd4d0fa32d6" } ,
{ file = "matplotlib-3.7.5-cp312-cp312-win_amd64.whl" , hash = "sha256:fbf730fca3e1f23713bc1fae0a57db386e39dc81ea57dc305c67f628c1d7a342" } ,
{ file = "matplotlib-3.7.5-cp38-cp38-macosx_10_12_universal2.whl" , hash = "sha256:cfff9b838531698ee40e40ea1a8a9dc2c01edb400b27d38de6ba44c1f9a8e3d2" } ,
{ file = "matplotlib-3.7.5-cp38-cp38-macosx_10_12_x86_64.whl" , hash = "sha256:1dbcca4508bca7847fe2d64a05b237a3dcaec1f959aedb756d5b1c67b770c5ee" } ,
{ file = "matplotlib-3.7.5-cp38-cp38-macosx_11_0_arm64.whl" , hash = "sha256:4cdf4ef46c2a1609a50411b66940b31778db1e4b73d4ecc2eaa40bd588979b13" } ,
{ file = "matplotlib-3.7.5-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl" , hash = "sha256:167200ccfefd1674b60e957186dfd9baf58b324562ad1a28e5d0a6b3bea77905" } ,
{ file = "matplotlib-3.7.5-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl" , hash = "sha256:53e64522934df6e1818b25fd48cf3b645b11740d78e6ef765fbb5fa5ce080d02" } ,
{ file = "matplotlib-3.7.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:d3e3bc79b2d7d615067bd010caff9243ead1fc95cf735c16e4b2583173f717eb" } ,
{ file = "matplotlib-3.7.5-cp38-cp38-win32.whl" , hash = "sha256:6b641b48c6819726ed47c55835cdd330e53747d4efff574109fd79b2d8a13748" } ,
{ file = "matplotlib-3.7.5-cp38-cp38-win_amd64.whl" , hash = "sha256:f0b60993ed3488b4532ec6b697059897891927cbfc2b8d458a891b60ec03d9d7" } ,
{ file = "matplotlib-3.7.5-cp39-cp39-macosx_10_12_universal2.whl" , hash = "sha256:090964d0afaff9c90e4d8de7836757e72ecfb252fb02884016d809239f715651" } ,
{ file = "matplotlib-3.7.5-cp39-cp39-macosx_10_12_x86_64.whl" , hash = "sha256:9fc6fcfbc55cd719bc0bfa60bde248eb68cf43876d4c22864603bdd23962ba25" } ,
{ file = "matplotlib-3.7.5-cp39-cp39-macosx_11_0_arm64.whl" , hash = "sha256:5e7cc3078b019bb863752b8b60e8b269423000f1603cb2299608231996bd9d54" } ,
{ file = "matplotlib-3.7.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:1e4e9a868e8163abaaa8259842d85f949a919e1ead17644fb77a60427c90473c" } ,
{ file = "matplotlib-3.7.5-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:fa7ebc995a7d747dacf0a717d0eb3aa0f0c6a0e9ea88b0194d3a3cd241a1500f" } ,
{ file = "matplotlib-3.7.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:3785bfd83b05fc0e0c2ae4c4a90034fe693ef96c679634756c50fe6efcc09856" } ,
{ file = "matplotlib-3.7.5-cp39-cp39-win32.whl" , hash = "sha256:29b058738c104d0ca8806395f1c9089dfe4d4f0f78ea765c6c704469f3fffc81" } ,
{ file = "matplotlib-3.7.5-cp39-cp39-win_amd64.whl" , hash = "sha256:fd4028d570fa4b31b7b165d4a685942ae9cdc669f33741e388c01857d9723eab" } ,
{ file = "matplotlib-3.7.5-pp38-pypy38_pp73-macosx_10_12_x86_64.whl" , hash = "sha256:2a9a3f4d6a7f88a62a6a18c7e6a84aedcaf4faf0708b4ca46d87b19f1b526f88" } ,
{ file = "matplotlib-3.7.5-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:b9b3fd853d4a7f008a938df909b96db0b454225f935d3917520305b90680579c" } ,
{ file = "matplotlib-3.7.5-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:f0ad550da9f160737d7890217c5eeed4337d07e83ca1b2ca6535078f354e7675" } ,
{ file = "matplotlib-3.7.5-pp38-pypy38_pp73-win_amd64.whl" , hash = "sha256:20da7924a08306a861b3f2d1da0d1aa9a6678e480cf8eacffe18b565af2813e7" } ,
{ file = "matplotlib-3.7.5-pp39-pypy39_pp73-macosx_10_12_x86_64.whl" , hash = "sha256:b45c9798ea6bb920cb77eb7306409756a7fab9db9b463e462618e0559aecb30e" } ,
{ file = "matplotlib-3.7.5-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:a99866267da1e561c7776fe12bf4442174b79aac1a47bd7e627c7e4d077ebd83" } ,
{ file = "matplotlib-3.7.5-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:2b6aa62adb6c268fc87d80f963aca39c64615c31830b02697743c95590ce3fbb" } ,
{ file = "matplotlib-3.7.5-pp39-pypy39_pp73-win_amd64.whl" , hash = "sha256:e530ab6a0afd082d2e9c17eb1eb064a63c5b09bb607b2b74fa41adbe3e162286" } ,
{ file = "matplotlib-3.7.5.tar.gz" , hash = "sha256:1e5c971558ebc811aa07f54c7b7c677d78aa518ef4c390e14673a09e0860184a" } ,
]
[ package . dependencies ]
contourpy = ">=1.0.1"
cycler = ">=0.10"
fonttools = ">=4.22.0"
importlib-resources = { version = ">=3.2.0" , markers = "python_version < \"3.10\"" }
kiwisolver = ">=1.0.1"
numpy = ">=1.20,<2"
packaging = ">=20.0"
pillow = ">=6.2.0"
pyparsing = ">=2.3.1"
python-dateutil = ">=2.7"
2023-12-11 21:53:30 +00:00
[ [ package ] ]
name = "matplotlib-inline"
version = "0.1.6"
description = "Inline Matplotlib backend for Jupyter"
optional = false
python-versions = ">=3.5"
files = [
{ file = "matplotlib-inline-0.1.6.tar.gz" , hash = "sha256:f887e5f10ba98e8d2b150ddcf4702c1e5f8b3a20005eb0f74bfdbd360ee6f304" } ,
{ file = "matplotlib_inline-0.1.6-py3-none-any.whl" , hash = "sha256:f1f41aab5328aa5aaea9b16d083b128102f8712542f819fe7e6a420ff581b311" } ,
]
[ package . dependencies ]
traitlets = "*"
[ [ package ] ]
name = "mistune"
version = "3.0.2"
description = "A sane and fast Markdown parser with useful plugins and renderers"
optional = false
python-versions = ">=3.7"
files = [
{ file = "mistune-3.0.2-py3-none-any.whl" , hash = "sha256:71481854c30fdbc938963d3605b72501f5c10a9320ecd412c121c163a1c7d205" } ,
{ file = "mistune-3.0.2.tar.gz" , hash = "sha256:fc7f93ded930c92394ef2cb6f04a8aabab4117a91449e72dcc8dfa646a508be8" } ,
]
2024-03-15 17:10:47 +00:00
[ [ package ] ]
name = "mlflow-skinny"
version = "2.11.1"
description = "MLflow: A Platform for ML Development and Productionization"
optional = true
python-versions = ">=3.8"
files = [
{ file = "mlflow-skinny-2.11.1.tar.gz" , hash = "sha256:dcb45fe3ad24326a6e939c83782708687fc6ca1273af9be2120449bbb7e63b56" } ,
{ file = "mlflow_skinny-2.11.1-py3-none-any.whl" , hash = "sha256:ab210fd2b6a661e77fdcb1cfb163c55e632dde6b1d3031bdf5423a2edcba2ebf" } ,
]
[ package . dependencies ]
click = ">=7.0,<9"
cloudpickle = "<4"
entrypoints = "<1"
gitpython = ">=3.1.9,<4"
importlib-metadata = ">=3.7.0,<4.7.0 || >4.7.0,<8"
packaging = "<24"
protobuf = ">=3.12.0,<5"
pytz = "<2025"
pyyaml = ">=5.1,<7"
requests = ">=2.17.3,<3"
sqlparse = ">=0.4.0,<1"
[ package . extras ]
aliyun-oss = [ "aliyunstoreplugin" ]
databricks = [ "azure-storage-file-datalake (>12)" , "boto3 (>1)" , "botocore" , "google-cloud-storage (>=1.30.0)" ]
extras = [ "azureml-core (>=1.2.0)" , "boto3" , "botocore" , "google-cloud-storage (>=1.30.0)" , "kubernetes" , "mlserver (>=1.2.0,!=1.3.1,<1.4.0)" , "mlserver-mlflow (>=1.2.0,!=1.3.1,<1.4.0)" , "prometheus-flask-exporter" , "pyarrow" , "pysftp" , "requests-auth-aws-sigv4" , "virtualenv" ]
gateway = [ "aiohttp (<4)" , "boto3 (>=1.28.56,<2)" , "fastapi (<1)" , "pydantic (>=1.0,<3)" , "slowapi (>=0.1.9,<1)" , "tiktoken (<1)" , "uvicorn[standard] (<1)" , "watchfiles (<1)" ]
genai = [ "aiohttp (<4)" , "boto3 (>=1.28.56,<2)" , "fastapi (<1)" , "pydantic (>=1.0,<3)" , "slowapi (>=0.1.9,<1)" , "tiktoken (<1)" , "uvicorn[standard] (<1)" , "watchfiles (<1)" ]
sqlserver = [ "mlflow-dbstore" ]
xethub = [ "mlflow-xethub" ]
[ [ package ] ]
name = "motor"
version = "3.3.2"
description = "Non-blocking MongoDB driver for Tornado or asyncio"
optional = true
python-versions = ">=3.7"
files = [
{ file = "motor-3.3.2-py3-none-any.whl" , hash = "sha256:6fe7e6f0c4f430b9e030b9d22549b732f7c2226af3ab71ecc309e4a1b7d19953" } ,
{ file = "motor-3.3.2.tar.gz" , hash = "sha256:d2fc38de15f1c8058f389c1a44a4d4105c0405c48c061cd492a654496f7bc26a" } ,
]
[ package . dependencies ]
pymongo = ">=4.5,<5"
[ package . extras ]
aws = [ "pymongo[aws] (>=4.5,<5)" ]
encryption = [ "pymongo[encryption] (>=4.5,<5)" ]
gssapi = [ "pymongo[gssapi] (>=4.5,<5)" ]
ocsp = [ "pymongo[ocsp] (>=4.5,<5)" ]
snappy = [ "pymongo[snappy] (>=4.5,<5)" ]
srv = [ "pymongo[srv] (>=4.5,<5)" ]
test = [ "aiohttp (<3.8.6)" , "mockupdb" , "motor[encryption]" , "pytest (>=7)" , "tornado (>=5)" ]
zstd = [ "pymongo[zstd] (>=4.5,<5)" ]
[ [ package ] ]
name = "mpmath"
version = "1.3.0"
description = "Python library for arbitrary-precision floating-point arithmetic"
optional = true
python-versions = "*"
files = [
{ file = "mpmath-1.3.0-py3-none-any.whl" , hash = "sha256:a0b2b9fe80bbcd81a6647ff13108738cfb482d481d826cc0e02f5b35e5c88d2c" } ,
{ file = "mpmath-1.3.0.tar.gz" , hash = "sha256:7a28eb2a9774d00c7bc92411c19a89209d5da7c4c9a9e227be8330a23a25b91f" } ,
]
[ package . extras ]
develop = [ "codecov" , "pycodestyle" , "pytest (>=4.6)" , "pytest-cov" , "wheel" ]
docs = [ "sphinx" ]
gmpy = [ "gmpy2 (>=2.1.0a4)" ]
tests = [ "pytest (>=4.6)" ]
[ [ package ] ]
name = "msal"
version = "1.27.0"
description = "The Microsoft Authentication Library (MSAL) for Python library enables your app to access the Microsoft Cloud by supporting authentication of users with Microsoft Azure Active Directory accounts (AAD) and Microsoft Accounts (MSA) using industry standard OAuth2 and OpenID Connect."
optional = true
python-versions = ">=2.7"
files = [
{ file = "msal-1.27.0-py2.py3-none-any.whl" , hash = "sha256:572d07149b83e7343a85a3bcef8e581167b4ac76befcbbb6eef0c0e19643cdc0" } ,
{ file = "msal-1.27.0.tar.gz" , hash = "sha256:3109503c038ba6b307152b0e8d34f98113f2e7a78986e28d0baf5b5303afda52" } ,
]
[ package . dependencies ]
cryptography = ">=0.6,<45"
PyJWT = { version = ">=1.0.0,<3" , extras = [ "crypto" ] }
requests = ">=2.0.0,<3"
[ package . extras ]
broker = [ "pymsalruntime (>=0.13.2,<0.15)" ]
[ [ package ] ]
name = "msrest"
version = "0.7.1"
description = "AutoRest swagger generator Python client runtime."
optional = true
python-versions = ">=3.6"
files = [
{ file = "msrest-0.7.1-py3-none-any.whl" , hash = "sha256:21120a810e1233e5e6cc7fe40b474eeb4ec6f757a15d7cf86702c369f9567c32" } ,
{ file = "msrest-0.7.1.zip" , hash = "sha256:6e7661f46f3afd88b75667b7187a92829924446c7ea1d169be8c4bb7eeb788b9" } ,
]
[ package . dependencies ]
azure-core = ">=1.24.0"
certifi = ">=2017.4.17"
isodate = ">=0.6.0"
requests = ">=2.16,<3.0"
requests-oauthlib = ">=0.5.0"
[ package . extras ]
async = [ "aiodns" , "aiohttp (>=3.0)" ]
2023-12-11 21:53:30 +00:00
[ [ package ] ]
name = "multidict"
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
version = "6.0.5"
2023-12-11 21:53:30 +00:00
description = "multidict implementation"
optional = false
python-versions = ">=3.7"
files = [
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
{ file = "multidict-6.0.5-cp310-cp310-macosx_10_9_universal2.whl" , hash = "sha256:228b644ae063c10e7f324ab1ab6b548bdf6f8b47f3ec234fef1093bc2735e5f9" } ,
{ file = "multidict-6.0.5-cp310-cp310-macosx_10_9_x86_64.whl" , hash = "sha256:896ebdcf62683551312c30e20614305f53125750803b614e9e6ce74a96232604" } ,
{ file = "multidict-6.0.5-cp310-cp310-macosx_11_0_arm64.whl" , hash = "sha256:411bf8515f3be9813d06004cac41ccf7d1cd46dfe233705933dd163b60e37600" } ,
{ file = "multidict-6.0.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:1d147090048129ce3c453f0292e7697d333db95e52616b3793922945804a433c" } ,
{ file = "multidict-6.0.5-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:215ed703caf15f578dca76ee6f6b21b7603791ae090fbf1ef9d865571039ade5" } ,
{ file = "multidict-6.0.5-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:7c6390cf87ff6234643428991b7359b5f59cc15155695deb4eda5c777d2b880f" } ,
{ file = "multidict-6.0.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:21fd81c4ebdb4f214161be351eb5bcf385426bf023041da2fd9e60681f3cebae" } ,
{ file = "multidict-6.0.5-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:3cc2ad10255f903656017363cd59436f2111443a76f996584d1077e43ee51182" } ,
{ file = "multidict-6.0.5-cp310-cp310-musllinux_1_1_aarch64.whl" , hash = "sha256:6939c95381e003f54cd4c5516740faba40cf5ad3eeff460c3ad1d3e0ea2549bf" } ,
{ file = "multidict-6.0.5-cp310-cp310-musllinux_1_1_i686.whl" , hash = "sha256:220dd781e3f7af2c2c1053da9fa96d9cf3072ca58f057f4c5adaaa1cab8fc442" } ,
{ file = "multidict-6.0.5-cp310-cp310-musllinux_1_1_ppc64le.whl" , hash = "sha256:766c8f7511df26d9f11cd3a8be623e59cca73d44643abab3f8c8c07620524e4a" } ,
{ file = "multidict-6.0.5-cp310-cp310-musllinux_1_1_s390x.whl" , hash = "sha256:fe5d7785250541f7f5019ab9cba2c71169dc7d74d0f45253f8313f436458a4ef" } ,
{ file = "multidict-6.0.5-cp310-cp310-musllinux_1_1_x86_64.whl" , hash = "sha256:c1c1496e73051918fcd4f58ff2e0f2f3066d1c76a0c6aeffd9b45d53243702cc" } ,
{ file = "multidict-6.0.5-cp310-cp310-win32.whl" , hash = "sha256:7afcdd1fc07befad18ec4523a782cde4e93e0a2bf71239894b8d61ee578c1319" } ,
{ file = "multidict-6.0.5-cp310-cp310-win_amd64.whl" , hash = "sha256:99f60d34c048c5c2fabc766108c103612344c46e35d4ed9ae0673d33c8fb26e8" } ,
{ file = "multidict-6.0.5-cp311-cp311-macosx_10_9_universal2.whl" , hash = "sha256:f285e862d2f153a70586579c15c44656f888806ed0e5b56b64489afe4a2dbfba" } ,
{ file = "multidict-6.0.5-cp311-cp311-macosx_10_9_x86_64.whl" , hash = "sha256:53689bb4e102200a4fafa9de9c7c3c212ab40a7ab2c8e474491914d2305f187e" } ,
{ file = "multidict-6.0.5-cp311-cp311-macosx_11_0_arm64.whl" , hash = "sha256:612d1156111ae11d14afaf3a0669ebf6c170dbb735e510a7438ffe2369a847fd" } ,
{ file = "multidict-6.0.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:7be7047bd08accdb7487737631d25735c9a04327911de89ff1b26b81745bd4e3" } ,
{ file = "multidict-6.0.5-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:de170c7b4fe6859beb8926e84f7d7d6c693dfe8e27372ce3b76f01c46e489fcf" } ,
{ file = "multidict-6.0.5-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:04bde7a7b3de05732a4eb39c94574db1ec99abb56162d6c520ad26f83267de29" } ,
{ file = "multidict-6.0.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:85f67aed7bb647f93e7520633d8f51d3cbc6ab96957c71272b286b2f30dc70ed" } ,
{ file = "multidict-6.0.5-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:425bf820055005bfc8aa9a0b99ccb52cc2f4070153e34b701acc98d201693733" } ,
{ file = "multidict-6.0.5-cp311-cp311-musllinux_1_1_aarch64.whl" , hash = "sha256:d3eb1ceec286eba8220c26f3b0096cf189aea7057b6e7b7a2e60ed36b373b77f" } ,
{ file = "multidict-6.0.5-cp311-cp311-musllinux_1_1_i686.whl" , hash = "sha256:7901c05ead4b3fb75113fb1dd33eb1253c6d3ee37ce93305acd9d38e0b5f21a4" } ,
{ file = "multidict-6.0.5-cp311-cp311-musllinux_1_1_ppc64le.whl" , hash = "sha256:e0e79d91e71b9867c73323a3444724d496c037e578a0e1755ae159ba14f4f3d1" } ,
{ file = "multidict-6.0.5-cp311-cp311-musllinux_1_1_s390x.whl" , hash = "sha256:29bfeb0dff5cb5fdab2023a7a9947b3b4af63e9c47cae2a10ad58394b517fddc" } ,
{ file = "multidict-6.0.5-cp311-cp311-musllinux_1_1_x86_64.whl" , hash = "sha256:e030047e85cbcedbfc073f71836d62dd5dadfbe7531cae27789ff66bc551bd5e" } ,
{ file = "multidict-6.0.5-cp311-cp311-win32.whl" , hash = "sha256:2f4848aa3baa109e6ab81fe2006c77ed4d3cd1e0ac2c1fbddb7b1277c168788c" } ,
{ file = "multidict-6.0.5-cp311-cp311-win_amd64.whl" , hash = "sha256:2faa5ae9376faba05f630d7e5e6be05be22913782b927b19d12b8145968a85ea" } ,
{ file = "multidict-6.0.5-cp312-cp312-macosx_10_9_universal2.whl" , hash = "sha256:51d035609b86722963404f711db441cf7134f1889107fb171a970c9701f92e1e" } ,
{ file = "multidict-6.0.5-cp312-cp312-macosx_10_9_x86_64.whl" , hash = "sha256:cbebcd5bcaf1eaf302617c114aa67569dd3f090dd0ce8ba9e35e9985b41ac35b" } ,
{ file = "multidict-6.0.5-cp312-cp312-macosx_11_0_arm64.whl" , hash = "sha256:2ffc42c922dbfddb4a4c3b438eb056828719f07608af27d163191cb3e3aa6cc5" } ,
{ file = "multidict-6.0.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:ceb3b7e6a0135e092de86110c5a74e46bda4bd4fbfeeb3a3bcec79c0f861e450" } ,
{ file = "multidict-6.0.5-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:79660376075cfd4b2c80f295528aa6beb2058fd289f4c9252f986751a4cd0496" } ,
{ file = "multidict-6.0.5-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:e4428b29611e989719874670fd152b6625500ad6c686d464e99f5aaeeaca175a" } ,
{ file = "multidict-6.0.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:d84a5c3a5f7ce6db1f999fb9438f686bc2e09d38143f2d93d8406ed2dd6b9226" } ,
{ file = "multidict-6.0.5-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:76c0de87358b192de7ea9649beb392f107dcad9ad27276324c24c91774ca5271" } ,
{ file = "multidict-6.0.5-cp312-cp312-musllinux_1_1_aarch64.whl" , hash = "sha256:79a6d2ba910adb2cbafc95dad936f8b9386e77c84c35bc0add315b856d7c3abb" } ,
{ file = "multidict-6.0.5-cp312-cp312-musllinux_1_1_i686.whl" , hash = "sha256:92d16a3e275e38293623ebf639c471d3e03bb20b8ebb845237e0d3664914caef" } ,
{ file = "multidict-6.0.5-cp312-cp312-musllinux_1_1_ppc64le.whl" , hash = "sha256:fb616be3538599e797a2017cccca78e354c767165e8858ab5116813146041a24" } ,
{ file = "multidict-6.0.5-cp312-cp312-musllinux_1_1_s390x.whl" , hash = "sha256:14c2976aa9038c2629efa2c148022ed5eb4cb939e15ec7aace7ca932f48f9ba6" } ,
{ file = "multidict-6.0.5-cp312-cp312-musllinux_1_1_x86_64.whl" , hash = "sha256:435a0984199d81ca178b9ae2c26ec3d49692d20ee29bc4c11a2a8d4514c67eda" } ,
{ file = "multidict-6.0.5-cp312-cp312-win32.whl" , hash = "sha256:9fe7b0653ba3d9d65cbe7698cca585bf0f8c83dbbcc710db9c90f478e175f2d5" } ,
{ file = "multidict-6.0.5-cp312-cp312-win_amd64.whl" , hash = "sha256:01265f5e40f5a17f8241d52656ed27192be03bfa8764d88e8220141d1e4b3556" } ,
{ file = "multidict-6.0.5-cp37-cp37m-macosx_10_9_x86_64.whl" , hash = "sha256:19fe01cea168585ba0f678cad6f58133db2aa14eccaf22f88e4a6dccadfad8b3" } ,
{ file = "multidict-6.0.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:6bf7a982604375a8d49b6cc1b781c1747f243d91b81035a9b43a2126c04766f5" } ,
{ file = "multidict-6.0.5-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:107c0cdefe028703fb5dafe640a409cb146d44a6ae201e55b35a4af8e95457dd" } ,
{ file = "multidict-6.0.5-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:403c0911cd5d5791605808b942c88a8155c2592e05332d2bf78f18697a5fa15e" } ,
{ file = "multidict-6.0.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:aeaf541ddbad8311a87dd695ed9642401131ea39ad7bc8cf3ef3967fd093b626" } ,
{ file = "multidict-6.0.5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:e4972624066095e52b569e02b5ca97dbd7a7ddd4294bf4e7247d52635630dd83" } ,
{ file = "multidict-6.0.5-cp37-cp37m-musllinux_1_1_aarch64.whl" , hash = "sha256:d946b0a9eb8aaa590df1fe082cee553ceab173e6cb5b03239716338629c50c7a" } ,
{ file = "multidict-6.0.5-cp37-cp37m-musllinux_1_1_i686.whl" , hash = "sha256:b55358304d7a73d7bdf5de62494aaf70bd33015831ffd98bc498b433dfe5b10c" } ,
{ file = "multidict-6.0.5-cp37-cp37m-musllinux_1_1_ppc64le.whl" , hash = "sha256:a3145cb08d8625b2d3fee1b2d596a8766352979c9bffe5d7833e0503d0f0b5e5" } ,
{ file = "multidict-6.0.5-cp37-cp37m-musllinux_1_1_s390x.whl" , hash = "sha256:d65f25da8e248202bd47445cec78e0025c0fe7582b23ec69c3b27a640dd7a8e3" } ,
{ file = "multidict-6.0.5-cp37-cp37m-musllinux_1_1_x86_64.whl" , hash = "sha256:c9bf56195c6bbd293340ea82eafd0071cb3d450c703d2c93afb89f93b8386ccc" } ,
{ file = "multidict-6.0.5-cp37-cp37m-win32.whl" , hash = "sha256:69db76c09796b313331bb7048229e3bee7928eb62bab5e071e9f7fcc4879caee" } ,
{ file = "multidict-6.0.5-cp37-cp37m-win_amd64.whl" , hash = "sha256:fce28b3c8a81b6b36dfac9feb1de115bab619b3c13905b419ec71d03a3fc1423" } ,
{ file = "multidict-6.0.5-cp38-cp38-macosx_10_9_universal2.whl" , hash = "sha256:76f067f5121dcecf0d63a67f29080b26c43c71a98b10c701b0677e4a065fbd54" } ,
{ file = "multidict-6.0.5-cp38-cp38-macosx_10_9_x86_64.whl" , hash = "sha256:b82cc8ace10ab5bd93235dfaab2021c70637005e1ac787031f4d1da63d493c1d" } ,
{ file = "multidict-6.0.5-cp38-cp38-macosx_11_0_arm64.whl" , hash = "sha256:5cb241881eefd96b46f89b1a056187ea8e9ba14ab88ba632e68d7a2ecb7aadf7" } ,
{ file = "multidict-6.0.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:e8e94e6912639a02ce173341ff62cc1201232ab86b8a8fcc05572741a5dc7d93" } ,
{ file = "multidict-6.0.5-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:09a892e4a9fb47331da06948690ae38eaa2426de97b4ccbfafbdcbe5c8f37ff8" } ,
{ file = "multidict-6.0.5-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:55205d03e8a598cfc688c71ca8ea5f66447164efff8869517f175ea632c7cb7b" } ,
{ file = "multidict-6.0.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:37b15024f864916b4951adb95d3a80c9431299080341ab9544ed148091b53f50" } ,
{ file = "multidict-6.0.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:f2a1dee728b52b33eebff5072817176c172050d44d67befd681609b4746e1c2e" } ,
{ file = "multidict-6.0.5-cp38-cp38-musllinux_1_1_aarch64.whl" , hash = "sha256:edd08e6f2f1a390bf137080507e44ccc086353c8e98c657e666c017718561b89" } ,
{ file = "multidict-6.0.5-cp38-cp38-musllinux_1_1_i686.whl" , hash = "sha256:60d698e8179a42ec85172d12f50b1668254628425a6bd611aba022257cac1386" } ,
{ file = "multidict-6.0.5-cp38-cp38-musllinux_1_1_ppc64le.whl" , hash = "sha256:3d25f19500588cbc47dc19081d78131c32637c25804df8414463ec908631e453" } ,
{ file = "multidict-6.0.5-cp38-cp38-musllinux_1_1_s390x.whl" , hash = "sha256:4cc0ef8b962ac7a5e62b9e826bd0cd5040e7d401bc45a6835910ed699037a461" } ,
{ file = "multidict-6.0.5-cp38-cp38-musllinux_1_1_x86_64.whl" , hash = "sha256:eca2e9d0cc5a889850e9bbd68e98314ada174ff6ccd1129500103df7a94a7a44" } ,
{ file = "multidict-6.0.5-cp38-cp38-win32.whl" , hash = "sha256:4a6a4f196f08c58c59e0b8ef8ec441d12aee4125a7d4f4fef000ccb22f8d7241" } ,
{ file = "multidict-6.0.5-cp38-cp38-win_amd64.whl" , hash = "sha256:0275e35209c27a3f7951e1ce7aaf93ce0d163b28948444bec61dd7badc6d3f8c" } ,
{ file = "multidict-6.0.5-cp39-cp39-macosx_10_9_universal2.whl" , hash = "sha256:e7be68734bd8c9a513f2b0cfd508802d6609da068f40dc57d4e3494cefc92929" } ,
{ file = "multidict-6.0.5-cp39-cp39-macosx_10_9_x86_64.whl" , hash = "sha256:1d9ea7a7e779d7a3561aade7d596649fbecfa5c08a7674b11b423783217933f9" } ,
{ file = "multidict-6.0.5-cp39-cp39-macosx_11_0_arm64.whl" , hash = "sha256:ea1456df2a27c73ce51120fa2f519f1bea2f4a03a917f4a43c8707cf4cbbae1a" } ,
{ file = "multidict-6.0.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:cf590b134eb70629e350691ecca88eac3e3b8b3c86992042fb82e3cb1830d5e1" } ,
{ file = "multidict-6.0.5-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:5c0631926c4f58e9a5ccce555ad7747d9a9f8b10619621f22f9635f069f6233e" } ,
{ file = "multidict-6.0.5-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:dce1c6912ab9ff5f179eaf6efe7365c1f425ed690b03341911bf4939ef2f3046" } ,
{ file = "multidict-6.0.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:c0868d64af83169e4d4152ec612637a543f7a336e4a307b119e98042e852ad9c" } ,
{ file = "multidict-6.0.5-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:141b43360bfd3bdd75f15ed811850763555a251e38b2405967f8e25fb43f7d40" } ,
{ file = "multidict-6.0.5-cp39-cp39-musllinux_1_1_aarch64.whl" , hash = "sha256:7df704ca8cf4a073334e0427ae2345323613e4df18cc224f647f251e5e75a527" } ,
{ file = "multidict-6.0.5-cp39-cp39-musllinux_1_1_i686.whl" , hash = "sha256:6214c5a5571802c33f80e6c84713b2c79e024995b9c5897f794b43e714daeec9" } ,
{ file = "multidict-6.0.5-cp39-cp39-musllinux_1_1_ppc64le.whl" , hash = "sha256:cd6c8fca38178e12c00418de737aef1261576bd1b6e8c6134d3e729a4e858b38" } ,
{ file = "multidict-6.0.5-cp39-cp39-musllinux_1_1_s390x.whl" , hash = "sha256:e02021f87a5b6932fa6ce916ca004c4d441509d33bbdbeca70d05dff5e9d2479" } ,
{ file = "multidict-6.0.5-cp39-cp39-musllinux_1_1_x86_64.whl" , hash = "sha256:ebd8d160f91a764652d3e51ce0d2956b38efe37c9231cd82cfc0bed2e40b581c" } ,
{ file = "multidict-6.0.5-cp39-cp39-win32.whl" , hash = "sha256:04da1bb8c8dbadf2a18a452639771951c662c5ad03aefe4884775454be322c9b" } ,
{ file = "multidict-6.0.5-cp39-cp39-win_amd64.whl" , hash = "sha256:d6f6d4f185481c9669b9447bf9d9cf3b95a0e9df9d169bbc17e363b7d5487755" } ,
{ file = "multidict-6.0.5-py3-none-any.whl" , hash = "sha256:0d63c74e3d7ab26de115c49bffc92cc77ed23395303d496eae515d4204a625e7" } ,
{ file = "multidict-6.0.5.tar.gz" , hash = "sha256:f7e301075edaf50500f0b341543c41194d8df3ae5caf4702f2095f3ca73dd8da" } ,
2023-12-11 21:53:30 +00:00
]
2024-03-15 17:10:47 +00:00
[ [ package ] ]
name = "multiprocess"
version = "0.70.16"
description = "better multiprocessing and multithreading in Python"
optional = true
python-versions = ">=3.8"
files = [
{ file = "multiprocess-0.70.16-pp310-pypy310_pp73-macosx_10_13_x86_64.whl" , hash = "sha256:476887be10e2f59ff183c006af746cb6f1fd0eadcfd4ef49e605cbe2659920ee" } ,
{ file = "multiprocess-0.70.16-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl" , hash = "sha256:d951bed82c8f73929ac82c61f01a7b5ce8f3e5ef40f5b52553b4f547ce2b08ec" } ,
{ file = "multiprocess-0.70.16-pp38-pypy38_pp73-macosx_10_9_x86_64.whl" , hash = "sha256:37b55f71c07e2d741374998c043b9520b626a8dddc8b3129222ca4f1a06ef67a" } ,
{ file = "multiprocess-0.70.16-pp38-pypy38_pp73-manylinux_2_28_x86_64.whl" , hash = "sha256:ba8c31889abf4511c7308a8c52bb4a30b9d590e7f58523302ba00237702ca054" } ,
{ file = "multiprocess-0.70.16-pp39-pypy39_pp73-macosx_10_13_x86_64.whl" , hash = "sha256:0dfd078c306e08d46d7a8d06fb120313d87aa43af60d66da43ffff40b44d2f41" } ,
{ file = "multiprocess-0.70.16-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl" , hash = "sha256:e7b9d0f307cd9bd50851afaac0dba2cb6c44449efff697df7c7645f7d3f2be3a" } ,
{ file = "multiprocess-0.70.16-py310-none-any.whl" , hash = "sha256:c4a9944c67bd49f823687463660a2d6daae94c289adff97e0f9d696ba6371d02" } ,
{ file = "multiprocess-0.70.16-py311-none-any.whl" , hash = "sha256:af4cabb0dac72abfb1e794fa7855c325fd2b55a10a44628a3c1ad3311c04127a" } ,
{ file = "multiprocess-0.70.16-py312-none-any.whl" , hash = "sha256:fc0544c531920dde3b00c29863377f87e1632601092ea2daca74e4beb40faa2e" } ,
{ file = "multiprocess-0.70.16-py38-none-any.whl" , hash = "sha256:a71d82033454891091a226dfc319d0cfa8019a4e888ef9ca910372a446de4435" } ,
{ file = "multiprocess-0.70.16-py39-none-any.whl" , hash = "sha256:a0bafd3ae1b732eac64be2e72038231c1ba97724b60b09400d68f229fcc2fbf3" } ,
{ file = "multiprocess-0.70.16.tar.gz" , hash = "sha256:161af703d4652a0e1410be6abccecde4a7ddffd19341be0a7011b94aeb171ac1" } ,
]
[ package . dependencies ]
dill = ">=0.3.8"
[ [ package ] ]
name = "mwcli"
version = "0.0.3"
description = "Utilities for processing MediaWiki on the command line."
optional = true
python-versions = "*"
files = [
{ file = "mwcli-0.0.3-py2.py3-none-any.whl" , hash = "sha256:24a7e53730e6fa7e55626e4f2a61a0b016d5e0a9798306c1d8c71bcead0ab239" } ,
{ file = "mwcli-0.0.3.tar.gz" , hash = "sha256:00331bd0ff16b5721c9c6274d91e25fd355f45ec0773c8a0e3926eac058719a0" } ,
]
[ package . dependencies ]
docopt = "*"
mwxml = "*"
para = "*"
[ [ package ] ]
name = "mwparserfromhell"
version = "0.6.6"
description = "MWParserFromHell is a parser for MediaWiki wikicode."
optional = true
python-versions = ">= 3.8"
files = [
{ file = "mwparserfromhell-0.6.6-cp310-cp310-macosx_11_0_x86_64.whl" , hash = "sha256:d6995b9cfe6ec79556db0232a39210ac11aa69ee304cfc95b29c51be381e202b" } ,
{ file = "mwparserfromhell-0.6.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:ebc70f8a24aa60e54728be740f1c12a4acb1b12d1cc947d87b067cc1c83339fd" } ,
{ file = "mwparserfromhell-0.6.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:9136696d6b29838adcf8f428e3f7028b2c6e788fc05fe1beeb4b135429c356df" } ,
{ file = "mwparserfromhell-0.6.6-cp310-cp310-win32.whl" , hash = "sha256:6b11dea3bcdebe4554933169eade815e9d6b898175faa5a20a744524fd99210f" } ,
{ file = "mwparserfromhell-0.6.6-cp310-cp310-win_amd64.whl" , hash = "sha256:6a89edf53f15877223d923e122e9a97f3f7b85f56dc56d91a3d77b89c9dd4126" } ,
{ file = "mwparserfromhell-0.6.6-cp311-cp311-macosx_10_9_universal2.whl" , hash = "sha256:fff66e97f7c02aa0fd57ff8f702977a9c5a1d72ef55b64ee9b146291e4c41057" } ,
{ file = "mwparserfromhell-0.6.6-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:59633d3cc09993af75ced8dfbd6800e1e38e64620851a095575621548448875c" } ,
{ file = "mwparserfromhell-0.6.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:007d0859e5467241b73c6e974df039a074609ce4e2b9df8c2263a8920554d032" } ,
{ file = "mwparserfromhell-0.6.6-cp311-cp311-win32.whl" , hash = "sha256:dbe5976b1b524e26aa2eb71b6219960f2578f56b536c68e0a79deb63e3b7f710" } ,
{ file = "mwparserfromhell-0.6.6-cp311-cp311-win_amd64.whl" , hash = "sha256:063c1e79befd1f55d77c358e0f5006f5ecf88ddf218ff6af55188d686139330e" } ,
{ file = "mwparserfromhell-0.6.6-cp312-cp312-macosx_10_9_universal2.whl" , hash = "sha256:910d36bc70e8bea758380e75c12fd47626b295abec9f73a6099d8f937a649e77" } ,
{ file = "mwparserfromhell-0.6.6-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:d2febd92a55a3f19b461833267726cb81429c3d6cb0006ad1691dfa849789e5d" } ,
{ file = "mwparserfromhell-0.6.6-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:2b75fae6d01c8fda19dbf127175122d7aa2964ef6454690e6868bbc3d80a7bc1" } ,
{ file = "mwparserfromhell-0.6.6-cp312-cp312-win32.whl" , hash = "sha256:19e9a4bcd85707c83172405eb2a9a046eff9d38dd7f1a56a5e5ecbbfef4a640a" } ,
{ file = "mwparserfromhell-0.6.6-cp312-cp312-win_amd64.whl" , hash = "sha256:cdc46c115b2495d4025920b7b30a6885a96d2b797ccc4009bf3cc02940ae55d3" } ,
{ file = "mwparserfromhell-0.6.6-cp38-cp38-macosx_11_0_x86_64.whl" , hash = "sha256:fd05481adc0806f4b8f8f8cb309ec56924b17ce386cb1c2f73919d8a012e6b16" } ,
{ file = "mwparserfromhell-0.6.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:03e03b8bec729af850457d045b04d0c9d3e296ff8bf66b455f754cccb29c3bea" } ,
{ file = "mwparserfromhell-0.6.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:1d2422659abb29191a0fa096cf8bead837ac3ecd343065569b2acc7a84ecf866" } ,
{ file = "mwparserfromhell-0.6.6-cp38-cp38-win32.whl" , hash = "sha256:a58251a5d5c77abdfd061624dc05667c2774e93e8178a2fbd1a3b45f8673f1a9" } ,
{ file = "mwparserfromhell-0.6.6-cp38-cp38-win_amd64.whl" , hash = "sha256:e28ffa9a7e0748ec64002a84234201ef69c2d4a710508baf9cc25f4ee274c6bd" } ,
{ file = "mwparserfromhell-0.6.6-cp39-cp39-macosx_11_0_x86_64.whl" , hash = "sha256:746bad799179684994ecee72a26352e0bbe2b697f6a7e35dc5ad151606bcb8ab" } ,
{ file = "mwparserfromhell-0.6.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:50c482e703d2d51401f7e36a71ae9493901f170225940196292f97398713dde5" } ,
{ file = "mwparserfromhell-0.6.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:1915fe4f5e5ae34f16242d4cd98da2adc81a810ab94105ec2af3dc95d7ce74aa" } ,
{ file = "mwparserfromhell-0.6.6-cp39-cp39-win32.whl" , hash = "sha256:54e2dd30edc1a358408d14343b30dcca0b4613227781e4bbee968bd4395d94ff" } ,
{ file = "mwparserfromhell-0.6.6-cp39-cp39-win_amd64.whl" , hash = "sha256:1960bcc5115ea57427df130150edf1dbfc2fb03465e548e630bb6eb37976d793" } ,
{ file = "mwparserfromhell-0.6.6.tar.gz" , hash = "sha256:71afec1e9784ba576e95d6f34845582d3c733a3a52ba770dd8a9c3a40e5b649f" } ,
]
[ [ package ] ]
name = "mwtypes"
version = "0.3.2"
description = "A set of types for processing MediaWiki data."
optional = true
python-versions = "*"
files = [
{ file = "mwtypes-0.3.2-py2.py3-none-any.whl" , hash = "sha256:d6f3cae90eea4c88bc260101c8a082fb0ab22cca88e7474657b28cd9538794f3" } ,
{ file = "mwtypes-0.3.2.tar.gz" , hash = "sha256:dc1176c5965629c123e859b319ae6151d4e385531e9a781604c0d4ca3434e399" } ,
]
[ package . dependencies ]
jsonable = ">=0.3.0"
[ [ package ] ]
name = "mwxml"
version = "0.3.3"
description = "A set of utilities for processing MediaWiki XML dump data."
optional = true
python-versions = "*"
files = [
{ file = "mwxml-0.3.3-py2.py3-none-any.whl" , hash = "sha256:9695848b8b6987b6f6addc2a8accba5b2bcbc543702598194e182b508ab568a9" } ,
{ file = "mwxml-0.3.3.tar.gz" , hash = "sha256:0848df0cf2e293718f554311acf4715bd679f639f4e52cbe47d8206589db1d31" } ,
]
[ package . dependencies ]
jsonschema = ">=2.5.1"
mwcli = ">=0.0.2"
mwtypes = ">=0.3.0"
para = ">=0.0.1"
2023-12-11 21:53:30 +00:00
[ [ package ] ]
name = "mypy"
version = "0.991"
description = "Optional static typing for Python"
optional = false
python-versions = ">=3.7"
files = [
{ file = "mypy-0.991-cp310-cp310-macosx_10_9_universal2.whl" , hash = "sha256:7d17e0a9707d0772f4a7b878f04b4fd11f6f5bcb9b3813975a9b13c9332153ab" } ,
{ file = "mypy-0.991-cp310-cp310-macosx_10_9_x86_64.whl" , hash = "sha256:0714258640194d75677e86c786e80ccf294972cc76885d3ebbb560f11db0003d" } ,
{ file = "mypy-0.991-cp310-cp310-macosx_11_0_arm64.whl" , hash = "sha256:0c8f3be99e8a8bd403caa8c03be619544bc2c77a7093685dcf308c6b109426c6" } ,
{ file = "mypy-0.991-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:bc9ec663ed6c8f15f4ae9d3c04c989b744436c16d26580eaa760ae9dd5d662eb" } ,
{ file = "mypy-0.991-cp310-cp310-musllinux_1_1_x86_64.whl" , hash = "sha256:4307270436fd7694b41f913eb09210faff27ea4979ecbcd849e57d2da2f65305" } ,
{ file = "mypy-0.991-cp310-cp310-win_amd64.whl" , hash = "sha256:901c2c269c616e6cb0998b33d4adbb4a6af0ac4ce5cd078afd7bc95830e62c1c" } ,
{ file = "mypy-0.991-cp311-cp311-macosx_10_9_universal2.whl" , hash = "sha256:d13674f3fb73805ba0c45eb6c0c3053d218aa1f7abead6e446d474529aafc372" } ,
{ file = "mypy-0.991-cp311-cp311-macosx_10_9_x86_64.whl" , hash = "sha256:1c8cd4fb70e8584ca1ed5805cbc7c017a3d1a29fb450621089ffed3e99d1857f" } ,
{ file = "mypy-0.991-cp311-cp311-macosx_11_0_arm64.whl" , hash = "sha256:209ee89fbb0deed518605edddd234af80506aec932ad28d73c08f1400ef80a33" } ,
{ file = "mypy-0.991-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:37bd02ebf9d10e05b00d71302d2c2e6ca333e6c2a8584a98c00e038db8121f05" } ,
{ file = "mypy-0.991-cp311-cp311-musllinux_1_1_x86_64.whl" , hash = "sha256:26efb2fcc6b67e4d5a55561f39176821d2adf88f2745ddc72751b7890f3194ad" } ,
{ file = "mypy-0.991-cp311-cp311-win_amd64.whl" , hash = "sha256:3a700330b567114b673cf8ee7388e949f843b356a73b5ab22dd7cff4742a5297" } ,
{ file = "mypy-0.991-cp37-cp37m-macosx_10_9_x86_64.whl" , hash = "sha256:1f7d1a520373e2272b10796c3ff721ea1a0712288cafaa95931e66aa15798813" } ,
{ file = "mypy-0.991-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:641411733b127c3e0dab94c45af15fea99e4468f99ac88b39efb1ad677da5711" } ,
{ file = "mypy-0.991-cp37-cp37m-musllinux_1_1_x86_64.whl" , hash = "sha256:3d80e36b7d7a9259b740be6d8d906221789b0d836201af4234093cae89ced0cd" } ,
{ file = "mypy-0.991-cp37-cp37m-win_amd64.whl" , hash = "sha256:e62ebaad93be3ad1a828a11e90f0e76f15449371ffeecca4a0a0b9adc99abcef" } ,
{ file = "mypy-0.991-cp38-cp38-macosx_10_9_universal2.whl" , hash = "sha256:b86ce2c1866a748c0f6faca5232059f881cda6dda2a893b9a8373353cfe3715a" } ,
{ file = "mypy-0.991-cp38-cp38-macosx_10_9_x86_64.whl" , hash = "sha256:ac6e503823143464538efda0e8e356d871557ef60ccd38f8824a4257acc18d93" } ,
{ file = "mypy-0.991-cp38-cp38-macosx_11_0_arm64.whl" , hash = "sha256:0cca5adf694af539aeaa6ac633a7afe9bbd760df9d31be55ab780b77ab5ae8bf" } ,
{ file = "mypy-0.991-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:a12c56bf73cdab116df96e4ff39610b92a348cc99a1307e1da3c3768bbb5b135" } ,
{ file = "mypy-0.991-cp38-cp38-musllinux_1_1_x86_64.whl" , hash = "sha256:652b651d42f155033a1967739788c436491b577b6a44e4c39fb340d0ee7f0d70" } ,
{ file = "mypy-0.991-cp38-cp38-win_amd64.whl" , hash = "sha256:4175593dc25d9da12f7de8de873a33f9b2b8bdb4e827a7cae952e5b1a342e243" } ,
{ file = "mypy-0.991-cp39-cp39-macosx_10_9_universal2.whl" , hash = "sha256:98e781cd35c0acf33eb0295e8b9c55cdbef64fcb35f6d3aa2186f289bed6e80d" } ,
{ file = "mypy-0.991-cp39-cp39-macosx_10_9_x86_64.whl" , hash = "sha256:6d7464bac72a85cb3491c7e92b5b62f3dcccb8af26826257760a552a5e244aa5" } ,
{ file = "mypy-0.991-cp39-cp39-macosx_11_0_arm64.whl" , hash = "sha256:c9166b3f81a10cdf9b49f2d594b21b31adadb3d5e9db9b834866c3258b695be3" } ,
{ file = "mypy-0.991-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:b8472f736a5bfb159a5e36740847808f6f5b659960115ff29c7cecec1741c648" } ,
{ file = "mypy-0.991-cp39-cp39-musllinux_1_1_x86_64.whl" , hash = "sha256:5e80e758243b97b618cdf22004beb09e8a2de1af481382e4d84bc52152d1c476" } ,
{ file = "mypy-0.991-cp39-cp39-win_amd64.whl" , hash = "sha256:74e259b5c19f70d35fcc1ad3d56499065c601dfe94ff67ae48b85596b9ec1461" } ,
{ file = "mypy-0.991-py3-none-any.whl" , hash = "sha256:de32edc9b0a7e67c2775e574cb061a537660e51210fbf6006b0b36ea695ae9bb" } ,
{ file = "mypy-0.991.tar.gz" , hash = "sha256:3c0165ba8f354a6d9881809ef29f1a9318a236a6d81c690094c5df32107bde06" } ,
]
[ package . dependencies ]
mypy-extensions = ">=0.4.3"
tomli = { version = ">=1.1.0" , markers = "python_version < \"3.11\"" }
typing-extensions = ">=3.10"
[ package . extras ]
dmypy = [ "psutil (>=4.0)" ]
install-types = [ "pip" ]
2024-03-15 05:55:30 +00:00
python2 = [ "typed-ast (>=1.4.0,<2)" ]
reports = [ "lxml" ]
2024-03-08 02:20:47 +00:00
2024-03-15 17:10:47 +00:00
[ [ package ] ]
name = "mypy-boto3-s3"
version = "1.34.14"
description = "Type annotations for boto3.S3 1.34.14 service generated with mypy-boto3-builder 7.21.0"
optional = true
python-versions = ">=3.8"
files = [
{ file = "mypy-boto3-s3-1.34.14.tar.gz" , hash = "sha256:71c39ab0623cdb442d225b71c1783f6a513cff4c4a13505a2efbb2e3aff2e965" } ,
{ file = "mypy_boto3_s3-1.34.14-py3-none-any.whl" , hash = "sha256:f9669ecd182d5bf3532f5f2dcc5e5237776afe157ad5a0b37b26d6bec5fcc432" } ,
]
[ package . dependencies ]
typing-extensions = { version = ">=4.1.0" , markers = "python_version < \"3.12\"" }
2023-12-11 21:53:30 +00:00
[ [ package ] ]
name = "mypy-extensions"
version = "1.0.0"
description = "Type system extensions for programs checked with the mypy type checker."
optional = false
python-versions = ">=3.5"
files = [
{ file = "mypy_extensions-1.0.0-py3-none-any.whl" , hash = "sha256:4392f6c0eb8a5668a69e23d168ffa70f0be9ccfd32b5cc2d26a34ae5b844552d" } ,
{ file = "mypy_extensions-1.0.0.tar.gz" , hash = "sha256:75dbf8955dc00442a438fc4d0666508a9a97b6bd41aa2f0ffe9d2f2725af0782" } ,
]
[ [ package ] ]
name = "mypy-protobuf"
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
version = "3.5.0"
2023-12-11 21:53:30 +00:00
description = "Generate mypy stub files from protobuf specs"
optional = false
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
python-versions = ">=3.8"
2023-12-11 21:53:30 +00:00
files = [
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
{ file = "mypy-protobuf-3.5.0.tar.gz" , hash = "sha256:21f270da0a9792a9dac76b0df463c027e561664ab6973c59be4e4d064dfe67dc" } ,
{ file = "mypy_protobuf-3.5.0-py3-none-any.whl" , hash = "sha256:0d0548c6b9a6faf14ce1a9ce2831c403a5c1f2a9363e85b1e2c51d5d57aa8393" } ,
2023-12-11 21:53:30 +00:00
]
[ package . dependencies ]
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
protobuf = ">=4.23.4"
types-protobuf = ">=4.23.0.2"
2023-12-11 21:53:30 +00:00
[ [ package ] ]
name = "nbclient"
2024-03-15 17:10:47 +00:00
version = "0.9.1"
2023-12-11 21:53:30 +00:00
description = "A client library for executing notebooks. Formerly nbconvert's ExecutePreprocessor."
optional = false
python-versions = ">=3.8.0"
files = [
2024-03-15 17:10:47 +00:00
{ file = "nbclient-0.9.1-py3-none-any.whl" , hash = "sha256:2c50a866e8dd6c5f655de47d2e252c82d2ebe978574e760ac229f5950593a434" } ,
{ file = "nbclient-0.9.1.tar.gz" , hash = "sha256:4f7b78c6c2a380e228f8a3bb469b847cb24e5b8ad6fda410691b5621e05ce5a2" } ,
2023-12-11 21:53:30 +00:00
]
[ package . dependencies ]
jupyter-client = ">=6.1.12"
jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0"
nbformat = ">=5.1"
traitlets = ">=5.4"
[ package . extras ]
dev = [ "pre-commit" ]
docs = [ "autodoc-traits" , "mock" , "moto" , "myst-parser" , "nbclient[test]" , "sphinx (>=1.7)" , "sphinx-book-theme" , "sphinxcontrib-spelling" ]
2024-03-12 21:55:29 +00:00
test = [ "flaky" , "ipykernel (>=6.19.3)" , "ipython" , "ipywidgets" , "nbconvert (>=7.0.0)" , "pytest (>=7.0,<8)" , "pytest-asyncio" , "pytest-cov (>=4.0)" , "testpath" , "xmltodict" ]
2023-12-11 21:53:30 +00:00
[ [ package ] ]
name = "nbconvert"
2024-03-08 02:20:47 +00:00
version = "7.16.2"
description = "Converting Jupyter Notebooks (.ipynb files) to other formats. Output formats include asciidoc, html, latex, markdown, pdf, py, rst, script. nbconvert can be used both as a Python library (`import nbconvert`) or as a command line tool (invoked as `jupyter nbconvert ...`)."
2023-12-11 21:53:30 +00:00
optional = false
python-versions = ">=3.8"
files = [
2024-03-08 02:20:47 +00:00
{ file = "nbconvert-7.16.2-py3-none-any.whl" , hash = "sha256:0c01c23981a8de0220255706822c40b751438e32467d6a686e26be08ba784382" } ,
{ file = "nbconvert-7.16.2.tar.gz" , hash = "sha256:8310edd41e1c43947e4ecf16614c61469ebc024898eb808cce0999860fc9fb16" } ,
2023-12-11 21:53:30 +00:00
]
[ package . dependencies ]
beautifulsoup4 = "*"
bleach = "!=5.0.0"
defusedxml = "*"
importlib-metadata = { version = ">=3.6" , markers = "python_version < \"3.10\"" }
jinja2 = ">=3.0"
jupyter-core = ">=4.7"
jupyterlab-pygments = "*"
markupsafe = ">=2.0"
mistune = ">=2.0.3,<4"
nbclient = ">=0.5.0"
nbformat = ">=5.7"
packaging = "*"
pandocfilters = ">=1.4.1"
pygments = ">=2.4.1"
tinycss2 = "*"
traitlets = ">=5.1"
[ package . extras ]
all = [ "nbconvert[docs,qtpdf,serve,test,webpdf]" ]
docs = [ "ipykernel" , "ipython" , "myst-parser" , "nbsphinx (>=0.2.12)" , "pydata-sphinx-theme" , "sphinx (==5.0.2)" , "sphinxcontrib-spelling" ]
qtpdf = [ "nbconvert[qtpng]" ]
qtpng = [ "pyqtwebengine (>=5.15)" ]
serve = [ "tornado (>=6.1)" ]
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
test = [ "flaky" , "ipykernel" , "ipywidgets (>=7.5)" , "pytest" ]
2023-12-11 21:53:30 +00:00
webpdf = [ "playwright" ]
[ [ package ] ]
name = "nbformat"
2024-03-12 21:55:29 +00:00
version = "5.10.2"
2023-12-11 21:53:30 +00:00
description = "The Jupyter Notebook format"
optional = false
python-versions = ">=3.8"
files = [
2024-03-12 21:55:29 +00:00
{ file = "nbformat-5.10.2-py3-none-any.whl" , hash = "sha256:7381189a0d537586b3f18bae5dbad347d7dd0a7cf0276b09cdcd5c24d38edd99" } ,
{ file = "nbformat-5.10.2.tar.gz" , hash = "sha256:c535b20a0d4310167bf4d12ad31eccfb0dc61e6392d6f8c570ab5b45a06a49a3" } ,
2023-12-11 21:53:30 +00:00
]
[ package . dependencies ]
fastjsonschema = "*"
jsonschema = ">=2.6"
jupyter-core = "*"
traitlets = ">=5.1"
[ package . extras ]
docs = [ "myst-parser" , "pydata-sphinx-theme" , "sphinx" , "sphinxcontrib-github-alt" , "sphinxcontrib-spelling" ]
test = [ "pep440" , "pre-commit" , "pytest" , "testpath" ]
[ [ package ] ]
name = "nest-asyncio"
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
version = "1.6.0"
2023-12-11 21:53:30 +00:00
description = "Patch asyncio to allow nested event loops"
optional = false
python-versions = ">=3.5"
files = [
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
{ file = "nest_asyncio-1.6.0-py3-none-any.whl" , hash = "sha256:87af6efd6b5e897c81050477ef65c62e2b2f35d51703cae01aff2905b1852e1c" } ,
{ file = "nest_asyncio-1.6.0.tar.gz" , hash = "sha256:6f172d5449aca15afd6c646851f4e31e02c598d553a667e38cafa997cfec55fe" } ,
2023-12-11 21:53:30 +00:00
]
2024-03-15 17:10:47 +00:00
[ [ package ] ]
name = "newspaper3k"
version = "0.2.8"
description = "Simplified python article discovery & extraction."
optional = true
python-versions = "*"
files = [
{ file = "newspaper3k-0.2.8-py3-none-any.whl" , hash = "sha256:44a864222633d3081113d1030615991c3dbba87239f6bbf59d91240f71a22e3e" } ,
{ file = "newspaper3k-0.2.8.tar.gz" , hash = "sha256:9f1bd3e1fb48f400c715abf875cc7b0a67b7ddcd87f50c9aeeb8fcbbbd9004fb" } ,
]
[ package . dependencies ]
beautifulsoup4 = ">=4.4.1"
cssselect = ">=0.9.2"
feedfinder2 = ">=0.0.4"
feedparser = ">=5.2.1"
jieba3k = ">=0.35.1"
lxml = ">=3.6.0"
nltk = ">=3.2.1"
Pillow = ">=3.3.0"
python-dateutil = ">=2.5.3"
PyYAML = ">=3.11"
requests = ">=2.10.0"
tinysegmenter = "0.3"
tldextract = ">=2.0.1"
[ [ package ] ]
name = "nltk"
version = "3.8.1"
description = "Natural Language Toolkit"
optional = true
python-versions = ">=3.7"
files = [
{ file = "nltk-3.8.1-py3-none-any.whl" , hash = "sha256:fd5c9109f976fa86bcadba8f91e47f5e9293bd034474752e92a520f81c93dda5" } ,
{ file = "nltk-3.8.1.zip" , hash = "sha256:1834da3d0682cba4f2cede2f9aad6b0fafb6461ba451db0efb6f9c39798d64d3" } ,
]
[ package . dependencies ]
click = "*"
joblib = "*"
regex = ">=2021.8.3"
tqdm = "*"
[ package . extras ]
all = [ "matplotlib" , "numpy" , "pyparsing" , "python-crfsuite" , "requests" , "scikit-learn" , "scipy" , "twython" ]
corenlp = [ "requests" ]
machine-learning = [ "numpy" , "python-crfsuite" , "scikit-learn" , "scipy" ]
plot = [ "matplotlib" ]
tgrep = [ "pyparsing" ]
twitter = [ "twython" ]
2023-12-11 21:53:30 +00:00
[ [ package ] ]
name = "notebook"
2024-03-15 17:10:47 +00:00
version = "7.0.8"
2023-12-11 21:53:30 +00:00
description = "Jupyter Notebook - A web-based notebook environment for interactive computing"
optional = false
python-versions = ">=3.8"
files = [
2024-03-15 17:10:47 +00:00
{ file = "notebook-7.0.8-py3-none-any.whl" , hash = "sha256:7f421b3fd46a17d91830e724b94e8e9ae922af152ebfd48b1e13ae4a07d8193c" } ,
{ file = "notebook-7.0.8.tar.gz" , hash = "sha256:3957ecd956056b0014677afc76d3bb44c2d2f29649f87b24d13606ff1d18938f" } ,
2023-12-11 21:53:30 +00:00
]
[ package . dependencies ]
jupyter-server = ">=2.4.0,<3"
2024-03-15 17:10:47 +00:00
jupyterlab = ">=4.0.2,<4.1"
2023-12-11 21:53:30 +00:00
jupyterlab-server = ">=2.22.1,<3"
notebook-shim = ">=0.2,<0.3"
tornado = ">=6.2.0"
[ package . extras ]
dev = [ "hatch" , "pre-commit" ]
docs = [ "myst-parser" , "nbsphinx" , "pydata-sphinx-theme" , "sphinx (>=1.3.6)" , "sphinxcontrib-github-alt" , "sphinxcontrib-spelling" ]
test = [ "importlib-resources (>=5.0)" , "ipykernel" , "jupyter-server[test] (>=2.4.0,<3)" , "jupyterlab-server[test] (>=2.22.1,<3)" , "nbval" , "pytest (>=7.0)" , "pytest-console-scripts" , "pytest-timeout" , "pytest-tornasync" , "requests" ]
[ [ package ] ]
name = "notebook-shim"
2024-03-08 02:20:47 +00:00
version = "0.2.4"
2023-12-11 21:53:30 +00:00
description = "A shim layer for notebook traits and config"
optional = false
python-versions = ">=3.7"
files = [
2024-03-08 02:20:47 +00:00
{ file = "notebook_shim-0.2.4-py3-none-any.whl" , hash = "sha256:411a5be4e9dc882a074ccbcae671eda64cceb068767e9a3419096986560e1cef" } ,
{ file = "notebook_shim-0.2.4.tar.gz" , hash = "sha256:b4b2cfa1b65d98307ca24361f5b30fe785b53c3fd07b7a47e89acb5e6ac638cb" } ,
2023-12-11 21:53:30 +00:00
]
[ package . dependencies ]
jupyter-server = ">=1.8,<3"
[ package . extras ]
test = [ "pytest" , "pytest-console-scripts" , "pytest-jupyter" , "pytest-tornasync" ]
2024-03-15 17:10:47 +00:00
[ [ package ] ]
name = "numexpr"
version = "2.8.6"
description = "Fast numerical expression evaluator for NumPy"
optional = true
python-versions = ">=3.7"
files = [
{ file = "numexpr-2.8.6-cp310-cp310-macosx_10_9_x86_64.whl" , hash = "sha256:80acbfefb68bd92e708e09f0a02b29e04d388b9ae72f9fcd57988aca172a7833" } ,
{ file = "numexpr-2.8.6-cp310-cp310-macosx_11_0_arm64.whl" , hash = "sha256:6e884687da8af5955dc9beb6a12d469675c90b8fb38b6c93668c989cfc2cd982" } ,
{ file = "numexpr-2.8.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:9ef7e8aaa84fce3aba2e65f243d14a9f8cc92aafd5d90d67283815febfe43eeb" } ,
{ file = "numexpr-2.8.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:dee04d72307c09599f786b9231acffb10df7d7a74b2ce3681d74a574880d13ce" } ,
{ file = "numexpr-2.8.6-cp310-cp310-win32.whl" , hash = "sha256:211804ec25a9f6d188eadf4198dd1a92b2f61d7d20993c6c7706139bc4199c5b" } ,
{ file = "numexpr-2.8.6-cp310-cp310-win_amd64.whl" , hash = "sha256:18b1804923cfa3be7bbb45187d01c0540c8f6df4928c22a0f786e15568e9ebc5" } ,
{ file = "numexpr-2.8.6-cp311-cp311-macosx_10_9_x86_64.whl" , hash = "sha256:95b9da613761e4fc79748535b2a1f58cada22500e22713ae7d9571fa88d1c2e2" } ,
{ file = "numexpr-2.8.6-cp311-cp311-macosx_11_0_arm64.whl" , hash = "sha256:47b45da5aa25600081a649f5e8b2aa640e35db3703f4631f34bb1f2f86d1b5b4" } ,
{ file = "numexpr-2.8.6-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:84979bf14143351c2db8d9dd7fef8aca027c66ad9df9cb5e75c93bf5f7b5a338" } ,
{ file = "numexpr-2.8.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:d36528a33aa9c23743b3ea686e57526a4f71e7128a1be66210e1511b09c4e4e9" } ,
{ file = "numexpr-2.8.6-cp311-cp311-win32.whl" , hash = "sha256:681812e2e71ff1ba9145fac42d03f51ddf6ba911259aa83041323f68e7458002" } ,
{ file = "numexpr-2.8.6-cp311-cp311-win_amd64.whl" , hash = "sha256:27782177a0081bd0aab229be5d37674e7f0ab4264ef576697323dd047432a4cd" } ,
{ file = "numexpr-2.8.6-cp37-cp37m-macosx_10_9_x86_64.whl" , hash = "sha256:ef6e8896457a60a539cb6ba27da78315a9bb31edb246829b25b5b0304bfcee91" } ,
{ file = "numexpr-2.8.6-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:e640bc0eaf1b59f3dde52bc02bbfda98e62f9950202b0584deba28baf9f36bbb" } ,
{ file = "numexpr-2.8.6-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:d126938c2c3784673c9c58d94e00b1570aa65517d9c33662234d442fc9fb5795" } ,
{ file = "numexpr-2.8.6-cp37-cp37m-win32.whl" , hash = "sha256:e93d64cd20940b726477c3cb64926e683d31b778a1e18f9079a5088fd0d8e7c8" } ,
{ file = "numexpr-2.8.6-cp37-cp37m-win_amd64.whl" , hash = "sha256:31cf610c952eec57081171f0b4427f9bed2395ec70ec432bbf45d260c5c0cdeb" } ,
{ file = "numexpr-2.8.6-cp38-cp38-macosx_10_9_x86_64.whl" , hash = "sha256:b5f96c89aa0b1f13685ec32fa3d71028db0b5981bfd99a0bbc271035949136b3" } ,
{ file = "numexpr-2.8.6-cp38-cp38-macosx_11_0_arm64.whl" , hash = "sha256:c8f37f7a6af3bdd61f2efd1cafcc083a9525ab0aaf5dc641e7ec8fc0ae2d3aa1" } ,
{ file = "numexpr-2.8.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:38b8b90967026bbc36c7aa6e8ca3b8906e1990914fd21f446e2a043f4ee3bc06" } ,
{ file = "numexpr-2.8.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:1967c16f61c27df1cdc43ba3c0ba30346157048dd420b4259832276144d0f64e" } ,
{ file = "numexpr-2.8.6-cp38-cp38-win32.whl" , hash = "sha256:15469dc722b5ceb92324ec8635411355ebc702303db901ae8cc87f47c5e3a124" } ,
{ file = "numexpr-2.8.6-cp38-cp38-win_amd64.whl" , hash = "sha256:95c09e814b0d6549de98b5ded7cdf7d954d934bb6b505432ff82e83a6d330bda" } ,
{ file = "numexpr-2.8.6-cp39-cp39-macosx_10_9_x86_64.whl" , hash = "sha256:aa0f661f5f4872fd7350cc9895f5d2594794b2a7e7f1961649a351724c64acc9" } ,
{ file = "numexpr-2.8.6-cp39-cp39-macosx_11_0_arm64.whl" , hash = "sha256:8e3e6f1588d6c03877cb3b3dcc3096482da9d330013b886b29cb9586af5af3eb" } ,
{ file = "numexpr-2.8.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:8564186aad5a2c88d597ebc79b8171b52fd33e9b085013e1ff2208f7e4b387e3" } ,
{ file = "numexpr-2.8.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:d6a88d71c166e86b98d34701285d23e3e89d548d9f5ae3f4b60919ac7151949f" } ,
{ file = "numexpr-2.8.6-cp39-cp39-win32.whl" , hash = "sha256:c48221b6a85494a7be5a022899764e58259af585dff031cecab337277278cc93" } ,
{ file = "numexpr-2.8.6-cp39-cp39-win_amd64.whl" , hash = "sha256:6d7003497d82ef19458dce380b36a99343b96a3bd5773465c2d898bf8f5a38f9" } ,
{ file = "numexpr-2.8.6.tar.gz" , hash = "sha256:6336f8dba3f456e41a4ffc3c97eb63d89c73589ff6e1707141224b930263260d" } ,
]
[ package . dependencies ]
numpy = ">=1.13.3"
2023-12-11 21:53:30 +00:00
[ [ package ] ]
name = "numpy"
version = "1.24.4"
description = "Fundamental package for array computing in Python"
optional = false
python-versions = ">=3.8"
files = [
{ file = "numpy-1.24.4-cp310-cp310-macosx_10_9_x86_64.whl" , hash = "sha256:c0bfb52d2169d58c1cdb8cc1f16989101639b34c7d3ce60ed70b19c63eba0b64" } ,
{ file = "numpy-1.24.4-cp310-cp310-macosx_11_0_arm64.whl" , hash = "sha256:ed094d4f0c177b1b8e7aa9cba7d6ceed51c0e569a5318ac0ca9a090680a6a1b1" } ,
{ file = "numpy-1.24.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:79fc682a374c4a8ed08b331bef9c5f582585d1048fa6d80bc6c35bc384eee9b4" } ,
{ file = "numpy-1.24.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:7ffe43c74893dbf38c2b0a1f5428760a1a9c98285553c89e12d70a96a7f3a4d6" } ,
{ file = "numpy-1.24.4-cp310-cp310-win32.whl" , hash = "sha256:4c21decb6ea94057331e111a5bed9a79d335658c27ce2adb580fb4d54f2ad9bc" } ,
{ file = "numpy-1.24.4-cp310-cp310-win_amd64.whl" , hash = "sha256:b4bea75e47d9586d31e892a7401f76e909712a0fd510f58f5337bea9572c571e" } ,
{ file = "numpy-1.24.4-cp311-cp311-macosx_10_9_x86_64.whl" , hash = "sha256:f136bab9c2cfd8da131132c2cf6cc27331dd6fae65f95f69dcd4ae3c3639c810" } ,
{ file = "numpy-1.24.4-cp311-cp311-macosx_11_0_arm64.whl" , hash = "sha256:e2926dac25b313635e4d6cf4dc4e51c8c0ebfed60b801c799ffc4c32bf3d1254" } ,
{ file = "numpy-1.24.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:222e40d0e2548690405b0b3c7b21d1169117391c2e82c378467ef9ab4c8f0da7" } ,
{ file = "numpy-1.24.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:7215847ce88a85ce39baf9e89070cb860c98fdddacbaa6c0da3ffb31b3350bd5" } ,
{ file = "numpy-1.24.4-cp311-cp311-win32.whl" , hash = "sha256:4979217d7de511a8d57f4b4b5b2b965f707768440c17cb70fbf254c4b225238d" } ,
{ file = "numpy-1.24.4-cp311-cp311-win_amd64.whl" , hash = "sha256:b7b1fc9864d7d39e28f41d089bfd6353cb5f27ecd9905348c24187a768c79694" } ,
{ file = "numpy-1.24.4-cp38-cp38-macosx_10_9_x86_64.whl" , hash = "sha256:1452241c290f3e2a312c137a9999cdbf63f78864d63c79039bda65ee86943f61" } ,
{ file = "numpy-1.24.4-cp38-cp38-macosx_11_0_arm64.whl" , hash = "sha256:04640dab83f7c6c85abf9cd729c5b65f1ebd0ccf9de90b270cd61935eef0197f" } ,
{ file = "numpy-1.24.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:a5425b114831d1e77e4b5d812b69d11d962e104095a5b9c3b641a218abcc050e" } ,
{ file = "numpy-1.24.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:dd80e219fd4c71fc3699fc1dadac5dcf4fd882bfc6f7ec53d30fa197b8ee22dc" } ,
{ file = "numpy-1.24.4-cp38-cp38-win32.whl" , hash = "sha256:4602244f345453db537be5314d3983dbf5834a9701b7723ec28923e2889e0bb2" } ,
{ file = "numpy-1.24.4-cp38-cp38-win_amd64.whl" , hash = "sha256:692f2e0f55794943c5bfff12b3f56f99af76f902fc47487bdfe97856de51a706" } ,
{ file = "numpy-1.24.4-cp39-cp39-macosx_10_9_x86_64.whl" , hash = "sha256:2541312fbf09977f3b3ad449c4e5f4bb55d0dbf79226d7724211acc905049400" } ,
{ file = "numpy-1.24.4-cp39-cp39-macosx_11_0_arm64.whl" , hash = "sha256:9667575fb6d13c95f1b36aca12c5ee3356bf001b714fc354eb5465ce1609e62f" } ,
{ file = "numpy-1.24.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:f3a86ed21e4f87050382c7bc96571755193c4c1392490744ac73d660e8f564a9" } ,
{ file = "numpy-1.24.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:d11efb4dbecbdf22508d55e48d9c8384db795e1b7b51ea735289ff96613ff74d" } ,
{ file = "numpy-1.24.4-cp39-cp39-win32.whl" , hash = "sha256:6620c0acd41dbcb368610bb2f4d83145674040025e5536954782467100aa8835" } ,
{ file = "numpy-1.24.4-cp39-cp39-win_amd64.whl" , hash = "sha256:befe2bf740fd8373cf56149a5c23a0f601e82869598d41f8e188a0e9869926f8" } ,
{ file = "numpy-1.24.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl" , hash = "sha256:31f13e25b4e304632a4619d0e0777662c2ffea99fcae2029556b17d8ff958aef" } ,
{ file = "numpy-1.24.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:95f7ac6540e95bc440ad77f56e520da5bf877f87dca58bd095288dce8940532a" } ,
{ file = "numpy-1.24.4-pp38-pypy38_pp73-win_amd64.whl" , hash = "sha256:e98f220aa76ca2a977fe435f5b04d7b3470c0a2e6312907b37ba6068f26787f2" } ,
{ file = "numpy-1.24.4.tar.gz" , hash = "sha256:80f5e3a4e498641401868df4208b74581206afbee7cf7b8329daae82676d9463" } ,
]
2024-03-15 17:10:47 +00:00
[ [ package ] ]
name = "nvidia-riva-client"
version = "2.14.0"
description = "Python implementation of the Riva Client API"
optional = true
python-versions = ">=3.7"
files = [
{ file = "nvidia_riva_client-2.14.0-py3-none-any.whl" , hash = "sha256:c831429b36863eacd408a422adff9230216079c420efee81259a5a3cb06df850" } ,
]
[ package . dependencies ]
grpcio-tools = "*"
setuptools = ">=65"
[ [ package ] ]
name = "oauthlib"
version = "3.2.2"
description = "A generic, spec-compliant, thorough implementation of the OAuth request-signing logic"
optional = true
python-versions = ">=3.6"
files = [
{ file = "oauthlib-3.2.2-py3-none-any.whl" , hash = "sha256:8139f29aac13e25d502680e9e19963e83f16838d48a0d71c287fe40e7067fbca" } ,
{ file = "oauthlib-3.2.2.tar.gz" , hash = "sha256:9859c40929662bec5d64f34d01c99e093149682a3f38915dc0655d5a633dd918" } ,
]
[ package . extras ]
rsa = [ "cryptography (>=3.0.0)" ]
signals = [ "blinker (>=1.4.0)" ]
signedtoken = [ "cryptography (>=3.0.0)" , "pyjwt (>=2.0.0,<3)" ]
[ [ package ] ]
name = "oci"
version = "2.124.1"
description = "Oracle Cloud Infrastructure Python SDK"
optional = true
python-versions = "*"
files = [
{ file = "oci-2.124.1-py3-none-any.whl" , hash = "sha256:7b61dd1b6eb6405bebd779d3f412c0c092118458a9d553c4c8025833df1a45b4" } ,
{ file = "oci-2.124.1.tar.gz" , hash = "sha256:06566d341e837e65986f3db9ee6fb5e855c9a278d8ba9508a6558776138581e1" } ,
]
[ package . dependencies ]
certifi = "*"
circuitbreaker = ">=1.3.1,<2.0.0"
cryptography = ">=3.2.1,<43.0.0"
pyOpenSSL = ">=17.5.0,<25.0.0"
python-dateutil = ">=2.5.3,<3.0.0"
pytz = ">=2016.10"
[ [ package ] ]
name = "ocifs"
version = "1.3.1"
description = "Convenient filesystem interface over Oracle Cloud's Object Storage"
optional = true
python-versions = ">=3.6"
files = [
{ file = "ocifs-1.3.1-py3-none-any.whl" , hash = "sha256:55a96bfd4421f6bebadd11821a934bd5325d8fb51dc71ed56fd164b382c0af4c" } ,
{ file = "ocifs-1.3.1.tar.gz" , hash = "sha256:a4e25ee1df75ec94d74cdb3b54f1629fc32d3cd0fb6c15fc89296550a9fc45f8" } ,
]
[ package . dependencies ]
fsspec = ">=0.8.7"
oci = ">=2.43.1"
requests = "*"
[ [ package ] ]
name = "onnxruntime"
version = "1.17.1"
description = "ONNX Runtime is a runtime accelerator for Machine Learning models"
optional = true
python-versions = "*"
files = [
{ file = "onnxruntime-1.17.1-cp310-cp310-macosx_11_0_universal2.whl" , hash = "sha256:d43ac17ac4fa3c9096ad3c0e5255bb41fd134560212dc124e7f52c3159af5d21" } ,
{ file = "onnxruntime-1.17.1-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl" , hash = "sha256:55b5e92a4c76a23981c998078b9bf6145e4fb0b016321a8274b1607bd3c6bd35" } ,
{ file = "onnxruntime-1.17.1-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl" , hash = "sha256:ebbcd2bc3a066cf54e6f18c75708eb4d309ef42be54606d22e5bdd78afc5b0d7" } ,
{ file = "onnxruntime-1.17.1-cp310-cp310-win32.whl" , hash = "sha256:5e3716b5eec9092e29a8d17aab55e737480487deabfca7eac3cd3ed952b6ada9" } ,
{ file = "onnxruntime-1.17.1-cp310-cp310-win_amd64.whl" , hash = "sha256:fbb98cced6782ae1bb799cc74ddcbbeeae8819f3ad1d942a74d88e72b6511337" } ,
{ file = "onnxruntime-1.17.1-cp311-cp311-macosx_11_0_universal2.whl" , hash = "sha256:36fd6f87a1ecad87e9c652e42407a50fb305374f9a31d71293eb231caae18784" } ,
{ file = "onnxruntime-1.17.1-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl" , hash = "sha256:99a8bddeb538edabc524d468edb60ad4722cff8a49d66f4e280c39eace70500b" } ,
{ file = "onnxruntime-1.17.1-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl" , hash = "sha256:fd7fddb4311deb5a7d3390cd8e9b3912d4d963efbe4dfe075edbaf18d01c024e" } ,
{ file = "onnxruntime-1.17.1-cp311-cp311-win32.whl" , hash = "sha256:606a7cbfb6680202b0e4f1890881041ffc3ac6e41760a25763bd9fe146f0b335" } ,
{ file = "onnxruntime-1.17.1-cp311-cp311-win_amd64.whl" , hash = "sha256:53e4e06c0a541696ebdf96085fd9390304b7b04b748a19e02cf3b35c869a1e76" } ,
{ file = "onnxruntime-1.17.1-cp312-cp312-macosx_11_0_universal2.whl" , hash = "sha256:40f08e378e0f85929712a2b2c9b9a9cc400a90c8a8ca741d1d92c00abec60843" } ,
{ file = "onnxruntime-1.17.1-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl" , hash = "sha256:ac79da6d3e1bb4590f1dad4bb3c2979d7228555f92bb39820889af8b8e6bd472" } ,
{ file = "onnxruntime-1.17.1-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl" , hash = "sha256:ae9ba47dc099004e3781f2d0814ad710a13c868c739ab086fc697524061695ea" } ,
{ file = "onnxruntime-1.17.1-cp312-cp312-win32.whl" , hash = "sha256:2dff1a24354220ac30e4a4ce2fb1df38cb1ea59f7dac2c116238d63fe7f4c5ff" } ,
{ file = "onnxruntime-1.17.1-cp312-cp312-win_amd64.whl" , hash = "sha256:6226a5201ab8cafb15e12e72ff2a4fc8f50654e8fa5737c6f0bd57c5ff66827e" } ,
{ file = "onnxruntime-1.17.1-cp38-cp38-macosx_11_0_universal2.whl" , hash = "sha256:cd0c07c0d1dfb8629e820b05fda5739e4835b3b82faf43753d2998edf2cf00aa" } ,
{ file = "onnxruntime-1.17.1-cp38-cp38-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl" , hash = "sha256:617ebdf49184efa1ba6e4467e602fbfa029ed52c92f13ce3c9f417d303006381" } ,
{ file = "onnxruntime-1.17.1-cp38-cp38-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl" , hash = "sha256:9dae9071e3facdf2920769dceee03b71c684b6439021defa45b830d05e148924" } ,
{ file = "onnxruntime-1.17.1-cp38-cp38-win32.whl" , hash = "sha256:835d38fa1064841679433b1aa8138b5e1218ddf0cfa7a3ae0d056d8fd9cec713" } ,
{ file = "onnxruntime-1.17.1-cp38-cp38-win_amd64.whl" , hash = "sha256:96621e0c555c2453bf607606d08af3f70fbf6f315230c28ddea91754e17ad4e6" } ,
{ file = "onnxruntime-1.17.1-cp39-cp39-macosx_11_0_universal2.whl" , hash = "sha256:7a9539935fb2d78ebf2cf2693cad02d9930b0fb23cdd5cf37a7df813e977674d" } ,
{ file = "onnxruntime-1.17.1-cp39-cp39-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl" , hash = "sha256:45c6a384e9d9a29c78afff62032a46a993c477b280247a7e335df09372aedbe9" } ,
{ file = "onnxruntime-1.17.1-cp39-cp39-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl" , hash = "sha256:4e19f966450f16863a1d6182a685ca33ae04d7772a76132303852d05b95411ea" } ,
{ file = "onnxruntime-1.17.1-cp39-cp39-win32.whl" , hash = "sha256:e2ae712d64a42aac29ed7a40a426cb1e624a08cfe9273dcfe681614aa65b07dc" } ,
{ file = "onnxruntime-1.17.1-cp39-cp39-win_amd64.whl" , hash = "sha256:f7e9f7fb049825cdddf4a923cfc7c649d84d63c0134315f8e0aa9e0c3004672c" } ,
]
[ package . dependencies ]
coloredlogs = "*"
flatbuffers = "*"
numpy = ">=1.21.6"
packaging = "*"
protobuf = "*"
sympy = "*"
2023-12-11 21:53:30 +00:00
[ [ package ] ]
name = "openai"
2024-03-15 17:10:47 +00:00
version = "1.13.3"
2023-12-11 21:53:30 +00:00
description = "The official Python library for the openai API"
optional = false
python-versions = ">=3.7.1"
files = [
2024-03-15 17:10:47 +00:00
{ file = "openai-1.13.3-py3-none-any.whl" , hash = "sha256:5769b62abd02f350a8dd1a3a242d8972c947860654466171d60fb0972ae0a41c" } ,
{ file = "openai-1.13.3.tar.gz" , hash = "sha256:ff6c6b3bc7327e715e4b3592a923a5a1c7519ff5dd764a83d69f633d49e77a7b" } ,
2023-12-11 21:53:30 +00:00
]
[ package . dependencies ]
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
anyio = ">=3.5.0,<5"
2023-12-11 21:53:30 +00:00
distro = ">=1.7.0,<2"
httpx = ">=0.23.0,<1"
pydantic = ">=1.9.0,<3"
sniffio = "*"
tqdm = ">4"
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
typing-extensions = ">=4.7,<5"
2023-12-11 21:53:30 +00:00
[ package . extras ]
datalib = [ "numpy (>=1)" , "pandas (>=1.2.3)" , "pandas-stubs (>=1.1.0.11)" ]
2024-03-15 17:10:47 +00:00
[ [ package ] ]
name = "openapi-pydantic"
version = "0.3.2"
description = "Pydantic OpenAPI schema implementation"
optional = true
python-versions = ">=3.8,<4.0"
files = [
{ file = "openapi_pydantic-0.3.2-py3-none-any.whl" , hash = "sha256:24488566a0a61bee3b55de6d3665329adaf2aadfe8f292ac0bddfe22155fadac" } ,
{ file = "openapi_pydantic-0.3.2.tar.gz" , hash = "sha256:685aa631395c469ecfd04f01a2ffedd541f94d372943868a501b412e9de6ba8b" } ,
]
[ package . dependencies ]
pydantic = ">=1.8"
[ [ package ] ]
name = "opencv-python"
version = "4.9.0.80"
description = "Wrapper package for OpenCV python bindings."
optional = true
python-versions = ">=3.6"
files = [
{ file = "opencv-python-4.9.0.80.tar.gz" , hash = "sha256:1a9f0e6267de3a1a1db0c54213d022c7c8b5b9ca4b580e80bdc58516c922c9e1" } ,
{ file = "opencv_python-4.9.0.80-cp37-abi3-macosx_10_16_x86_64.whl" , hash = "sha256:7e5f7aa4486651a6ebfa8ed4b594b65bd2d2f41beeb4241a3e4b1b85acbbbadb" } ,
{ file = "opencv_python-4.9.0.80-cp37-abi3-macosx_11_0_arm64.whl" , hash = "sha256:71dfb9555ccccdd77305fc3dcca5897fbf0cf28b297c51ee55e079c065d812a3" } ,
{ file = "opencv_python-4.9.0.80-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:7b34a52e9da36dda8c151c6394aed602e4b17fa041df0b9f5b93ae10b0fcca2a" } ,
{ file = "opencv_python-4.9.0.80-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:e4088cab82b66a3b37ffc452976b14a3c599269c247895ae9ceb4066d8188a57" } ,
{ file = "opencv_python-4.9.0.80-cp37-abi3-win32.whl" , hash = "sha256:dcf000c36dd1651118a2462257e3a9e76db789a78432e1f303c7bac54f63ef6c" } ,
{ file = "opencv_python-4.9.0.80-cp37-abi3-win_amd64.whl" , hash = "sha256:3f16f08e02b2a2da44259c7cc712e779eff1dd8b55fdb0323e8cab09548086c0" } ,
]
[ package . dependencies ]
numpy = [
{ version = ">=1.21.0" , markers = "python_version <= \"3.9\" and platform_system == \"Darwin\" and platform_machine == \"arm64\" and python_version >= \"3.8\"" } ,
{ version = ">=1.19.3" , markers = "platform_system == \"Linux\" and platform_machine == \"aarch64\" and python_version >= \"3.8\" and python_version < \"3.10\" or python_version > \"3.9\" and python_version < \"3.10\" or python_version >= \"3.9\" and platform_system != \"Darwin\" and python_version < \"3.10\" or python_version >= \"3.9\" and platform_machine != \"arm64\" and python_version < \"3.10\"" } ,
{ version = ">=1.17.3" , markers = "(platform_system != \"Darwin\" and platform_system != \"Linux\") and python_version >= \"3.8\" and python_version < \"3.9\" or platform_system != \"Darwin\" and python_version >= \"3.8\" and python_version < \"3.9\" and platform_machine != \"aarch64\" or platform_machine != \"arm64\" and python_version >= \"3.8\" and python_version < \"3.9\" and platform_system != \"Linux\" or (platform_machine != \"arm64\" and platform_machine != \"aarch64\") and python_version >= \"3.8\" and python_version < \"3.9\"" } ,
{ version = ">=1.21.4" , markers = "python_version >= \"3.10\" and platform_system == \"Darwin\" and python_version < \"3.11\"" } ,
{ version = ">=1.21.2" , markers = "platform_system != \"Darwin\" and python_version >= \"3.10\" and python_version < \"3.11\"" } ,
{ version = ">=1.23.5" , markers = "python_version >= \"3.11\" and python_version < \"3.12\"" } ,
]
[ [ package ] ]
name = "oracle-ads"
version = "2.10.1"
description = "Oracle Accelerated Data Science SDK"
optional = true
python-versions = ">=3.8"
files = [
{ file = "oracle_ads-2.10.1-py3-none-any.whl" , hash = "sha256:b3379df8ab8e9c7c1040fa4ea3cb52c6898f9c32b2412c76d8827da76708708f" } ,
{ file = "oracle_ads-2.10.1.tar.gz" , hash = "sha256:8084004c94e6eb5ae56bc7f1b8d95fbdbd1ba43ceb87878c199cfc164529e7ac" } ,
]
[ package . dependencies ]
asteval = ">=0.9.25"
cerberus = ">=1.3.4"
cloudpickle = ">=1.6.0"
fsspec = ">=0.8.7"
gitpython = ">=3.1.2"
jinja2 = ">=2.11.2"
matplotlib = ">=3.1.3"
numpy = ">=1.19.2"
oci = ">=2.113.0"
ocifs = ">=1.1.3"
pandas = ">1.2.1,<2.1"
psutil = ">=5.7.2"
python_jsonschema_objects = ">=0.3.13"
PyYAML = ">=6"
requests = "*"
scikit-learn = ">=1.0"
tabulate = ">=0.8.9"
tqdm = ">=4.59.0"
[ package . extras ]
anomaly = [ "autots" , "datapane" , "oracle-automlx[anomaly] (==23.2.3)" , "oracle_ads[opctl]" , "oracledb" ]
bds = [ "hdfs[kerberos]" , "ibis-framework[impala]" , "sqlalchemy" ]
boosted = [ "lightgbm (<4.0.0)" , "xgboost" ]
data = [ "datefinder (>=0.7.1)" , "fastavro (>=0.24.2)" , "htmllistparse (>=0.6.0)" , "openpyxl (>=3.0.7)" , "oracledb (>=1.0)" , "pandavro (>=1.6.0)" , "sqlalchemy (>=1.4.1,<=1.4.46)" ]
feature-store-marketplace = [ "kubernetes" , "oracle-ads[opctl]" ]
forecast = [ "autots[additional]" , "conda-pack" , "datapane" , "holidays (==0.21.13)" , "inflection" , "nbconvert" , "nbformat" , "neuralprophet" , "numpy" , "oci-cli" , "oci-cli" , "optuna (==2.9.0)" , "oracle-ads" , "oracle-automlx[forecasting] (==23.2.3)" , "oracledb" , "plotly" , "pmdarima" , "prophet" , "py-cpuinfo" , "rich" , "shap" , "sktime" , "statsmodels" ]
geo = [ "geopandas" , "oracle_ads[viz]" ]
huggingface = [ "transformers" ]
llm = [ "evaluate (>=0.4.0)" , "langchain (>=0.0.295)" ]
notebook = [ "ipython (>=7.23.1,<8.0)" , "ipywidgets (>=7.6.3,<7.7.0)" ]
onnx = [ "lightgbm (<4.0.0)" , "onnx (>=1.12.0)" , "onnxmltools (>=1.10.0)" , "onnxruntime (>=1.10.0,<1.16)" , "oracle_ads[viz]" , "protobuf (<=3.20)" , "skl2onnx (>=1.10.4)" , "tf2onnx" , "xgboost (<=1.7)" ]
opctl = [ "conda-pack" , "docker" , "inflection" , "nbconvert" , "nbformat" , "oci-cli" , "py-cpuinfo" , "rich" ]
optuna = [ "optuna (==2.9.0)" , "oracle_ads[viz]" ]
pii = [ "aiohttp" , "datapane" , "gender_guesser" , "nameparser" , "oracle_ads[opctl]" , "plotly" , "scrubadub (==2.0.1)" , "scrubadub_spacy" , "spacy (==3.6.1)" , "spacy-transformers (==1.2.5)" ]
spark = [ "pyspark (>=3.0.0)" ]
tensorflow = [ "oracle_ads[viz]" , "tensorflow" ]
text = [ "spacy" , "wordcloud (>=1.8.1)" ]
torch = [ "oracle_ads[viz]" , "torch" , "torchvision" ]
viz = [ "bokeh (>=3.0.0,<3.2.0)" , "folium (>=0.12.1)" , "graphviz (<0.17)" , "scipy (>=1.5.4)" , "seaborn (>=0.11.0)" ]
2023-12-11 21:53:30 +00:00
[ [ package ] ]
name = "orjson"
2024-03-08 02:20:47 +00:00
version = "3.9.15"
2023-12-11 21:53:30 +00:00
description = "Fast, correct Python JSON library supporting dataclasses, datetimes, and numpy"
2024-03-08 02:20:47 +00:00
optional = false
2023-12-11 21:53:30 +00:00
python-versions = ">=3.8"
files = [
2024-03-08 02:20:47 +00:00
{ file = "orjson-3.9.15-cp310-cp310-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl" , hash = "sha256:d61f7ce4727a9fa7680cd6f3986b0e2c732639f46a5e0156e550e35258aa313a" } ,
{ file = "orjson-3.9.15-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:4feeb41882e8aa17634b589533baafdceb387e01e117b1ec65534ec724023d04" } ,
{ file = "orjson-3.9.15-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl" , hash = "sha256:fbbeb3c9b2edb5fd044b2a070f127a0ac456ffd079cb82746fc84af01ef021a4" } ,
{ file = "orjson-3.9.15-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:b66bcc5670e8a6b78f0313bcb74774c8291f6f8aeef10fe70e910b8040f3ab75" } ,
{ file = "orjson-3.9.15-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:2973474811db7b35c30248d1129c64fd2bdf40d57d84beed2a9a379a6f57d0ab" } ,
{ file = "orjson-3.9.15-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:9fe41b6f72f52d3da4db524c8653e46243c8c92df826ab5ffaece2dba9cccd58" } ,
{ file = "orjson-3.9.15-cp310-cp310-musllinux_1_2_aarch64.whl" , hash = "sha256:4228aace81781cc9d05a3ec3a6d2673a1ad0d8725b4e915f1089803e9efd2b99" } ,
{ file = "orjson-3.9.15-cp310-cp310-musllinux_1_2_x86_64.whl" , hash = "sha256:6f7b65bfaf69493c73423ce9db66cfe9138b2f9ef62897486417a8fcb0a92bfe" } ,
{ file = "orjson-3.9.15-cp310-none-win32.whl" , hash = "sha256:2d99e3c4c13a7b0fb3792cc04c2829c9db07838fb6973e578b85c1745e7d0ce7" } ,
{ file = "orjson-3.9.15-cp310-none-win_amd64.whl" , hash = "sha256:b725da33e6e58e4a5d27958568484aa766e825e93aa20c26c91168be58e08cbb" } ,
{ file = "orjson-3.9.15-cp311-cp311-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl" , hash = "sha256:c8e8fe01e435005d4421f183038fc70ca85d2c1e490f51fb972db92af6e047c2" } ,
{ file = "orjson-3.9.15-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:87f1097acb569dde17f246faa268759a71a2cb8c96dd392cd25c668b104cad2f" } ,
{ file = "orjson-3.9.15-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl" , hash = "sha256:ff0f9913d82e1d1fadbd976424c316fbc4d9c525c81d047bbdd16bd27dd98cfc" } ,
{ file = "orjson-3.9.15-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:8055ec598605b0077e29652ccfe9372247474375e0e3f5775c91d9434e12d6b1" } ,
{ file = "orjson-3.9.15-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:d6768a327ea1ba44c9114dba5fdda4a214bdb70129065cd0807eb5f010bfcbb5" } ,
{ file = "orjson-3.9.15-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:12365576039b1a5a47df01aadb353b68223da413e2e7f98c02403061aad34bde" } ,
{ file = "orjson-3.9.15-cp311-cp311-musllinux_1_2_aarch64.whl" , hash = "sha256:71c6b009d431b3839d7c14c3af86788b3cfac41e969e3e1c22f8a6ea13139404" } ,
{ file = "orjson-3.9.15-cp311-cp311-musllinux_1_2_x86_64.whl" , hash = "sha256:e18668f1bd39e69b7fed19fa7cd1cd110a121ec25439328b5c89934e6d30d357" } ,
{ file = "orjson-3.9.15-cp311-none-win32.whl" , hash = "sha256:62482873e0289cf7313461009bf62ac8b2e54bc6f00c6fabcde785709231a5d7" } ,
{ file = "orjson-3.9.15-cp311-none-win_amd64.whl" , hash = "sha256:b3d336ed75d17c7b1af233a6561cf421dee41d9204aa3cfcc6c9c65cd5bb69a8" } ,
{ file = "orjson-3.9.15-cp312-cp312-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl" , hash = "sha256:82425dd5c7bd3adfe4e94c78e27e2fa02971750c2b7ffba648b0f5d5cc016a73" } ,
{ file = "orjson-3.9.15-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:2c51378d4a8255b2e7c1e5cc430644f0939539deddfa77f6fac7b56a9784160a" } ,
{ file = "orjson-3.9.15-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl" , hash = "sha256:6ae4e06be04dc00618247c4ae3f7c3e561d5bc19ab6941427f6d3722a0875ef7" } ,
{ file = "orjson-3.9.15-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:bcef128f970bb63ecf9a65f7beafd9b55e3aaf0efc271a4154050fc15cdb386e" } ,
{ file = "orjson-3.9.15-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:b72758f3ffc36ca566ba98a8e7f4f373b6c17c646ff8ad9b21ad10c29186f00d" } ,
{ file = "orjson-3.9.15-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:10c57bc7b946cf2efa67ac55766e41764b66d40cbd9489041e637c1304400494" } ,
{ file = "orjson-3.9.15-cp312-cp312-musllinux_1_2_aarch64.whl" , hash = "sha256:946c3a1ef25338e78107fba746f299f926db408d34553b4754e90a7de1d44068" } ,
{ file = "orjson-3.9.15-cp312-cp312-musllinux_1_2_x86_64.whl" , hash = "sha256:2f256d03957075fcb5923410058982aea85455d035607486ccb847f095442bda" } ,
{ file = "orjson-3.9.15-cp312-none-win_amd64.whl" , hash = "sha256:5bb399e1b49db120653a31463b4a7b27cf2fbfe60469546baf681d1b39f4edf2" } ,
{ file = "orjson-3.9.15-cp38-cp38-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl" , hash = "sha256:b17f0f14a9c0ba55ff6279a922d1932e24b13fc218a3e968ecdbf791b3682b25" } ,
{ file = "orjson-3.9.15-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:7f6cbd8e6e446fb7e4ed5bac4661a29e43f38aeecbf60c4b900b825a353276a1" } ,
{ file = "orjson-3.9.15-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl" , hash = "sha256:76bc6356d07c1d9f4b782813094d0caf1703b729d876ab6a676f3aaa9a47e37c" } ,
{ file = "orjson-3.9.15-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:fdfa97090e2d6f73dced247a2f2d8004ac6449df6568f30e7fa1a045767c69a6" } ,
{ file = "orjson-3.9.15-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:7413070a3e927e4207d00bd65f42d1b780fb0d32d7b1d951f6dc6ade318e1b5a" } ,
{ file = "orjson-3.9.15-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:9cf1596680ac1f01839dba32d496136bdd5d8ffb858c280fa82bbfeb173bdd40" } ,
{ file = "orjson-3.9.15-cp38-cp38-musllinux_1_2_aarch64.whl" , hash = "sha256:809d653c155e2cc4fd39ad69c08fdff7f4016c355ae4b88905219d3579e31eb7" } ,
{ file = "orjson-3.9.15-cp38-cp38-musllinux_1_2_x86_64.whl" , hash = "sha256:920fa5a0c5175ab14b9c78f6f820b75804fb4984423ee4c4f1e6d748f8b22bc1" } ,
{ file = "orjson-3.9.15-cp38-none-win32.whl" , hash = "sha256:2b5c0f532905e60cf22a511120e3719b85d9c25d0e1c2a8abb20c4dede3b05a5" } ,
{ file = "orjson-3.9.15-cp38-none-win_amd64.whl" , hash = "sha256:67384f588f7f8daf040114337d34a5188346e3fae6c38b6a19a2fe8c663a2f9b" } ,
{ file = "orjson-3.9.15-cp39-cp39-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl" , hash = "sha256:6fc2fe4647927070df3d93f561d7e588a38865ea0040027662e3e541d592811e" } ,
{ file = "orjson-3.9.15-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:34cbcd216e7af5270f2ffa63a963346845eb71e174ea530867b7443892d77180" } ,
{ file = "orjson-3.9.15-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl" , hash = "sha256:f541587f5c558abd93cb0de491ce99a9ef8d1ae29dd6ab4dbb5a13281ae04cbd" } ,
{ file = "orjson-3.9.15-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:92255879280ef9c3c0bcb327c5a1b8ed694c290d61a6a532458264f887f052cb" } ,
{ file = "orjson-3.9.15-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:05a1f57fb601c426635fcae9ddbe90dfc1ed42245eb4c75e4960440cac667262" } ,
{ file = "orjson-3.9.15-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:ede0bde16cc6e9b96633df1631fbcd66491d1063667f260a4f2386a098393790" } ,
{ file = "orjson-3.9.15-cp39-cp39-musllinux_1_2_aarch64.whl" , hash = "sha256:e88b97ef13910e5f87bcbc4dd7979a7de9ba8702b54d3204ac587e83639c0c2b" } ,
{ file = "orjson-3.9.15-cp39-cp39-musllinux_1_2_x86_64.whl" , hash = "sha256:57d5d8cf9c27f7ef6bc56a5925c7fbc76b61288ab674eb352c26ac780caa5b10" } ,
{ file = "orjson-3.9.15-cp39-none-win32.whl" , hash = "sha256:001f4eb0ecd8e9ebd295722d0cbedf0748680fb9998d3993abaed2f40587257a" } ,
{ file = "orjson-3.9.15-cp39-none-win_amd64.whl" , hash = "sha256:ea0b183a5fe6b2b45f3b854b0d19c4e932d6f5934ae1f723b07cf9560edd4ec7" } ,
{ file = "orjson-3.9.15.tar.gz" , hash = "sha256:95cae920959d772f30ab36d3b25f83bb0f3be671e986c72ce22f8fa700dae061" } ,
2023-12-11 21:53:30 +00:00
]
[ [ package ] ]
name = "overrides"
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
version = "7.7.0"
2023-12-11 21:53:30 +00:00
description = "A decorator to automatically detect mismatch when overriding a method."
optional = false
python-versions = ">=3.6"
files = [
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
{ file = "overrides-7.7.0-py3-none-any.whl" , hash = "sha256:c7ed9d062f78b8e4c1a7b70bd8796b35ead4d9f510227ef9c5dc7626c60d7e49" } ,
{ file = "overrides-7.7.0.tar.gz" , hash = "sha256:55158fa3d93b98cc75299b1e67078ad9003ca27945c76162c1c0766d6f91820a" } ,
2023-12-11 21:53:30 +00:00
]
[ [ package ] ]
name = "packaging"
version = "23.2"
description = "Core utilities for Python packages"
optional = false
python-versions = ">=3.7"
files = [
{ file = "packaging-23.2-py3-none-any.whl" , hash = "sha256:8c491190033a9af7e1d931d0b5dacc2ef47509b34dd0de67ed209b5203fc88c7" } ,
{ file = "packaging-23.2.tar.gz" , hash = "sha256:048fb0e9405036518eaaf48a55953c750c11e1a1b68e0dd1a9d62ed0c092cfc5" } ,
]
[ [ package ] ]
name = "pandas"
version = "2.0.3"
description = "Powerful data structures for data analysis, time series, and statistics"
optional = false
python-versions = ">=3.8"
files = [
{ file = "pandas-2.0.3-cp310-cp310-macosx_10_9_x86_64.whl" , hash = "sha256:e4c7c9f27a4185304c7caf96dc7d91bc60bc162221152de697c98eb0b2648dd8" } ,
{ file = "pandas-2.0.3-cp310-cp310-macosx_11_0_arm64.whl" , hash = "sha256:f167beed68918d62bffb6ec64f2e1d8a7d297a038f86d4aed056b9493fca407f" } ,
{ file = "pandas-2.0.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:ce0c6f76a0f1ba361551f3e6dceaff06bde7514a374aa43e33b588ec10420183" } ,
{ file = "pandas-2.0.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:ba619e410a21d8c387a1ea6e8a0e49bb42216474436245718d7f2e88a2f8d7c0" } ,
{ file = "pandas-2.0.3-cp310-cp310-win32.whl" , hash = "sha256:3ef285093b4fe5058eefd756100a367f27029913760773c8bf1d2d8bebe5d210" } ,
{ file = "pandas-2.0.3-cp310-cp310-win_amd64.whl" , hash = "sha256:9ee1a69328d5c36c98d8e74db06f4ad518a1840e8ccb94a4ba86920986bb617e" } ,
{ file = "pandas-2.0.3-cp311-cp311-macosx_10_9_x86_64.whl" , hash = "sha256:b084b91d8d66ab19f5bb3256cbd5ea661848338301940e17f4492b2ce0801fe8" } ,
{ file = "pandas-2.0.3-cp311-cp311-macosx_11_0_arm64.whl" , hash = "sha256:37673e3bdf1551b95bf5d4ce372b37770f9529743d2498032439371fc7b7eb26" } ,
{ file = "pandas-2.0.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:b9cb1e14fdb546396b7e1b923ffaeeac24e4cedd14266c3497216dd4448e4f2d" } ,
{ file = "pandas-2.0.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:d9cd88488cceb7635aebb84809d087468eb33551097d600c6dad13602029c2df" } ,
{ file = "pandas-2.0.3-cp311-cp311-win32.whl" , hash = "sha256:694888a81198786f0e164ee3a581df7d505024fbb1f15202fc7db88a71d84ebd" } ,
{ file = "pandas-2.0.3-cp311-cp311-win_amd64.whl" , hash = "sha256:6a21ab5c89dcbd57f78d0ae16630b090eec626360085a4148693def5452d8a6b" } ,
{ file = "pandas-2.0.3-cp38-cp38-macosx_10_9_x86_64.whl" , hash = "sha256:9e4da0d45e7f34c069fe4d522359df7d23badf83abc1d1cef398895822d11061" } ,
{ file = "pandas-2.0.3-cp38-cp38-macosx_11_0_arm64.whl" , hash = "sha256:32fca2ee1b0d93dd71d979726b12b61faa06aeb93cf77468776287f41ff8fdc5" } ,
{ file = "pandas-2.0.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:258d3624b3ae734490e4d63c430256e716f488c4fcb7c8e9bde2d3aa46c29089" } ,
{ file = "pandas-2.0.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:9eae3dc34fa1aa7772dd3fc60270d13ced7346fcbcfee017d3132ec625e23bb0" } ,
{ file = "pandas-2.0.3-cp38-cp38-win32.whl" , hash = "sha256:f3421a7afb1a43f7e38e82e844e2bca9a6d793d66c1a7f9f0ff39a795bbc5e02" } ,
{ file = "pandas-2.0.3-cp38-cp38-win_amd64.whl" , hash = "sha256:69d7f3884c95da3a31ef82b7618af5710dba95bb885ffab339aad925c3e8ce78" } ,
{ file = "pandas-2.0.3-cp39-cp39-macosx_10_9_x86_64.whl" , hash = "sha256:5247fb1ba347c1261cbbf0fcfba4a3121fbb4029d95d9ef4dc45406620b25c8b" } ,
{ file = "pandas-2.0.3-cp39-cp39-macosx_11_0_arm64.whl" , hash = "sha256:81af086f4543c9d8bb128328b5d32e9986e0c84d3ee673a2ac6fb57fd14f755e" } ,
{ file = "pandas-2.0.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:1994c789bf12a7c5098277fb43836ce090f1073858c10f9220998ac74f37c69b" } ,
{ file = "pandas-2.0.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:5ec591c48e29226bcbb316e0c1e9423622bc7a4eaf1ef7c3c9fa1a3981f89641" } ,
{ file = "pandas-2.0.3-cp39-cp39-win32.whl" , hash = "sha256:04dbdbaf2e4d46ca8da896e1805bc04eb85caa9a82e259e8eed00254d5e0c682" } ,
{ file = "pandas-2.0.3-cp39-cp39-win_amd64.whl" , hash = "sha256:1168574b036cd8b93abc746171c9b4f1b83467438a5e45909fed645cf8692dbc" } ,
{ file = "pandas-2.0.3.tar.gz" , hash = "sha256:c02f372a88e0d17f36d3093a644c73cfc1788e876a7c4bcb4020a77512e2043c" } ,
]
[ package . dependencies ]
numpy = [
{ version = ">=1.20.3" , markers = "python_version < \"3.10\"" } ,
2024-03-15 05:55:30 +00:00
{ version = ">=1.21.0" , markers = "python_version >= \"3.10\" and python_version < \"3.11\"" } ,
2024-03-15 17:10:47 +00:00
{ version = ">=1.23.2" , markers = "python_version >= \"3.11\"" } ,
2023-12-11 21:53:30 +00:00
]
python-dateutil = ">=2.8.2"
pytz = ">=2020.1"
tzdata = ">=2022.1"
[ package . extras ]
all = [ "PyQt5 (>=5.15.1)" , "SQLAlchemy (>=1.4.16)" , "beautifulsoup4 (>=4.9.3)" , "bottleneck (>=1.3.2)" , "brotlipy (>=0.7.0)" , "fastparquet (>=0.6.3)" , "fsspec (>=2021.07.0)" , "gcsfs (>=2021.07.0)" , "html5lib (>=1.1)" , "hypothesis (>=6.34.2)" , "jinja2 (>=3.0.0)" , "lxml (>=4.6.3)" , "matplotlib (>=3.6.1)" , "numba (>=0.53.1)" , "numexpr (>=2.7.3)" , "odfpy (>=1.4.1)" , "openpyxl (>=3.0.7)" , "pandas-gbq (>=0.15.0)" , "psycopg2 (>=2.8.6)" , "pyarrow (>=7.0.0)" , "pymysql (>=1.0.2)" , "pyreadstat (>=1.1.2)" , "pytest (>=7.3.2)" , "pytest-asyncio (>=0.17.0)" , "pytest-xdist (>=2.2.0)" , "python-snappy (>=0.6.0)" , "pyxlsb (>=1.0.8)" , "qtpy (>=2.2.0)" , "s3fs (>=2021.08.0)" , "scipy (>=1.7.1)" , "tables (>=3.6.1)" , "tabulate (>=0.8.9)" , "xarray (>=0.21.0)" , "xlrd (>=2.0.1)" , "xlsxwriter (>=1.4.3)" , "zstandard (>=0.15.2)" ]
aws = [ "s3fs (>=2021.08.0)" ]
clipboard = [ "PyQt5 (>=5.15.1)" , "qtpy (>=2.2.0)" ]
compression = [ "brotlipy (>=0.7.0)" , "python-snappy (>=0.6.0)" , "zstandard (>=0.15.2)" ]
computation = [ "scipy (>=1.7.1)" , "xarray (>=0.21.0)" ]
excel = [ "odfpy (>=1.4.1)" , "openpyxl (>=3.0.7)" , "pyxlsb (>=1.0.8)" , "xlrd (>=2.0.1)" , "xlsxwriter (>=1.4.3)" ]
feather = [ "pyarrow (>=7.0.0)" ]
fss = [ "fsspec (>=2021.07.0)" ]
gcp = [ "gcsfs (>=2021.07.0)" , "pandas-gbq (>=0.15.0)" ]
hdf5 = [ "tables (>=3.6.1)" ]
html = [ "beautifulsoup4 (>=4.9.3)" , "html5lib (>=1.1)" , "lxml (>=4.6.3)" ]
mysql = [ "SQLAlchemy (>=1.4.16)" , "pymysql (>=1.0.2)" ]
output-formatting = [ "jinja2 (>=3.0.0)" , "tabulate (>=0.8.9)" ]
parquet = [ "pyarrow (>=7.0.0)" ]
performance = [ "bottleneck (>=1.3.2)" , "numba (>=0.53.1)" , "numexpr (>=2.7.1)" ]
plot = [ "matplotlib (>=3.6.1)" ]
postgresql = [ "SQLAlchemy (>=1.4.16)" , "psycopg2 (>=2.8.6)" ]
spss = [ "pyreadstat (>=1.1.2)" ]
sql-other = [ "SQLAlchemy (>=1.4.16)" ]
test = [ "hypothesis (>=6.34.2)" , "pytest (>=7.3.2)" , "pytest-asyncio (>=0.17.0)" , "pytest-xdist (>=2.2.0)" ]
xml = [ "lxml (>=4.6.3)" ]
[ [ package ] ]
name = "pandocfilters"
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
version = "1.5.1"
2023-12-11 21:53:30 +00:00
description = "Utilities for writing pandoc filters in python"
optional = false
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*"
files = [
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
{ file = "pandocfilters-1.5.1-py2.py3-none-any.whl" , hash = "sha256:93be382804a9cdb0a7267585f157e5d1731bbe5545a85b268d6f5fe6232de2bc" } ,
{ file = "pandocfilters-1.5.1.tar.gz" , hash = "sha256:002b4a555ee4ebc03f8b66307e287fa492e4a77b4ea14d3f934328297bb4939e" } ,
2023-12-11 21:53:30 +00:00
]
2024-03-15 17:10:47 +00:00
[ [ package ] ]
name = "para"
version = "0.0.8"
description = "a set utilities that ake advantage of python's 'multiprocessing' module to distribute CPU-intensive tasks"
optional = true
python-versions = "*"
files = [
{ file = "para-0.0.8-py3-none-any.whl" , hash = "sha256:c63b030658cafd84f8fabfc000142324d51c7440e50ef5012fd1a54972ca25f4" } ,
{ file = "para-0.0.8.tar.gz" , hash = "sha256:46c3232ae9d8ea9d886cfd08cdd112892202bed8645f40b6255597ba4cfef217" } ,
]
2023-12-11 21:53:30 +00:00
[ [ package ] ]
name = "parso"
version = "0.8.3"
description = "A Python Parser"
optional = false
python-versions = ">=3.6"
files = [
{ file = "parso-0.8.3-py2.py3-none-any.whl" , hash = "sha256:c001d4636cd3aecdaf33cbb40aebb59b094be2a74c556778ef5576c175e19e75" } ,
{ file = "parso-0.8.3.tar.gz" , hash = "sha256:8c07be290bb59f03588915921e29e8a50002acaf2cdc5fa0e0114f91709fafa0" } ,
]
[ package . extras ]
qa = [ "flake8 (==3.8.3)" , "mypy (==0.782)" ]
testing = [ "docopt" , "pytest (<6.0.0)" ]
2024-03-15 17:10:47 +00:00
[ [ package ] ]
name = "pathspec"
version = "0.9.0"
description = "Utility library for gitignore style pattern matching of file paths."
optional = true
python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,>=2.7"
files = [
{ file = "pathspec-0.9.0-py2.py3-none-any.whl" , hash = "sha256:7d15c4ddb0b5c802d161efc417ec1a2558ea2653c2e8ad9c19098201dc1c993a" } ,
{ file = "pathspec-0.9.0.tar.gz" , hash = "sha256:e564499435a2673d586f6b2130bb5b95f04a3ba06f81b8f895b651a3c76aabb1" } ,
]
[ [ package ] ]
name = "pdfminer-six"
version = "20221105"
description = "PDF parser and analyzer"
optional = true
python-versions = ">=3.6"
files = [
{ file = "pdfminer.six-20221105-py3-none-any.whl" , hash = "sha256:1eaddd712d5b2732f8ac8486824533514f8ba12a0787b3d5fe1e686cd826532d" } ,
{ file = "pdfminer.six-20221105.tar.gz" , hash = "sha256:8448ab7b939d18b64820478ecac5394f482d7a79f5f7eaa7703c6c959c175e1d" } ,
]
[ package . dependencies ]
charset-normalizer = ">=2.0.0"
cryptography = ">=36.0.0"
[ package . extras ]
dev = [ "black" , "mypy (==0.931)" , "nox" , "pytest" ]
docs = [ "sphinx" , "sphinx-argparse" ]
image = [ "Pillow" ]
2023-12-11 21:53:30 +00:00
[ [ package ] ]
name = "pexpect"
version = "4.9.0"
description = "Pexpect allows easy control of interactive console applications."
optional = false
python-versions = "*"
files = [
{ file = "pexpect-4.9.0-py2.py3-none-any.whl" , hash = "sha256:7236d1e080e4936be2dc3e326cec0af72acf9212a7e1d060210e70a47e253523" } ,
{ file = "pexpect-4.9.0.tar.gz" , hash = "sha256:ee7d41123f3c9911050ea2c2dac107568dc43b2d3b0c7557a33212c398ead30f" } ,
]
[ package . dependencies ]
ptyprocess = ">=0.5"
2024-03-15 17:10:47 +00:00
[ [ package ] ]
name = "pgvector"
version = "0.1.8"
description = "pgvector support for Python"
optional = true
python-versions = ">=3.6"
files = [
{ file = "pgvector-0.1.8-py2.py3-none-any.whl" , hash = "sha256:99dce3a6580ef73863edb9b8441937671f4e1a09383826e6b0838176cd441a96" } ,
]
[ package . dependencies ]
numpy = "*"
2023-12-11 21:53:30 +00:00
[ [ package ] ]
name = "pickleshare"
version = "0.7.5"
description = "Tiny 'shelve'-like database with concurrency support"
optional = false
python-versions = "*"
files = [
{ file = "pickleshare-0.7.5-py2.py3-none-any.whl" , hash = "sha256:9649af414d74d4df115d5d718f82acb59c9d418196b7b4290ed47a12ce62df56" } ,
{ file = "pickleshare-0.7.5.tar.gz" , hash = "sha256:87683d47965c1da65cdacaf31c8441d12b8044cdec9aca500cd78fc2c683afca" } ,
]
[ [ package ] ]
name = "pillow"
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
version = "10.2.0"
2023-12-11 21:53:30 +00:00
description = "Python Imaging Library (Fork)"
optional = false
python-versions = ">=3.8"
files = [
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
{ file = "pillow-10.2.0-cp310-cp310-macosx_10_10_x86_64.whl" , hash = "sha256:7823bdd049099efa16e4246bdf15e5a13dbb18a51b68fa06d6c1d4d8b99a796e" } ,
{ file = "pillow-10.2.0-cp310-cp310-macosx_11_0_arm64.whl" , hash = "sha256:83b2021f2ade7d1ed556bc50a399127d7fb245e725aa0113ebd05cfe88aaf588" } ,
{ file = "pillow-10.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:6fad5ff2f13d69b7e74ce5b4ecd12cc0ec530fcee76356cac6742785ff71c452" } ,
{ file = "pillow-10.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:da2b52b37dad6d9ec64e653637a096905b258d2fc2b984c41ae7d08b938a67e4" } ,
{ file = "pillow-10.2.0-cp310-cp310-manylinux_2_28_aarch64.whl" , hash = "sha256:47c0995fc4e7f79b5cfcab1fc437ff2890b770440f7696a3ba065ee0fd496563" } ,
{ file = "pillow-10.2.0-cp310-cp310-manylinux_2_28_x86_64.whl" , hash = "sha256:322bdf3c9b556e9ffb18f93462e5f749d3444ce081290352c6070d014c93feb2" } ,
{ file = "pillow-10.2.0-cp310-cp310-musllinux_1_1_aarch64.whl" , hash = "sha256:51f1a1bffc50e2e9492e87d8e09a17c5eea8409cda8d3f277eb6edc82813c17c" } ,
{ file = "pillow-10.2.0-cp310-cp310-musllinux_1_1_x86_64.whl" , hash = "sha256:69ffdd6120a4737710a9eee73e1d2e37db89b620f702754b8f6e62594471dee0" } ,
{ file = "pillow-10.2.0-cp310-cp310-win32.whl" , hash = "sha256:c6dafac9e0f2b3c78df97e79af707cdc5ef8e88208d686a4847bab8266870023" } ,
{ file = "pillow-10.2.0-cp310-cp310-win_amd64.whl" , hash = "sha256:aebb6044806f2e16ecc07b2a2637ee1ef67a11840a66752751714a0d924adf72" } ,
{ file = "pillow-10.2.0-cp310-cp310-win_arm64.whl" , hash = "sha256:7049e301399273a0136ff39b84c3678e314f2158f50f517bc50285fb5ec847ad" } ,
{ file = "pillow-10.2.0-cp311-cp311-macosx_10_10_x86_64.whl" , hash = "sha256:35bb52c37f256f662abdfa49d2dfa6ce5d93281d323a9af377a120e89a9eafb5" } ,
{ file = "pillow-10.2.0-cp311-cp311-macosx_11_0_arm64.whl" , hash = "sha256:9c23f307202661071d94b5e384e1e1dc7dfb972a28a2310e4ee16103e66ddb67" } ,
{ file = "pillow-10.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:773efe0603db30c281521a7c0214cad7836c03b8ccff897beae9b47c0b657d61" } ,
{ file = "pillow-10.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:11fa2e5984b949b0dd6d7a94d967743d87c577ff0b83392f17cb3990d0d2fd6e" } ,
{ file = "pillow-10.2.0-cp311-cp311-manylinux_2_28_aarch64.whl" , hash = "sha256:716d30ed977be8b37d3ef185fecb9e5a1d62d110dfbdcd1e2a122ab46fddb03f" } ,
{ file = "pillow-10.2.0-cp311-cp311-manylinux_2_28_x86_64.whl" , hash = "sha256:a086c2af425c5f62a65e12fbf385f7c9fcb8f107d0849dba5839461a129cf311" } ,
{ file = "pillow-10.2.0-cp311-cp311-musllinux_1_1_aarch64.whl" , hash = "sha256:c8de2789052ed501dd829e9cae8d3dcce7acb4777ea4a479c14521c942d395b1" } ,
{ file = "pillow-10.2.0-cp311-cp311-musllinux_1_1_x86_64.whl" , hash = "sha256:609448742444d9290fd687940ac0b57fb35e6fd92bdb65386e08e99af60bf757" } ,
{ file = "pillow-10.2.0-cp311-cp311-win32.whl" , hash = "sha256:823ef7a27cf86df6597fa0671066c1b596f69eba53efa3d1e1cb8b30f3533068" } ,
{ file = "pillow-10.2.0-cp311-cp311-win_amd64.whl" , hash = "sha256:1da3b2703afd040cf65ec97efea81cfba59cdbed9c11d8efc5ab09df9509fc56" } ,
{ file = "pillow-10.2.0-cp311-cp311-win_arm64.whl" , hash = "sha256:edca80cbfb2b68d7b56930b84a0e45ae1694aeba0541f798e908a49d66b837f1" } ,
{ file = "pillow-10.2.0-cp312-cp312-macosx_10_10_x86_64.whl" , hash = "sha256:1b5e1b74d1bd1b78bc3477528919414874748dd363e6272efd5abf7654e68bef" } ,
{ file = "pillow-10.2.0-cp312-cp312-macosx_11_0_arm64.whl" , hash = "sha256:0eae2073305f451d8ecacb5474997c08569fb4eb4ac231ffa4ad7d342fdc25ac" } ,
{ file = "pillow-10.2.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:b7c2286c23cd350b80d2fc9d424fc797575fb16f854b831d16fd47ceec078f2c" } ,
{ file = "pillow-10.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:1e23412b5c41e58cec602f1135c57dfcf15482013ce6e5f093a86db69646a5aa" } ,
{ file = "pillow-10.2.0-cp312-cp312-manylinux_2_28_aarch64.whl" , hash = "sha256:52a50aa3fb3acb9cf7213573ef55d31d6eca37f5709c69e6858fe3bc04a5c2a2" } ,
{ file = "pillow-10.2.0-cp312-cp312-manylinux_2_28_x86_64.whl" , hash = "sha256:127cee571038f252a552760076407f9cff79761c3d436a12af6000cd182a9d04" } ,
{ file = "pillow-10.2.0-cp312-cp312-musllinux_1_1_aarch64.whl" , hash = "sha256:8d12251f02d69d8310b046e82572ed486685c38f02176bd08baf216746eb947f" } ,
{ file = "pillow-10.2.0-cp312-cp312-musllinux_1_1_x86_64.whl" , hash = "sha256:54f1852cd531aa981bc0965b7d609f5f6cc8ce8c41b1139f6ed6b3c54ab82bfb" } ,
{ file = "pillow-10.2.0-cp312-cp312-win32.whl" , hash = "sha256:257d8788df5ca62c980314053197f4d46eefedf4e6175bc9412f14412ec4ea2f" } ,
{ file = "pillow-10.2.0-cp312-cp312-win_amd64.whl" , hash = "sha256:154e939c5f0053a383de4fd3d3da48d9427a7e985f58af8e94d0b3c9fcfcf4f9" } ,
{ file = "pillow-10.2.0-cp312-cp312-win_arm64.whl" , hash = "sha256:f379abd2f1e3dddb2b61bc67977a6b5a0a3f7485538bcc6f39ec76163891ee48" } ,
{ file = "pillow-10.2.0-cp38-cp38-macosx_10_10_x86_64.whl" , hash = "sha256:8373c6c251f7ef8bda6675dd6d2b3a0fcc31edf1201266b5cf608b62a37407f9" } ,
{ file = "pillow-10.2.0-cp38-cp38-macosx_11_0_arm64.whl" , hash = "sha256:870ea1ada0899fd0b79643990809323b389d4d1d46c192f97342eeb6ee0b8483" } ,
{ file = "pillow-10.2.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:b4b6b1e20608493548b1f32bce8cca185bf0480983890403d3b8753e44077129" } ,
{ file = "pillow-10.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:3031709084b6e7852d00479fd1d310b07d0ba82765f973b543c8af5061cf990e" } ,
{ file = "pillow-10.2.0-cp38-cp38-manylinux_2_28_aarch64.whl" , hash = "sha256:3ff074fc97dd4e80543a3e91f69d58889baf2002b6be64347ea8cf5533188213" } ,
{ file = "pillow-10.2.0-cp38-cp38-manylinux_2_28_x86_64.whl" , hash = "sha256:cb4c38abeef13c61d6916f264d4845fab99d7b711be96c326b84df9e3e0ff62d" } ,
{ file = "pillow-10.2.0-cp38-cp38-musllinux_1_1_aarch64.whl" , hash = "sha256:b1b3020d90c2d8e1dae29cf3ce54f8094f7938460fb5ce8bc5c01450b01fbaf6" } ,
{ file = "pillow-10.2.0-cp38-cp38-musllinux_1_1_x86_64.whl" , hash = "sha256:170aeb00224ab3dc54230c797f8404507240dd868cf52066f66a41b33169bdbe" } ,
{ file = "pillow-10.2.0-cp38-cp38-win32.whl" , hash = "sha256:c4225f5220f46b2fde568c74fca27ae9771536c2e29d7c04f4fb62c83275ac4e" } ,
{ file = "pillow-10.2.0-cp38-cp38-win_amd64.whl" , hash = "sha256:0689b5a8c5288bc0504d9fcee48f61a6a586b9b98514d7d29b840143d6734f39" } ,
{ file = "pillow-10.2.0-cp39-cp39-macosx_10_10_x86_64.whl" , hash = "sha256:b792a349405fbc0163190fde0dc7b3fef3c9268292586cf5645598b48e63dc67" } ,
{ file = "pillow-10.2.0-cp39-cp39-macosx_11_0_arm64.whl" , hash = "sha256:c570f24be1e468e3f0ce7ef56a89a60f0e05b30a3669a459e419c6eac2c35364" } ,
{ file = "pillow-10.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:d8ecd059fdaf60c1963c58ceb8997b32e9dc1b911f5da5307aab614f1ce5c2fb" } ,
{ file = "pillow-10.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:c365fd1703040de1ec284b176d6af5abe21b427cb3a5ff68e0759e1e313a5e7e" } ,
{ file = "pillow-10.2.0-cp39-cp39-manylinux_2_28_aarch64.whl" , hash = "sha256:70c61d4c475835a19b3a5aa42492409878bbca7438554a1f89d20d58a7c75c01" } ,
{ file = "pillow-10.2.0-cp39-cp39-manylinux_2_28_x86_64.whl" , hash = "sha256:b6f491cdf80ae540738859d9766783e3b3c8e5bd37f5dfa0b76abdecc5081f13" } ,
{ file = "pillow-10.2.0-cp39-cp39-musllinux_1_1_aarch64.whl" , hash = "sha256:9d189550615b4948f45252d7f005e53c2040cea1af5b60d6f79491a6e147eef7" } ,
{ file = "pillow-10.2.0-cp39-cp39-musllinux_1_1_x86_64.whl" , hash = "sha256:49d9ba1ed0ef3e061088cd1e7538a0759aab559e2e0a80a36f9fd9d8c0c21591" } ,
{ file = "pillow-10.2.0-cp39-cp39-win32.whl" , hash = "sha256:babf5acfede515f176833ed6028754cbcd0d206f7f614ea3447d67c33be12516" } ,
{ file = "pillow-10.2.0-cp39-cp39-win_amd64.whl" , hash = "sha256:0304004f8067386b477d20a518b50f3fa658a28d44e4116970abfcd94fac34a8" } ,
{ file = "pillow-10.2.0-cp39-cp39-win_arm64.whl" , hash = "sha256:0fb3e7fc88a14eacd303e90481ad983fd5b69c761e9e6ef94c983f91025da869" } ,
{ file = "pillow-10.2.0-pp310-pypy310_pp73-macosx_10_10_x86_64.whl" , hash = "sha256:322209c642aabdd6207517e9739c704dc9f9db943015535783239022002f054a" } ,
{ file = "pillow-10.2.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:3eedd52442c0a5ff4f887fab0c1c0bb164d8635b32c894bc1faf4c618dd89df2" } ,
{ file = "pillow-10.2.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:cb28c753fd5eb3dd859b4ee95de66cc62af91bcff5db5f2571d32a520baf1f04" } ,
{ file = "pillow-10.2.0-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl" , hash = "sha256:33870dc4653c5017bf4c8873e5488d8f8d5f8935e2f1fb9a2208c47cdd66efd2" } ,
{ file = "pillow-10.2.0-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl" , hash = "sha256:3c31822339516fb3c82d03f30e22b1d038da87ef27b6a78c9549888f8ceda39a" } ,
{ file = "pillow-10.2.0-pp310-pypy310_pp73-win_amd64.whl" , hash = "sha256:a2b56ba36e05f973d450582fb015594aaa78834fefe8dfb8fcd79b93e64ba4c6" } ,
{ file = "pillow-10.2.0-pp38-pypy38_pp73-win_amd64.whl" , hash = "sha256:d8e6aeb9201e655354b3ad049cb77d19813ad4ece0df1249d3c793de3774f8c7" } ,
{ file = "pillow-10.2.0-pp39-pypy39_pp73-macosx_10_10_x86_64.whl" , hash = "sha256:2247178effb34a77c11c0e8ac355c7a741ceca0a732b27bf11e747bbc950722f" } ,
{ file = "pillow-10.2.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:15587643b9e5eb26c48e49a7b33659790d28f190fc514a322d55da2fb5c2950e" } ,
{ file = "pillow-10.2.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:753cd8f2086b2b80180d9b3010dd4ed147efc167c90d3bf593fe2af21265e5a5" } ,
{ file = "pillow-10.2.0-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl" , hash = "sha256:7c8f97e8e7a9009bcacbe3766a36175056c12f9a44e6e6f2d5caad06dcfbf03b" } ,
{ file = "pillow-10.2.0-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl" , hash = "sha256:d1b35bcd6c5543b9cb547dee3150c93008f8dd0f1fef78fc0cd2b141c5baf58a" } ,
{ file = "pillow-10.2.0-pp39-pypy39_pp73-win_amd64.whl" , hash = "sha256:fe4c15f6c9285dc54ce6553a3ce908ed37c8f3825b5a51a15c91442bb955b868" } ,
{ file = "pillow-10.2.0.tar.gz" , hash = "sha256:e87f0b2c78157e12d7686b27d63c070fd65d994e8ddae6f328e0dcf4a0cd007e" } ,
2023-12-11 21:53:30 +00:00
]
[ package . extras ]
docs = [ "furo" , "olefile" , "sphinx (>=2.4)" , "sphinx-copybutton" , "sphinx-inline-tabs" , "sphinx-removed-in" , "sphinxext-opengraph" ]
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
fpx = [ "olefile" ]
mic = [ "olefile" ]
2023-12-11 21:53:30 +00:00
tests = [ "check-manifest" , "coverage" , "defusedxml" , "markdown2" , "olefile" , "packaging" , "pyroma" , "pytest" , "pytest-cov" , "pytest-timeout" ]
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
typing = [ "typing-extensions" ]
xmp = [ "defusedxml" ]
2023-12-11 21:53:30 +00:00
[ [ package ] ]
name = "pkgutil-resolve-name"
version = "1.3.10"
description = "Resolve a name to an object."
optional = false
python-versions = ">=3.6"
files = [
{ file = "pkgutil_resolve_name-1.3.10-py3-none-any.whl" , hash = "sha256:ca27cc078d25c5ad71a9de0a7a330146c4e014c2462d9af19c6b828280649c5e" } ,
{ file = "pkgutil_resolve_name-1.3.10.tar.gz" , hash = "sha256:357d6c9e6a755653cfd78893817c0853af365dd51ec97f3d358a819373bbd174" } ,
]
[ [ package ] ]
name = "platformdirs"
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
version = "4.2.0"
2023-12-11 21:53:30 +00:00
description = "A small Python package for determining appropriate platform-specific dirs, e.g. a \"user data dir\"."
optional = false
python-versions = ">=3.8"
files = [
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
{ file = "platformdirs-4.2.0-py3-none-any.whl" , hash = "sha256:0614df2a2f37e1a662acbd8e2b25b92ccf8632929bc6d43467e17fe89c75e068" } ,
{ file = "platformdirs-4.2.0.tar.gz" , hash = "sha256:ef0cc731df711022c174543cb70a9b5bd22e5a9337c8624ef2c2ceb8ddad8768" } ,
2023-12-11 21:53:30 +00:00
]
[ package . extras ]
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
docs = [ "furo (>=2023.9.10)" , "proselint (>=0.13)" , "sphinx (>=7.2.6)" , "sphinx-autodoc-typehints (>=1.25.2)" ]
test = [ "appdirs (==1.4.4)" , "covdefaults (>=2.3)" , "pytest (>=7.4.3)" , "pytest-cov (>=4.1)" , "pytest-mock (>=3.12)" ]
2023-12-11 21:53:30 +00:00
[ [ package ] ]
name = "pluggy"
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
version = "1.4.0"
2023-12-11 21:53:30 +00:00
description = "plugin and hook calling mechanisms for python"
optional = false
python-versions = ">=3.8"
files = [
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
{ file = "pluggy-1.4.0-py3-none-any.whl" , hash = "sha256:7db9f7b503d67d1c5b95f59773ebb58a8c1c288129a88665838012cfb07b8981" } ,
{ file = "pluggy-1.4.0.tar.gz" , hash = "sha256:8c85c2876142a764e5b7548e7d9a0e0ddb46f5185161049a79b7e974454223be" } ,
2023-12-11 21:53:30 +00:00
]
[ package . extras ]
dev = [ "pre-commit" , "tox" ]
testing = [ "pytest" , "pytest-benchmark" ]
2024-03-15 17:10:47 +00:00
[ [ package ] ]
name = "praw"
version = "7.7.1"
description = "PRAW, an acronym for \"Python Reddit API Wrapper\", is a Python package that allows for simple access to Reddit's API."
optional = true
python-versions = "~=3.7"
files = [
{ file = "praw-7.7.1-py3-none-any.whl" , hash = "sha256:9ec5dc943db00c175bc6a53f4e089ce625f3fdfb27305564b616747b767d38ef" } ,
{ file = "praw-7.7.1.tar.gz" , hash = "sha256:f1d7eef414cafe28080dda12ed09253a095a69933d5c8132eca11d4dc8a070bf" } ,
]
[ package . dependencies ]
prawcore = ">=2.1,<3"
update-checker = ">=0.18"
websocket-client = ">=0.54.0"
[ package . extras ]
ci = [ "coveralls" ]
dev = [ "betamax (>=0.8,<0.9)" , "betamax-matchers (>=0.3.0,<0.5)" , "furo" , "packaging" , "pre-commit" , "pytest (>=2.7.3)" , "requests (>=2.20.1,<3)" , "sphinx" , "urllib3 (==1.26.*)" ]
lint = [ "furo" , "pre-commit" , "sphinx" ]
readthedocs = [ "furo" , "sphinx" ]
test = [ "betamax (>=0.8,<0.9)" , "betamax-matchers (>=0.3.0,<0.5)" , "pytest (>=2.7.3)" , "requests (>=2.20.1,<3)" , "urllib3 (==1.26.*)" ]
[ [ package ] ]
name = "prawcore"
version = "2.4.0"
description = "\"Low-level communication layer for PRAW 4+."
optional = true
python-versions = "~=3.8"
files = [
{ file = "prawcore-2.4.0-py3-none-any.whl" , hash = "sha256:29af5da58d85704b439ad3c820873ad541f4535e00bb98c66f0fbcc8c603065a" } ,
{ file = "prawcore-2.4.0.tar.gz" , hash = "sha256:b7b2b5a1d04406e086ab4e79988dc794df16059862f329f4c6a43ed09986c335" } ,
]
[ package . dependencies ]
requests = ">=2.6.0,<3.0"
[ package . extras ]
ci = [ "coveralls" ]
dev = [ "packaging" , "prawcore[lint]" , "prawcore[test]" ]
lint = [ "pre-commit" , "ruff (>=0.0.291)" ]
test = [ "betamax (>=0.8,<0.9)" , "pytest (>=2.7.3)" , "urllib3 (==1.26.*)" ]
2023-12-11 21:53:30 +00:00
[ [ package ] ]
name = "prometheus-client"
2024-03-08 02:20:47 +00:00
version = "0.20.0"
2023-12-11 21:53:30 +00:00
description = "Python client for the Prometheus monitoring system."
optional = false
python-versions = ">=3.8"
files = [
2024-03-08 02:20:47 +00:00
{ file = "prometheus_client-0.20.0-py3-none-any.whl" , hash = "sha256:cde524a85bce83ca359cc837f28b8c0db5cac7aa653a588fd7e84ba061c329e7" } ,
{ file = "prometheus_client-0.20.0.tar.gz" , hash = "sha256:287629d00b147a32dcb2be0b9df905da599b2d82f80377083ec8463309a4bb89" } ,
2023-12-11 21:53:30 +00:00
]
[ package . extras ]
twisted = [ "twisted" ]
[ [ package ] ]
name = "prompt-toolkit"
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
version = "3.0.43"
2023-12-11 21:53:30 +00:00
description = "Library for building powerful interactive command lines in Python"
optional = false
python-versions = ">=3.7.0"
files = [
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
{ file = "prompt_toolkit-3.0.43-py3-none-any.whl" , hash = "sha256:a11a29cb3bf0a28a387fe5122cdb649816a957cd9261dcedf8c9f1fef33eacf6" } ,
{ file = "prompt_toolkit-3.0.43.tar.gz" , hash = "sha256:3527b7af26106cbc65a040bcc84839a3566ec1b051bb0bfe953631e704b0ff7d" } ,
2023-12-11 21:53:30 +00:00
]
[ package . dependencies ]
wcwidth = "*"
2024-03-15 17:10:47 +00:00
[ [ package ] ]
name = "proto-plus"
version = "1.23.0"
description = "Beautiful, Pythonic protocol buffers."
optional = true
python-versions = ">=3.6"
files = [
{ file = "proto-plus-1.23.0.tar.gz" , hash = "sha256:89075171ef11988b3fa157f5dbd8b9cf09d65fffee97e29ce403cd8defba19d2" } ,
{ file = "proto_plus-1.23.0-py3-none-any.whl" , hash = "sha256:a829c79e619e1cf632de091013a4173deed13a55f326ef84f05af6f50ff4c82c" } ,
]
[ package . dependencies ]
protobuf = ">=3.19.0,<5.0.0dev"
[ package . extras ]
testing = [ "google-api-core[grpc] (>=1.31.5)" ]
2023-12-11 21:53:30 +00:00
[ [ package ] ]
name = "protobuf"
2024-03-15 17:10:47 +00:00
version = "4.25.3"
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
description = ""
2023-12-11 21:53:30 +00:00
optional = false
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
python-versions = ">=3.8"
2023-12-11 21:53:30 +00:00
files = [
2024-03-15 17:10:47 +00:00
{ file = "protobuf-4.25.3-cp310-abi3-win32.whl" , hash = "sha256:d4198877797a83cbfe9bffa3803602bbe1625dc30d8a097365dbc762e5790faa" } ,
{ file = "protobuf-4.25.3-cp310-abi3-win_amd64.whl" , hash = "sha256:209ba4cc916bab46f64e56b85b090607a676f66b473e6b762e6f1d9d591eb2e8" } ,
{ file = "protobuf-4.25.3-cp37-abi3-macosx_10_9_universal2.whl" , hash = "sha256:f1279ab38ecbfae7e456a108c5c0681e4956d5b1090027c1de0f934dfdb4b35c" } ,
{ file = "protobuf-4.25.3-cp37-abi3-manylinux2014_aarch64.whl" , hash = "sha256:e7cb0ae90dd83727f0c0718634ed56837bfeeee29a5f82a7514c03ee1364c019" } ,
{ file = "protobuf-4.25.3-cp37-abi3-manylinux2014_x86_64.whl" , hash = "sha256:7c8daa26095f82482307bc717364e7c13f4f1c99659be82890dcfc215194554d" } ,
{ file = "protobuf-4.25.3-cp38-cp38-win32.whl" , hash = "sha256:f4f118245c4a087776e0a8408be33cf09f6c547442c00395fbfb116fac2f8ac2" } ,
{ file = "protobuf-4.25.3-cp38-cp38-win_amd64.whl" , hash = "sha256:c053062984e61144385022e53678fbded7aea14ebb3e0305ae3592fb219ccfa4" } ,
{ file = "protobuf-4.25.3-cp39-cp39-win32.whl" , hash = "sha256:19b270aeaa0099f16d3ca02628546b8baefe2955bbe23224aaf856134eccf1e4" } ,
{ file = "protobuf-4.25.3-cp39-cp39-win_amd64.whl" , hash = "sha256:e3c97a1555fd6388f857770ff8b9703083de6bf1f9274a002a332d65fbb56c8c" } ,
{ file = "protobuf-4.25.3-py3-none-any.whl" , hash = "sha256:f0700d54bcf45424477e46a9f0944155b46fb0639d69728739c0e47bab83f2b9" } ,
{ file = "protobuf-4.25.3.tar.gz" , hash = "sha256:25b5d0b42fd000320bd7830b349e3b696435f3b329810427a6bcce6a5492cc5c" } ,
2023-12-11 21:53:30 +00:00
]
[ [ package ] ]
name = "psutil"
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
version = "5.9.8"
2023-12-11 21:53:30 +00:00
description = "Cross-platform lib for process and system monitoring in Python."
optional = false
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*, !=3.5.*"
files = [
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
{ file = "psutil-5.9.8-cp27-cp27m-macosx_10_9_x86_64.whl" , hash = "sha256:26bd09967ae00920df88e0352a91cff1a78f8d69b3ecabbfe733610c0af486c8" } ,
{ file = "psutil-5.9.8-cp27-cp27m-manylinux2010_i686.whl" , hash = "sha256:05806de88103b25903dff19bb6692bd2e714ccf9e668d050d144012055cbca73" } ,
{ file = "psutil-5.9.8-cp27-cp27m-manylinux2010_x86_64.whl" , hash = "sha256:611052c4bc70432ec770d5d54f64206aa7203a101ec273a0cd82418c86503bb7" } ,
{ file = "psutil-5.9.8-cp27-cp27mu-manylinux2010_i686.whl" , hash = "sha256:50187900d73c1381ba1454cf40308c2bf6f34268518b3f36a9b663ca87e65e36" } ,
{ file = "psutil-5.9.8-cp27-cp27mu-manylinux2010_x86_64.whl" , hash = "sha256:02615ed8c5ea222323408ceba16c60e99c3f91639b07da6373fb7e6539abc56d" } ,
{ file = "psutil-5.9.8-cp27-none-win32.whl" , hash = "sha256:36f435891adb138ed3c9e58c6af3e2e6ca9ac2f365efe1f9cfef2794e6c93b4e" } ,
{ file = "psutil-5.9.8-cp27-none-win_amd64.whl" , hash = "sha256:bd1184ceb3f87651a67b2708d4c3338e9b10c5df903f2e3776b62303b26cb631" } ,
{ file = "psutil-5.9.8-cp36-abi3-macosx_10_9_x86_64.whl" , hash = "sha256:aee678c8720623dc456fa20659af736241f575d79429a0e5e9cf88ae0605cc81" } ,
{ file = "psutil-5.9.8-cp36-abi3-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:8cb6403ce6d8e047495a701dc7c5bd788add903f8986d523e3e20b98b733e421" } ,
{ file = "psutil-5.9.8-cp36-abi3-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:d06016f7f8625a1825ba3732081d77c94589dca78b7a3fc072194851e88461a4" } ,
{ file = "psutil-5.9.8-cp36-cp36m-win32.whl" , hash = "sha256:7d79560ad97af658a0f6adfef8b834b53f64746d45b403f225b85c5c2c140eee" } ,
{ file = "psutil-5.9.8-cp36-cp36m-win_amd64.whl" , hash = "sha256:27cc40c3493bb10de1be4b3f07cae4c010ce715290a5be22b98493509c6299e2" } ,
{ file = "psutil-5.9.8-cp37-abi3-win32.whl" , hash = "sha256:bc56c2a1b0d15aa3eaa5a60c9f3f8e3e565303b465dbf57a1b730e7a2b9844e0" } ,
{ file = "psutil-5.9.8-cp37-abi3-win_amd64.whl" , hash = "sha256:8db4c1b57507eef143a15a6884ca10f7c73876cdf5d51e713151c1236a0e68cf" } ,
{ file = "psutil-5.9.8-cp38-abi3-macosx_11_0_arm64.whl" , hash = "sha256:d16bbddf0693323b8c6123dd804100241da461e41d6e332fb0ba6058f630f8c8" } ,
{ file = "psutil-5.9.8.tar.gz" , hash = "sha256:6be126e3225486dff286a8fb9a06246a5253f4c7c53b475ea5f5ac934e64194c" } ,
2023-12-11 21:53:30 +00:00
]
[ package . extras ]
test = [ "enum34" , "ipaddress" , "mock" , "pywin32" , "wmi" ]
2024-03-15 17:10:47 +00:00
[ [ package ] ]
name = "psychicapi"
version = "0.8.4"
description = "Psychic.dev is an open-source data integration platform for LLMs. This is the Python client for Psychic"
optional = true
python-versions = "*"
files = [
{ file = "psychicapi-0.8.4-py3-none-any.whl" , hash = "sha256:bf0a0ea858a79c8d443565d0d1ae8d7f8c63095bf4fd2bd7723241e46b59bbd4" } ,
{ file = "psychicapi-0.8.4.tar.gz" , hash = "sha256:18dc3f2e4ab4dbbf6002c39f4ce680fbd7b86253d92403a5e6530ddf07064224" } ,
]
[ package . dependencies ]
requests = "*"
[ [ package ] ]
name = "psycopg2"
version = "2.9.9"
description = "psycopg2 - Python-PostgreSQL Database Adapter"
optional = true
python-versions = ">=3.7"
files = [
{ file = "psycopg2-2.9.9-cp310-cp310-win32.whl" , hash = "sha256:38a8dcc6856f569068b47de286b472b7c473ac7977243593a288ebce0dc89516" } ,
{ file = "psycopg2-2.9.9-cp310-cp310-win_amd64.whl" , hash = "sha256:426f9f29bde126913a20a96ff8ce7d73fd8a216cfb323b1f04da402d452853c3" } ,
{ file = "psycopg2-2.9.9-cp311-cp311-win32.whl" , hash = "sha256:ade01303ccf7ae12c356a5e10911c9e1c51136003a9a1d92f7aa9d010fb98372" } ,
{ file = "psycopg2-2.9.9-cp311-cp311-win_amd64.whl" , hash = "sha256:121081ea2e76729acfb0673ff33755e8703d45e926e416cb59bae3a86c6a4981" } ,
{ file = "psycopg2-2.9.9-cp312-cp312-win32.whl" , hash = "sha256:d735786acc7dd25815e89cc4ad529a43af779db2e25aa7c626de864127e5a024" } ,
{ file = "psycopg2-2.9.9-cp312-cp312-win_amd64.whl" , hash = "sha256:a7653d00b732afb6fc597e29c50ad28087dcb4fbfb28e86092277a559ae4e693" } ,
{ file = "psycopg2-2.9.9-cp37-cp37m-win32.whl" , hash = "sha256:5e0d98cade4f0e0304d7d6f25bbfbc5bd186e07b38eac65379309c4ca3193efa" } ,
{ file = "psycopg2-2.9.9-cp37-cp37m-win_amd64.whl" , hash = "sha256:7e2dacf8b009a1c1e843b5213a87f7c544b2b042476ed7755be813eaf4e8347a" } ,
{ file = "psycopg2-2.9.9-cp38-cp38-win32.whl" , hash = "sha256:ff432630e510709564c01dafdbe996cb552e0b9f3f065eb89bdce5bd31fabf4c" } ,
{ file = "psycopg2-2.9.9-cp38-cp38-win_amd64.whl" , hash = "sha256:bac58c024c9922c23550af2a581998624d6e02350f4ae9c5f0bc642c633a2d5e" } ,
{ file = "psycopg2-2.9.9-cp39-cp39-win32.whl" , hash = "sha256:c92811b2d4c9b6ea0285942b2e7cac98a59e166d59c588fe5cfe1eda58e72d59" } ,
{ file = "psycopg2-2.9.9-cp39-cp39-win_amd64.whl" , hash = "sha256:de80739447af31525feddeb8effd640782cf5998e1a4e9192ebdf829717e3913" } ,
{ file = "psycopg2-2.9.9.tar.gz" , hash = "sha256:d1454bde93fb1e224166811694d600e746430c006fbb031ea06ecc2ea41bf156" } ,
]
[ [ package ] ]
name = "psycopg2-binary"
version = "2.9.9"
description = "psycopg2 - Python-PostgreSQL Database Adapter"
optional = true
python-versions = ">=3.7"
files = [
{ file = "psycopg2-binary-2.9.9.tar.gz" , hash = "sha256:7f01846810177d829c7692f1f5ada8096762d9172af1b1a28d4ab5b77c923c1c" } ,
{ file = "psycopg2_binary-2.9.9-cp310-cp310-macosx_10_9_x86_64.whl" , hash = "sha256:c2470da5418b76232f02a2fcd2229537bb2d5a7096674ce61859c3229f2eb202" } ,
{ file = "psycopg2_binary-2.9.9-cp310-cp310-macosx_11_0_arm64.whl" , hash = "sha256:c6af2a6d4b7ee9615cbb162b0738f6e1fd1f5c3eda7e5da17861eacf4c717ea7" } ,
{ file = "psycopg2_binary-2.9.9-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:75723c3c0fbbf34350b46a3199eb50638ab22a0228f93fb472ef4d9becc2382b" } ,
{ file = "psycopg2_binary-2.9.9-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:83791a65b51ad6ee6cf0845634859d69a038ea9b03d7b26e703f94c7e93dbcf9" } ,
{ file = "psycopg2_binary-2.9.9-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:0ef4854e82c09e84cc63084a9e4ccd6d9b154f1dbdd283efb92ecd0b5e2b8c84" } ,
{ file = "psycopg2_binary-2.9.9-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:ed1184ab8f113e8d660ce49a56390ca181f2981066acc27cf637d5c1e10ce46e" } ,
{ file = "psycopg2_binary-2.9.9-cp310-cp310-musllinux_1_1_aarch64.whl" , hash = "sha256:d2997c458c690ec2bc6b0b7ecbafd02b029b7b4283078d3b32a852a7ce3ddd98" } ,
{ file = "psycopg2_binary-2.9.9-cp310-cp310-musllinux_1_1_i686.whl" , hash = "sha256:b58b4710c7f4161b5e9dcbe73bb7c62d65670a87df7bcce9e1faaad43e715245" } ,
{ file = "psycopg2_binary-2.9.9-cp310-cp310-musllinux_1_1_ppc64le.whl" , hash = "sha256:0c009475ee389757e6e34611d75f6e4f05f0cf5ebb76c6037508318e1a1e0d7e" } ,
{ file = "psycopg2_binary-2.9.9-cp310-cp310-musllinux_1_1_x86_64.whl" , hash = "sha256:8dbf6d1bc73f1d04ec1734bae3b4fb0ee3cb2a493d35ede9badbeb901fb40f6f" } ,
{ file = "psycopg2_binary-2.9.9-cp310-cp310-win32.whl" , hash = "sha256:3f78fd71c4f43a13d342be74ebbc0666fe1f555b8837eb113cb7416856c79682" } ,
{ file = "psycopg2_binary-2.9.9-cp310-cp310-win_amd64.whl" , hash = "sha256:876801744b0dee379e4e3c38b76fc89f88834bb15bf92ee07d94acd06ec890a0" } ,
{ file = "psycopg2_binary-2.9.9-cp311-cp311-macosx_10_9_x86_64.whl" , hash = "sha256:ee825e70b1a209475622f7f7b776785bd68f34af6e7a46e2e42f27b659b5bc26" } ,
{ file = "psycopg2_binary-2.9.9-cp311-cp311-macosx_11_0_arm64.whl" , hash = "sha256:1ea665f8ce695bcc37a90ee52de7a7980be5161375d42a0b6c6abedbf0d81f0f" } ,
{ file = "psycopg2_binary-2.9.9-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:143072318f793f53819048fdfe30c321890af0c3ec7cb1dfc9cc87aa88241de2" } ,
{ file = "psycopg2_binary-2.9.9-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:c332c8d69fb64979ebf76613c66b985414927a40f8defa16cf1bc028b7b0a7b0" } ,
{ file = "psycopg2_binary-2.9.9-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:f7fc5a5acafb7d6ccca13bfa8c90f8c51f13d8fb87d95656d3950f0158d3ce53" } ,
{ file = "psycopg2_binary-2.9.9-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:977646e05232579d2e7b9c59e21dbe5261f403a88417f6a6512e70d3f8a046be" } ,
{ file = "psycopg2_binary-2.9.9-cp311-cp311-musllinux_1_1_aarch64.whl" , hash = "sha256:b6356793b84728d9d50ead16ab43c187673831e9d4019013f1402c41b1db9b27" } ,
{ file = "psycopg2_binary-2.9.9-cp311-cp311-musllinux_1_1_i686.whl" , hash = "sha256:bc7bb56d04601d443f24094e9e31ae6deec9ccb23581f75343feebaf30423359" } ,
{ file = "psycopg2_binary-2.9.9-cp311-cp311-musllinux_1_1_ppc64le.whl" , hash = "sha256:77853062a2c45be16fd6b8d6de2a99278ee1d985a7bd8b103e97e41c034006d2" } ,
{ file = "psycopg2_binary-2.9.9-cp311-cp311-musllinux_1_1_x86_64.whl" , hash = "sha256:78151aa3ec21dccd5cdef6c74c3e73386dcdfaf19bced944169697d7ac7482fc" } ,
{ file = "psycopg2_binary-2.9.9-cp311-cp311-win32.whl" , hash = "sha256:dc4926288b2a3e9fd7b50dc6a1909a13bbdadfc67d93f3374d984e56f885579d" } ,
{ file = "psycopg2_binary-2.9.9-cp311-cp311-win_amd64.whl" , hash = "sha256:b76bedd166805480ab069612119ea636f5ab8f8771e640ae103e05a4aae3e417" } ,
{ file = "psycopg2_binary-2.9.9-cp312-cp312-macosx_10_9_x86_64.whl" , hash = "sha256:8532fd6e6e2dc57bcb3bc90b079c60de896d2128c5d9d6f24a63875a95a088cf" } ,
{ file = "psycopg2_binary-2.9.9-cp312-cp312-macosx_11_0_arm64.whl" , hash = "sha256:b0605eaed3eb239e87df0d5e3c6489daae3f7388d455d0c0b4df899519c6a38d" } ,
{ file = "psycopg2_binary-2.9.9-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:8f8544b092a29a6ddd72f3556a9fcf249ec412e10ad28be6a0c0d948924f2212" } ,
{ file = "psycopg2_binary-2.9.9-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:2d423c8d8a3c82d08fe8af900ad5b613ce3632a1249fd6a223941d0735fce493" } ,
{ file = "psycopg2_binary-2.9.9-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:2e5afae772c00980525f6d6ecf7cbca55676296b580c0e6abb407f15f3706996" } ,
{ file = "psycopg2_binary-2.9.9-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:6e6f98446430fdf41bd36d4faa6cb409f5140c1c2cf58ce0bbdaf16af7d3f119" } ,
{ file = "psycopg2_binary-2.9.9-cp312-cp312-musllinux_1_1_aarch64.whl" , hash = "sha256:c77e3d1862452565875eb31bdb45ac62502feabbd53429fdc39a1cc341d681ba" } ,
{ file = "psycopg2_binary-2.9.9-cp312-cp312-musllinux_1_1_i686.whl" , hash = "sha256:cb16c65dcb648d0a43a2521f2f0a2300f40639f6f8c1ecbc662141e4e3e1ee07" } ,
{ file = "psycopg2_binary-2.9.9-cp312-cp312-musllinux_1_1_ppc64le.whl" , hash = "sha256:911dda9c487075abd54e644ccdf5e5c16773470a6a5d3826fda76699410066fb" } ,
{ file = "psycopg2_binary-2.9.9-cp312-cp312-musllinux_1_1_x86_64.whl" , hash = "sha256:57fede879f08d23c85140a360c6a77709113efd1c993923c59fde17aa27599fe" } ,
{ file = "psycopg2_binary-2.9.9-cp312-cp312-win32.whl" , hash = "sha256:64cf30263844fa208851ebb13b0732ce674d8ec6a0c86a4e160495d299ba3c93" } ,
{ file = "psycopg2_binary-2.9.9-cp312-cp312-win_amd64.whl" , hash = "sha256:81ff62668af011f9a48787564ab7eded4e9fb17a4a6a74af5ffa6a457400d2ab" } ,
{ file = "psycopg2_binary-2.9.9-cp37-cp37m-macosx_10_9_x86_64.whl" , hash = "sha256:2293b001e319ab0d869d660a704942c9e2cce19745262a8aba2115ef41a0a42a" } ,
{ file = "psycopg2_binary-2.9.9-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:03ef7df18daf2c4c07e2695e8cfd5ee7f748a1d54d802330985a78d2a5a6dca9" } ,
{ file = "psycopg2_binary-2.9.9-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:0a602ea5aff39bb9fac6308e9c9d82b9a35c2bf288e184a816002c9fae930b77" } ,
{ file = "psycopg2_binary-2.9.9-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:8359bf4791968c5a78c56103702000105501adb557f3cf772b2c207284273984" } ,
{ file = "psycopg2_binary-2.9.9-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:275ff571376626195ab95a746e6a04c7df8ea34638b99fc11160de91f2fef503" } ,
{ file = "psycopg2_binary-2.9.9-cp37-cp37m-musllinux_1_1_aarch64.whl" , hash = "sha256:f9b5571d33660d5009a8b3c25dc1db560206e2d2f89d3df1cb32d72c0d117d52" } ,
{ file = "psycopg2_binary-2.9.9-cp37-cp37m-musllinux_1_1_i686.whl" , hash = "sha256:420f9bbf47a02616e8554e825208cb947969451978dceb77f95ad09c37791dae" } ,
{ file = "psycopg2_binary-2.9.9-cp37-cp37m-musllinux_1_1_ppc64le.whl" , hash = "sha256:4154ad09dac630a0f13f37b583eae260c6aa885d67dfbccb5b02c33f31a6d420" } ,
{ file = "psycopg2_binary-2.9.9-cp37-cp37m-musllinux_1_1_x86_64.whl" , hash = "sha256:a148c5d507bb9b4f2030a2025c545fccb0e1ef317393eaba42e7eabd28eb6041" } ,
{ file = "psycopg2_binary-2.9.9-cp37-cp37m-win32.whl" , hash = "sha256:68fc1f1ba168724771e38bee37d940d2865cb0f562380a1fb1ffb428b75cb692" } ,
{ file = "psycopg2_binary-2.9.9-cp37-cp37m-win_amd64.whl" , hash = "sha256:281309265596e388ef483250db3640e5f414168c5a67e9c665cafce9492eda2f" } ,
{ file = "psycopg2_binary-2.9.9-cp38-cp38-macosx_10_9_x86_64.whl" , hash = "sha256:60989127da422b74a04345096c10d416c2b41bd7bf2a380eb541059e4e999980" } ,
{ file = "psycopg2_binary-2.9.9-cp38-cp38-macosx_11_0_arm64.whl" , hash = "sha256:246b123cc54bb5361588acc54218c8c9fb73068bf227a4a531d8ed56fa3ca7d6" } ,
{ file = "psycopg2_binary-2.9.9-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:34eccd14566f8fe14b2b95bb13b11572f7c7d5c36da61caf414d23b91fcc5d94" } ,
{ file = "psycopg2_binary-2.9.9-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:18d0ef97766055fec15b5de2c06dd8e7654705ce3e5e5eed3b6651a1d2a9a152" } ,
{ file = "psycopg2_binary-2.9.9-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:d3f82c171b4ccd83bbaf35aa05e44e690113bd4f3b7b6cc54d2219b132f3ae55" } ,
{ file = "psycopg2_binary-2.9.9-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:ead20f7913a9c1e894aebe47cccf9dc834e1618b7aa96155d2091a626e59c972" } ,
{ file = "psycopg2_binary-2.9.9-cp38-cp38-musllinux_1_1_aarch64.whl" , hash = "sha256:ca49a8119c6cbd77375ae303b0cfd8c11f011abbbd64601167ecca18a87e7cdd" } ,
{ file = "psycopg2_binary-2.9.9-cp38-cp38-musllinux_1_1_i686.whl" , hash = "sha256:323ba25b92454adb36fa425dc5cf6f8f19f78948cbad2e7bc6cdf7b0d7982e59" } ,
{ file = "psycopg2_binary-2.9.9-cp38-cp38-musllinux_1_1_ppc64le.whl" , hash = "sha256:1236ed0952fbd919c100bc839eaa4a39ebc397ed1c08a97fc45fee2a595aa1b3" } ,
{ file = "psycopg2_binary-2.9.9-cp38-cp38-musllinux_1_1_x86_64.whl" , hash = "sha256:729177eaf0aefca0994ce4cffe96ad3c75e377c7b6f4efa59ebf003b6d398716" } ,
{ file = "psycopg2_binary-2.9.9-cp38-cp38-win32.whl" , hash = "sha256:804d99b24ad523a1fe18cc707bf741670332f7c7412e9d49cb5eab67e886b9b5" } ,
{ file = "psycopg2_binary-2.9.9-cp38-cp38-win_amd64.whl" , hash = "sha256:a6cdcc3ede532f4a4b96000b6362099591ab4a3e913d70bcbac2b56c872446f7" } ,
{ file = "psycopg2_binary-2.9.9-cp39-cp39-macosx_10_9_x86_64.whl" , hash = "sha256:72dffbd8b4194858d0941062a9766f8297e8868e1dd07a7b36212aaa90f49472" } ,
{ file = "psycopg2_binary-2.9.9-cp39-cp39-macosx_11_0_arm64.whl" , hash = "sha256:30dcc86377618a4c8f3b72418df92e77be4254d8f89f14b8e8f57d6d43603c0f" } ,
{ file = "psycopg2_binary-2.9.9-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:31a34c508c003a4347d389a9e6fcc2307cc2150eb516462a7a17512130de109e" } ,
{ file = "psycopg2_binary-2.9.9-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:15208be1c50b99203fe88d15695f22a5bed95ab3f84354c494bcb1d08557df67" } ,
{ file = "psycopg2_binary-2.9.9-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:1873aade94b74715be2246321c8650cabf5a0d098a95bab81145ffffa4c13876" } ,
{ file = "psycopg2_binary-2.9.9-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:3a58c98a7e9c021f357348867f537017057c2ed7f77337fd914d0bedb35dace7" } ,
{ file = "psycopg2_binary-2.9.9-cp39-cp39-musllinux_1_1_aarch64.whl" , hash = "sha256:4686818798f9194d03c9129a4d9a702d9e113a89cb03bffe08c6cf799e053291" } ,
{ file = "psycopg2_binary-2.9.9-cp39-cp39-musllinux_1_1_i686.whl" , hash = "sha256:ebdc36bea43063116f0486869652cb2ed7032dbc59fbcb4445c4862b5c1ecf7f" } ,
{ file = "psycopg2_binary-2.9.9-cp39-cp39-musllinux_1_1_ppc64le.whl" , hash = "sha256:ca08decd2697fdea0aea364b370b1249d47336aec935f87b8bbfd7da5b2ee9c1" } ,
{ file = "psycopg2_binary-2.9.9-cp39-cp39-musllinux_1_1_x86_64.whl" , hash = "sha256:ac05fb791acf5e1a3e39402641827780fe44d27e72567a000412c648a85ba860" } ,
{ file = "psycopg2_binary-2.9.9-cp39-cp39-win32.whl" , hash = "sha256:9dba73be7305b399924709b91682299794887cbbd88e38226ed9f6712eabee90" } ,
{ file = "psycopg2_binary-2.9.9-cp39-cp39-win_amd64.whl" , hash = "sha256:f7ae5d65ccfbebdfa761585228eb4d0df3a8b15cfb53bd953e713e09fbb12957" } ,
]
2023-12-11 21:53:30 +00:00
[ [ package ] ]
name = "ptyprocess"
version = "0.7.0"
description = "Run a subprocess in a pseudo terminal"
optional = false
python-versions = "*"
files = [
{ file = "ptyprocess-0.7.0-py2.py3-none-any.whl" , hash = "sha256:4b41f3967fce3af57cc7e94b888626c18bf37a083e3651ca8feeb66d492fef35" } ,
{ file = "ptyprocess-0.7.0.tar.gz" , hash = "sha256:5c5d0a3b48ceee0b48485e0c26037c0acd7d29765ca3fbb5cb3831d347423220" } ,
]
[ [ package ] ]
2024-03-15 17:10:47 +00:00
name = "pure-eval"
version = "0.2.2"
description = "Safely evaluate AST nodes without side effects"
optional = false
python-versions = "*"
files = [
{ file = "pure_eval-0.2.2-py3-none-any.whl" , hash = "sha256:01eaab343580944bc56080ebe0a674b39ec44a945e6d09ba7db3cb8cec289350" } ,
{ file = "pure_eval-0.2.2.tar.gz" , hash = "sha256:2b45320af6dfaa1750f543d714b6d1c520a1688dec6fd24d339063ce0aaa9ac3" } ,
]
[ package . extras ]
tests = [ "pytest" ]
[ [ package ] ]
name = "py-trello"
version = "0.19.0"
description = "Python wrapper around the Trello API"
optional = true
python-versions = "*"
files = [
{ file = "py-trello-0.19.0.tar.gz" , hash = "sha256:f4a8c05db61fad0ef5fa35d62c29806c75d9d2b797358d9cf77275e2cbf23020" } ,
]
[ package . dependencies ]
python-dateutil = "*"
pytz = "*"
requests = "*"
requests-oauthlib = ">=0.4.1"
[ [ package ] ]
name = "py4j"
version = "0.10.9.7"
description = "Enables Python programs to dynamically access arbitrary Java objects"
optional = true
python-versions = "*"
files = [
{ file = "py4j-0.10.9.7-py2.py3-none-any.whl" , hash = "sha256:85defdfd2b2376eb3abf5ca6474b51ab7e0de341c75a02f46dc9b5976f5a5c1b" } ,
{ file = "py4j-0.10.9.7.tar.gz" , hash = "sha256:0b6e5315bb3ada5cf62ac651d107bb2ebc02def3dee9d9548e3baac644ea8dbb" } ,
]
[ [ package ] ]
name = "pyaes"
version = "1.6.1"
description = "Pure-Python Implementation of the AES block-cipher and common modes of operation"
optional = true
python-versions = "*"
files = [
{ file = "pyaes-1.6.1.tar.gz" , hash = "sha256:02c1b1405c38d3c370b085fb952dd8bea3fadcee6411ad99f312cc129c536d8f" } ,
]
[ [ package ] ]
name = "pyarrow"
version = "15.0.1"
description = "Python library for Apache Arrow"
optional = true
python-versions = ">=3.8"
files = [
{ file = "pyarrow-15.0.1-cp310-cp310-macosx_10_15_x86_64.whl" , hash = "sha256:c2ddb3be5ea938c329a84171694fc230b241ce1b6b0ff1a0280509af51c375fa" } ,
{ file = "pyarrow-15.0.1-cp310-cp310-macosx_11_0_arm64.whl" , hash = "sha256:7543ea88a0ff72f8e6baaf9bfdbec2c62aeabdbede9e4a571c71cc3bc43b6302" } ,
{ file = "pyarrow-15.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:1519e218a6941fc074e4501088d891afcb2adf77c236e03c34babcf3d6a0d1c7" } ,
{ file = "pyarrow-15.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:28cafa86e1944761970d3b3fc0411b14ff9b5c2b73cd22aaf470d7a3976335f5" } ,
{ file = "pyarrow-15.0.1-cp310-cp310-manylinux_2_28_aarch64.whl" , hash = "sha256:be5c3d463e33d03eab496e1af7916b1d44001c08f0f458ad27dc16093a020638" } ,
{ file = "pyarrow-15.0.1-cp310-cp310-manylinux_2_28_x86_64.whl" , hash = "sha256:47b1eda15d3aa3f49a07b1808648e1397e5dc6a80a30bf87faa8e2d02dad7ac3" } ,
{ file = "pyarrow-15.0.1-cp310-cp310-win_amd64.whl" , hash = "sha256:e524a31be7db22deebbbcf242b189063ab9a7652c62471d296b31bc6e3cae77b" } ,
{ file = "pyarrow-15.0.1-cp311-cp311-macosx_10_15_x86_64.whl" , hash = "sha256:a476fefe8bdd56122fb0d4881b785413e025858803cc1302d0d788d3522b374d" } ,
{ file = "pyarrow-15.0.1-cp311-cp311-macosx_11_0_arm64.whl" , hash = "sha256:309e6191be385f2e220586bfdb643f9bb21d7e1bc6dd0a6963dc538e347b2431" } ,
{ file = "pyarrow-15.0.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:83bc586903dbeb4365cbc72b602f99f70b96c5882e5dfac5278813c7d624ca3c" } ,
{ file = "pyarrow-15.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:07e652daac6d8b05280cd2af31c0fb61a4490ec6a53dc01588014d9fa3fdbee9" } ,
{ file = "pyarrow-15.0.1-cp311-cp311-manylinux_2_28_aarch64.whl" , hash = "sha256:abad2e08652df153a72177ce20c897d083b0c4ebeec051239e2654ddf4d3c996" } ,
{ file = "pyarrow-15.0.1-cp311-cp311-manylinux_2_28_x86_64.whl" , hash = "sha256:cde663352bc83ad75ba7b3206e049ca1a69809223942362a8649e37bd22f9e3b" } ,
{ file = "pyarrow-15.0.1-cp311-cp311-win_amd64.whl" , hash = "sha256:1b6e237dd7a08482a8b8f3f6512d258d2460f182931832a8c6ef3953203d31e1" } ,
{ file = "pyarrow-15.0.1-cp312-cp312-macosx_10_15_x86_64.whl" , hash = "sha256:7bd167536ee23192760b8c731d39b7cfd37914c27fd4582335ffd08450ff799d" } ,
{ file = "pyarrow-15.0.1-cp312-cp312-macosx_11_0_arm64.whl" , hash = "sha256:7c08bb31eb2984ba5c3747d375bb522e7e536b8b25b149c9cb5e1c49b0ccb736" } ,
{ file = "pyarrow-15.0.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:c0f9c1d630ed2524bd1ddf28ec92780a7b599fd54704cd653519f7ff5aec177a" } ,
{ file = "pyarrow-15.0.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:5186048493395220550bca7b524420471aac2d77af831f584ce132680f55c3df" } ,
{ file = "pyarrow-15.0.1-cp312-cp312-manylinux_2_28_aarch64.whl" , hash = "sha256:31dc30c7ec8958da3a3d9f31d6c3630429b2091ede0ecd0d989fd6bec129f0e4" } ,
{ file = "pyarrow-15.0.1-cp312-cp312-manylinux_2_28_x86_64.whl" , hash = "sha256:3f111a014fb8ac2297b43a74bf4495cc479a332908f7ee49cb7cbd50714cb0c1" } ,
{ file = "pyarrow-15.0.1-cp312-cp312-win_amd64.whl" , hash = "sha256:a6d1f7c15d7f68f08490d0cb34611497c74285b8a6bbeab4ef3fc20117310983" } ,
{ file = "pyarrow-15.0.1-cp38-cp38-macosx_10_15_x86_64.whl" , hash = "sha256:9ad931b996f51c2f978ed517b55cb3c6078272fb4ec579e3da5a8c14873b698d" } ,
{ file = "pyarrow-15.0.1-cp38-cp38-macosx_11_0_arm64.whl" , hash = "sha256:738f6b53ab1c2f66b2bde8a1d77e186aeaab702d849e0dfa1158c9e2c030add3" } ,
{ file = "pyarrow-15.0.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:2c1c3fc16bc74e33bf8f1e5a212938ed8d88e902f372c4dac6b5bad328567d2f" } ,
{ file = "pyarrow-15.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:e1fa92512128f6c1b8dde0468c1454dd70f3bff623970e370d52efd4d24fd0be" } ,
{ file = "pyarrow-15.0.1-cp38-cp38-manylinux_2_28_aarch64.whl" , hash = "sha256:b4157f307c202cbbdac147d9b07447a281fa8e63494f7fc85081da351ec6ace9" } ,
{ file = "pyarrow-15.0.1-cp38-cp38-manylinux_2_28_x86_64.whl" , hash = "sha256:b75e7da26f383787f80ad76143b44844ffa28648fcc7099a83df1538c078d2f2" } ,
{ file = "pyarrow-15.0.1-cp38-cp38-win_amd64.whl" , hash = "sha256:3a99eac76ae14096c209850935057b9e8ce97a78397c5cde8724674774f34e5d" } ,
{ file = "pyarrow-15.0.1-cp39-cp39-macosx_10_15_x86_64.whl" , hash = "sha256:dd532d3177e031e9b2d2df19fd003d0cc0520d1747659fcabbd4d9bb87de508c" } ,
{ file = "pyarrow-15.0.1-cp39-cp39-macosx_11_0_arm64.whl" , hash = "sha256:ce8c89848fd37e5313fc2ce601483038ee5566db96ba0808d5883b2e2e55dc53" } ,
{ file = "pyarrow-15.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:862eac5e5f3b6477f7a92b2f27e560e1f4e5e9edfca9ea9da8a7478bb4abd5ce" } ,
{ file = "pyarrow-15.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:8f0ea3a29cd5cb99bf14c1c4533eceaa00ea8fb580950fb5a89a5c771a994a4e" } ,
{ file = "pyarrow-15.0.1-cp39-cp39-manylinux_2_28_aarch64.whl" , hash = "sha256:bb902f780cfd624b2e8fd8501fadab17618fdb548532620ef3d91312aaf0888a" } ,
{ file = "pyarrow-15.0.1-cp39-cp39-manylinux_2_28_x86_64.whl" , hash = "sha256:4f87757f02735a6bb4ad2e1b98279ac45d53b748d5baf52401516413007c6999" } ,
{ file = "pyarrow-15.0.1-cp39-cp39-win_amd64.whl" , hash = "sha256:efd3816c7fbfcbd406ac0f69873cebb052effd7cdc153ae5836d1b00845845d7" } ,
{ file = "pyarrow-15.0.1.tar.gz" , hash = "sha256:21d812548d39d490e0c6928a7c663f37b96bf764034123d4b4ab4530ecc757a9" } ,
]
[ package . dependencies ]
numpy = ">=1.16.6,<2"
[ [ package ] ]
name = "pyarrow-hotfix"
version = "0.6"
description = ""
optional = true
python-versions = ">=3.5"
files = [
{ file = "pyarrow_hotfix-0.6-py3-none-any.whl" , hash = "sha256:dcc9ae2d220dff0083be6a9aa8e0cdee5182ad358d4931fce825c545e5c89178" } ,
{ file = "pyarrow_hotfix-0.6.tar.gz" , hash = "sha256:79d3e030f7ff890d408a100ac16d6f00b14d44a502d7897cd9fc3e3a534e9945" } ,
]
[ [ package ] ]
name = "pyasn1"
version = "0.5.1"
description = "Pure-Python implementation of ASN.1 types and DER/BER/CER codecs (X.208)"
optional = true
python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,>=2.7"
files = [
{ file = "pyasn1-0.5.1-py2.py3-none-any.whl" , hash = "sha256:4439847c58d40b1d0a573d07e3856e95333f1976294494c325775aeca506eb58" } ,
{ file = "pyasn1-0.5.1.tar.gz" , hash = "sha256:6d391a96e59b23130a5cfa74d6fd7f388dbbe26cc8f1edf39fdddf08d9d6676c" } ,
]
[ [ package ] ]
name = "pyasn1-modules"
version = "0.3.0"
description = "A collection of ASN.1-based protocols modules"
optional = true
python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,>=2.7"
files = [
{ file = "pyasn1_modules-0.3.0-py2.py3-none-any.whl" , hash = "sha256:d3ccd6ed470d9ffbc716be08bd90efbd44d0734bc9303818f7336070984a162d" } ,
{ file = "pyasn1_modules-0.3.0.tar.gz" , hash = "sha256:5bd01446b736eb9d31512a30d46c1ac3395d676c6f3cafa4c03eb54b9925631c" } ,
]
[ package . dependencies ]
pyasn1 = ">=0.4.6,<0.6.0"
[ [ package ] ]
name = "pycares"
version = "4.4.0"
description = "Python interface for c-ares"
optional = true
python-versions = ">=3.8"
files = [
{ file = "pycares-4.4.0-cp310-cp310-macosx_10_9_universal2.whl" , hash = "sha256:24da119850841d16996713d9c3374ca28a21deee056d609fbbed29065d17e1f6" } ,
{ file = "pycares-4.4.0-cp310-cp310-macosx_10_9_x86_64.whl" , hash = "sha256:8f64cb58729689d4d0e78f0bfb4c25ce2f851d0274c0273ac751795c04b8798a" } ,
{ file = "pycares-4.4.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:d33e2a1120887e89075f7f814ec144f66a6ce06a54f5722ccefc62fbeda83cff" } ,
{ file = "pycares-4.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:c680fef1b502ee680f8f0b95a41af4ec2c234e50e16c0af5bbda31999d3584bd" } ,
{ file = "pycares-4.4.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:fff16b09042ba077f7b8aa5868d1d22456f0002574d0ba43462b10a009331677" } ,
{ file = "pycares-4.4.0-cp310-cp310-musllinux_1_1_aarch64.whl" , hash = "sha256:229a1675eb33bc9afb1fc463e73ee334950ccc485bc83a43f6ae5839fb4d5fa3" } ,
{ file = "pycares-4.4.0-cp310-cp310-musllinux_1_1_i686.whl" , hash = "sha256:3aebc73e5ad70464f998f77f2da2063aa617cbd8d3e8174dd7c5b4518f967153" } ,
{ file = "pycares-4.4.0-cp310-cp310-musllinux_1_1_x86_64.whl" , hash = "sha256:6ef64649eba56448f65e26546d85c860709844d2fc22ef14d324fe0b27f761a9" } ,
{ file = "pycares-4.4.0-cp310-cp310-win32.whl" , hash = "sha256:4afc2644423f4eef97857a9fd61be9758ce5e336b4b0bd3d591238bb4b8b03e0" } ,
{ file = "pycares-4.4.0-cp310-cp310-win_amd64.whl" , hash = "sha256:5ed4e04af4012f875b78219d34434a6d08a67175150ac1b79eb70ab585d4ba8c" } ,
{ file = "pycares-4.4.0-cp311-cp311-macosx_10_9_universal2.whl" , hash = "sha256:bce8db2fc6f3174bd39b81405210b9b88d7b607d33e56a970c34a0c190da0490" } ,
{ file = "pycares-4.4.0-cp311-cp311-macosx_10_9_x86_64.whl" , hash = "sha256:9a0303428d013ccf5c51de59c83f9127aba6200adb7fd4be57eddb432a1edd2a" } ,
{ file = "pycares-4.4.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:afb91792f1556f97be7f7acb57dc7756d89c5a87bd8b90363a77dbf9ea653817" } ,
{ file = "pycares-4.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:b61579cecf1f4d616e5ea31a6e423a16680ab0d3a24a2ffe7bb1d4ee162477ff" } ,
{ file = "pycares-4.4.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:b7af06968cbf6851566e806bf3e72825b0e6671832a2cbe840be1d2d65350710" } ,
{ file = "pycares-4.4.0-cp311-cp311-musllinux_1_1_aarch64.whl" , hash = "sha256:ceb12974367b0a68a05d52f4162b29f575d241bd53de155efe632bf2c943c7f6" } ,
{ file = "pycares-4.4.0-cp311-cp311-musllinux_1_1_i686.whl" , hash = "sha256:2eeec144bcf6a7b6f2d74d6e70cbba7886a84dd373c886f06cb137a07de4954c" } ,
{ file = "pycares-4.4.0-cp311-cp311-musllinux_1_1_x86_64.whl" , hash = "sha256:e3a6f7cfdfd11eb5493d6d632e582408c8f3b429f295f8799c584c108b28db6f" } ,
{ file = "pycares-4.4.0-cp311-cp311-win32.whl" , hash = "sha256:34736a2ffaa9c08ca9c707011a2d7b69074bbf82d645d8138bba771479b2362f" } ,
{ file = "pycares-4.4.0-cp311-cp311-win_amd64.whl" , hash = "sha256:eb66c30eb11e877976b7ead13632082a8621df648c408b8e15cdb91a452dd502" } ,
{ file = "pycares-4.4.0-cp312-cp312-macosx_10_9_universal2.whl" , hash = "sha256:fd644505a8cfd7f6584d33a9066d4e3d47700f050ef1490230c962de5dfb28c6" } ,
{ file = "pycares-4.4.0-cp312-cp312-macosx_10_9_x86_64.whl" , hash = "sha256:52084961262232ec04bd75f5043aed7e5d8d9695e542ff691dfef0110209f2d4" } ,
{ file = "pycares-4.4.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:a0c5368206057884cde18602580083aeaad9b860e2eac14fd253543158ce1e93" } ,
{ file = "pycares-4.4.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:112a4979c695b1c86f6782163d7dec58d57a3b9510536dcf4826550f9053dd9a" } ,
{ file = "pycares-4.4.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:8d186dafccdaa3409194c0f94db93c1a5d191145a275f19da6591f9499b8e7b8" } ,
{ file = "pycares-4.4.0-cp312-cp312-musllinux_1_1_aarch64.whl" , hash = "sha256:64965dc19c578a683ea73487a215a8897276224e004d50eeb21f0bc7a0b63c88" } ,
{ file = "pycares-4.4.0-cp312-cp312-musllinux_1_1_i686.whl" , hash = "sha256:ed2a38e34bec6f2586435f6ff0bc5fe11d14bebd7ed492cf739a424e81681540" } ,
{ file = "pycares-4.4.0-cp312-cp312-musllinux_1_1_x86_64.whl" , hash = "sha256:94d6962db81541eb0396d2f0dfcbb18cdb8c8b251d165efc2d974ae652c547d4" } ,
{ file = "pycares-4.4.0-cp312-cp312-win32.whl" , hash = "sha256:1168a48a834813aa80f412be2df4abaf630528a58d15c704857448b20b1675c0" } ,
{ file = "pycares-4.4.0-cp312-cp312-win_amd64.whl" , hash = "sha256:db24c4e7fea4a052c6e869cbf387dd85d53b9736cfe1ef5d8d568d1ca925e977" } ,
{ file = "pycares-4.4.0-cp38-cp38-macosx_10_9_universal2.whl" , hash = "sha256:21a5a0468861ec7df7befa69050f952da13db5427ae41ffe4713bc96291d1d95" } ,
{ file = "pycares-4.4.0-cp38-cp38-macosx_10_9_x86_64.whl" , hash = "sha256:22c00bf659a9fa44d7b405cf1cd69b68b9d37537899898d8cbe5dffa4016b273" } ,
{ file = "pycares-4.4.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:23aa3993a352491a47fcf17867f61472f32f874df4adcbb486294bd9fbe8abee" } ,
{ file = "pycares-4.4.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:813d661cbe2e37d87da2d16b7110a6860e93ddb11735c6919c8a3545c7b9c8d8" } ,
{ file = "pycares-4.4.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:77cf5a2fd5583c670de41a7f4a7b46e5cbabe7180d8029f728571f4d2e864084" } ,
{ file = "pycares-4.4.0-cp38-cp38-musllinux_1_1_aarch64.whl" , hash = "sha256:3eaa6681c0a3e3f3868c77aca14b7760fed35fdfda2fe587e15c701950e7bc69" } ,
{ file = "pycares-4.4.0-cp38-cp38-musllinux_1_1_i686.whl" , hash = "sha256:ad58e284a658a8a6a84af2e0b62f2f961f303cedfe551854d7bd40c3cbb61912" } ,
{ file = "pycares-4.4.0-cp38-cp38-musllinux_1_1_x86_64.whl" , hash = "sha256:bfb89ca9e3d0a9b5332deeb666b2ede9d3469107742158f4aeda5ce032d003f4" } ,
{ file = "pycares-4.4.0-cp38-cp38-win32.whl" , hash = "sha256:f36bdc1562142e3695555d2f4ac0cb69af165eddcefa98efc1c79495b533481f" } ,
{ file = "pycares-4.4.0-cp38-cp38-win_amd64.whl" , hash = "sha256:902461a92b6a80fd5041a2ec5235680c7cc35e43615639ec2a40e63fca2dfb51" } ,
{ file = "pycares-4.4.0-cp39-cp39-macosx_10_9_universal2.whl" , hash = "sha256:7bddc6adba8f699728f7fc1c9ce8cef359817ad78e2ed52b9502cb5f8dc7f741" } ,
{ file = "pycares-4.4.0-cp39-cp39-macosx_10_9_x86_64.whl" , hash = "sha256:cb49d5805cd347c404f928c5ae7c35e86ba0c58ffa701dbe905365e77ce7d641" } ,
{ file = "pycares-4.4.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:56cf3349fa3a2e67ed387a7974c11d233734636fe19facfcda261b411af14d80" } ,
{ file = "pycares-4.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:8bf2eaa83a5987e48fa63302f0fe7ce3275cfda87b34d40fef9ce703fb3ac002" } ,
{ file = "pycares-4.4.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:82bba2ab77eb5addbf9758d514d9bdef3c1bfe7d1649a47bd9a0d55a23ef478b" } ,
{ file = "pycares-4.4.0-cp39-cp39-musllinux_1_1_aarch64.whl" , hash = "sha256:c6a8bde63106f162fca736e842a916853cad3c8d9d137e11c9ffa37efa818b02" } ,
{ file = "pycares-4.4.0-cp39-cp39-musllinux_1_1_i686.whl" , hash = "sha256:f5f646eec041db6ffdbcaf3e0756fb92018f7af3266138c756bb09d2b5baadec" } ,
{ file = "pycares-4.4.0-cp39-cp39-musllinux_1_1_x86_64.whl" , hash = "sha256:9dc04c54c6ea615210c1b9e803d0e2d2255f87a3d5d119b6482c8f0dfa15b26b" } ,
{ file = "pycares-4.4.0-cp39-cp39-win32.whl" , hash = "sha256:97892cced5794d721fb4ff8765764aa4ea48fe8b2c3820677505b96b83d4ef47" } ,
{ file = "pycares-4.4.0-cp39-cp39-win_amd64.whl" , hash = "sha256:917f08f0b5d9324e9a34211e68d27447c552b50ab967044776bbab7e42a553a2" } ,
{ file = "pycares-4.4.0.tar.gz" , hash = "sha256:f47579d508f2f56eddd16ce72045782ad3b1b3b678098699e2b6a1b30733e1c2" } ,
]
[ package . dependencies ]
cffi = ">=1.5.0"
[ package . extras ]
idna = [ "idna (>=2.1)" ]
[ [ package ] ]
name = "pyclipper"
version = "1.3.0.post5"
description = "Cython wrapper for the C++ translation of the Angus Johnson's Clipper library (ver. 6.4.2)"
optional = true
2023-12-11 21:53:30 +00:00
python-versions = "*"
files = [
2024-03-15 17:10:47 +00:00
{ file = "pyclipper-1.3.0.post5-cp310-cp310-macosx_10_9_universal2.whl" , hash = "sha256:3c45f99b8180dd4df4c86642657ca92b7d5289a5e3724521822e0f9461961fe2" } ,
{ file = "pyclipper-1.3.0.post5-cp310-cp310-macosx_10_9_x86_64.whl" , hash = "sha256:567ffd419a0bdc3727fa4562cfa1f18484691817a2bc0bc675750aa28ed98bd4" } ,
{ file = "pyclipper-1.3.0.post5-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl" , hash = "sha256:59c8c75661a6d87e98b1655851578a2917d3c8859912c9a4f1956b9830940fd9" } ,
{ file = "pyclipper-1.3.0.post5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:a496efa146d2d88b59350021739e4685e439dc569b6654e9e6d5e42e9a0b1666" } ,
{ file = "pyclipper-1.3.0.post5-cp310-cp310-win32.whl" , hash = "sha256:02a98d09af9b60bcf8e9480d153c0839e20b92689f5602f87242a4933842fecd" } ,
{ file = "pyclipper-1.3.0.post5-cp310-cp310-win_amd64.whl" , hash = "sha256:847f1e2fc3994bb498fe675f55c98129b95dc26a5c92304ba4cf0ab40721ea3d" } ,
{ file = "pyclipper-1.3.0.post5-cp311-cp311-macosx_10_9_universal2.whl" , hash = "sha256:b7a983ae019932bfa0a1971a2dc8c856704add5f3d567bed8fac02dbc0e7f0bf" } ,
{ file = "pyclipper-1.3.0.post5-cp311-cp311-macosx_10_9_x86_64.whl" , hash = "sha256:d8760075c395b924f894aa16ee06e8c040c6f9b63e0903e49de3cc8d82d9e637" } ,
{ file = "pyclipper-1.3.0.post5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:e4ea61ca5899d3346c614951342c506f119601ed0a1f4889a9cc236558afec6b" } ,
{ file = "pyclipper-1.3.0.post5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:46499b361ae067662b22578401d83d57716f3cc0071d592feb07d504b439fea7" } ,
{ file = "pyclipper-1.3.0.post5-cp311-cp311-win32.whl" , hash = "sha256:d5c77e39ab05a6cf277c819639968b21e6959e996ea1a074afc24236541708ff" } ,
{ file = "pyclipper-1.3.0.post5-cp311-cp311-win_amd64.whl" , hash = "sha256:0f78a1c18ff4f9276f78d9353d6ed4309c3886a9d0172437e48328aef499165e" } ,
{ file = "pyclipper-1.3.0.post5-cp312-cp312-macosx_10_9_universal2.whl" , hash = "sha256:5237282f906049c307e6c90333c7d56f6b8712bf087ef97b141830c40b09ca0a" } ,
{ file = "pyclipper-1.3.0.post5-cp312-cp312-macosx_10_9_x86_64.whl" , hash = "sha256:aca8635573646b65c054399433fb3493637f1445db942de8a52fca9ef493ba3d" } ,
{ file = "pyclipper-1.3.0.post5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:1158a2b13d59bdfab33d1d928f7b72c8c7fb8a76e7d2283839cb45d7c0ff2140" } ,
{ file = "pyclipper-1.3.0.post5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:5a041f1a7982b17cf92fd3be349ec41ff1901792149c166bf283f469567b52d6" } ,
{ file = "pyclipper-1.3.0.post5-cp312-cp312-win32.whl" , hash = "sha256:bf3a2ccd6e4e078250b0a31a12c519b0be6d1bc160acfceee62407dbd68558f6" } ,
{ file = "pyclipper-1.3.0.post5-cp312-cp312-win_amd64.whl" , hash = "sha256:2ce6e0a6ab32182c26537965cf521822cd11a28a7ffcef48635a94c6ca8559ef" } ,
{ file = "pyclipper-1.3.0.post5-cp36-cp36m-macosx_10_9_x86_64.whl" , hash = "sha256:010ee13d40d924341cc41b6d9901d763175040c68753939f140bc0cc714f18bb" } ,
{ file = "pyclipper-1.3.0.post5-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:ee1c4797b1dc982ae9d60333269536ea03ddc0baa1c3383a6d5b741dbbb12675" } ,
{ file = "pyclipper-1.3.0.post5-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl" , hash = "sha256:ba692cf11873886085a0445dcfc362b24ca35bcb997ad9e9b5685854a290d8ff" } ,
{ file = "pyclipper-1.3.0.post5-cp36-cp36m-win32.whl" , hash = "sha256:f0b84fcf5230aca2de06ddb7920459daa858853835f8774739ca30dd516e7d37" } ,
{ file = "pyclipper-1.3.0.post5-cp36-cp36m-win_amd64.whl" , hash = "sha256:741910bfd7b0bd40f027869f4bf86bdd9678ae7f74e8dabcf62d170269f6191d" } ,
{ file = "pyclipper-1.3.0.post5-cp37-cp37m-macosx_10_9_x86_64.whl" , hash = "sha256:5f3484b4dffa64f0e3a43b63165a5c0f507c5850e70b9cc2eaa82474d7746393" } ,
{ file = "pyclipper-1.3.0.post5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:87efec9795744cef786f2f8cab17d6dc07f57dfce5e3b7f3be96eb79a4ce5794" } ,
{ file = "pyclipper-1.3.0.post5-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl" , hash = "sha256:5f445a2d03690faa23a1b90e32dfb4352a60b23437323de87388c6c611d3d1e3" } ,
{ file = "pyclipper-1.3.0.post5-cp37-cp37m-win32.whl" , hash = "sha256:eb9d1cb2999bc1ea8ad1c3a031ba33b0a89a5ace25d33df7529d3ff18c16604c" } ,
{ file = "pyclipper-1.3.0.post5-cp37-cp37m-win_amd64.whl" , hash = "sha256:ead0f3ecd1961005f61d50c896e33442138b4e7c9e0c035784d3525068dd2b10" } ,
{ file = "pyclipper-1.3.0.post5-cp38-cp38-macosx_10_9_universal2.whl" , hash = "sha256:39ccd920b192a4f8096589a2a1f8faaf6aaaadb7a163b5ce913d03faac2449bb" } ,
{ file = "pyclipper-1.3.0.post5-cp38-cp38-macosx_10_9_x86_64.whl" , hash = "sha256:e346e7adba43e40f5f5f293b6b6a45de5a6a3bdc74e437dedd948c5d74de9405" } ,
{ file = "pyclipper-1.3.0.post5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:bb2fb22927c3ac3191e555efd335c6efa819aa1ff4d0901979673ab5a18eb740" } ,
{ file = "pyclipper-1.3.0.post5-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl" , hash = "sha256:a678999d728023f1f3988a14a2e6d89d6f1ed4d0786d5992c1bffb4c1ab30318" } ,
{ file = "pyclipper-1.3.0.post5-cp38-cp38-win32.whl" , hash = "sha256:36d456fdf32a6410a87bd7af8ebc4c01f19b4e3b839104b3072558cad0d8bf4c" } ,
{ file = "pyclipper-1.3.0.post5-cp38-cp38-win_amd64.whl" , hash = "sha256:c9c1fdf4ecae6b55033ede3f4e931156ffc969334300f44f8bf1b356ec0a3d63" } ,
{ file = "pyclipper-1.3.0.post5-cp39-cp39-macosx_10_9_universal2.whl" , hash = "sha256:8bb9cd95fd4bd88fb1590d1763a52e3ea6a1095e11b3e885ff164da1313aae79" } ,
{ file = "pyclipper-1.3.0.post5-cp39-cp39-macosx_10_9_x86_64.whl" , hash = "sha256:0f516fd69aa61a9698a3ce3ba2f7edda5ac6aafc8d964ee3bc60897906947fcb" } ,
{ file = "pyclipper-1.3.0.post5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:e36f018303656ea4a629d2fba0d0d4c74960eacec7119fe2ab3c658ce84c494b" } ,
{ file = "pyclipper-1.3.0.post5-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl" , hash = "sha256:dd3c4b312a931e668a7a291d4bd5b10bacb0687bd163220a9f0418c7e23169e2" } ,
{ file = "pyclipper-1.3.0.post5-cp39-cp39-win32.whl" , hash = "sha256:cfea42972e90954b3c89da9216993373a2270a5103d4916fd543a1109528ed4c" } ,
{ file = "pyclipper-1.3.0.post5-cp39-cp39-win_amd64.whl" , hash = "sha256:85ca06f382f999903d809380e4c01ec127d3eb26431402e9b3f01facaec68b80" } ,
{ file = "pyclipper-1.3.0.post5-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl" , hash = "sha256:da30e59c684eea198f6e19244e9a41e855a23a416cc708821fd4eb8f5f18626c" } ,
{ file = "pyclipper-1.3.0.post5-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl" , hash = "sha256:d8a9e3e46aa50e4c3667db9a816d59ae4f9c62b05f997abb8a9b3f3afe6d94a4" } ,
{ file = "pyclipper-1.3.0.post5-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:0589b80f2da1ad322345a93c053b5d46dc692def5a188351be01f34bcf041218" } ,
{ file = "pyclipper-1.3.0.post5.tar.gz" , hash = "sha256:c0239f928e0bf78a3efc2f2f615a10bfcdb9f33012d46d64c8d1225b4bde7096" } ,
2023-12-11 21:53:30 +00:00
]
[ [ package ] ]
name = "pycparser"
version = "2.21"
description = "C parser in Python"
optional = false
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*"
files = [
{ file = "pycparser-2.21-py2.py3-none-any.whl" , hash = "sha256:8ee45429555515e1f6b185e78100aea234072576aa43ab53aefcae078162fca9" } ,
{ file = "pycparser-2.21.tar.gz" , hash = "sha256:e644fdec12f7872f86c58ff790da456218b10f863970249516d60a5eaca77206" } ,
]
[ [ package ] ]
name = "pydantic"
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
version = "1.10.14"
2023-12-11 21:53:30 +00:00
description = "Data validation and settings management using python type hints"
optional = false
python-versions = ">=3.7"
files = [
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
{ file = "pydantic-1.10.14-cp310-cp310-macosx_10_9_x86_64.whl" , hash = "sha256:7f4fcec873f90537c382840f330b90f4715eebc2bc9925f04cb92de593eae054" } ,
{ file = "pydantic-1.10.14-cp310-cp310-macosx_11_0_arm64.whl" , hash = "sha256:8e3a76f571970fcd3c43ad982daf936ae39b3e90b8a2e96c04113a369869dc87" } ,
{ file = "pydantic-1.10.14-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:82d886bd3c3fbeaa963692ef6b643159ccb4b4cefaf7ff1617720cbead04fd1d" } ,
{ file = "pydantic-1.10.14-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:798a3d05ee3b71967844a1164fd5bdb8c22c6d674f26274e78b9f29d81770c4e" } ,
{ file = "pydantic-1.10.14-cp310-cp310-musllinux_1_1_i686.whl" , hash = "sha256:23d47a4b57a38e8652bcab15a658fdb13c785b9ce217cc3a729504ab4e1d6bc9" } ,
{ file = "pydantic-1.10.14-cp310-cp310-musllinux_1_1_x86_64.whl" , hash = "sha256:f9f674b5c3bebc2eba401de64f29948ae1e646ba2735f884d1594c5f675d6f2a" } ,
{ file = "pydantic-1.10.14-cp310-cp310-win_amd64.whl" , hash = "sha256:24a7679fab2e0eeedb5a8924fc4a694b3bcaac7d305aeeac72dd7d4e05ecbebf" } ,
{ file = "pydantic-1.10.14-cp311-cp311-macosx_10_9_x86_64.whl" , hash = "sha256:9d578ac4bf7fdf10ce14caba6f734c178379bd35c486c6deb6f49006e1ba78a7" } ,
{ file = "pydantic-1.10.14-cp311-cp311-macosx_11_0_arm64.whl" , hash = "sha256:fa7790e94c60f809c95602a26d906eba01a0abee9cc24150e4ce2189352deb1b" } ,
{ file = "pydantic-1.10.14-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:aad4e10efa5474ed1a611b6d7f0d130f4aafadceb73c11d9e72823e8f508e663" } ,
{ file = "pydantic-1.10.14-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:1245f4f61f467cb3dfeced2b119afef3db386aec3d24a22a1de08c65038b255f" } ,
{ file = "pydantic-1.10.14-cp311-cp311-musllinux_1_1_i686.whl" , hash = "sha256:21efacc678a11114c765eb52ec0db62edffa89e9a562a94cbf8fa10b5db5c046" } ,
{ file = "pydantic-1.10.14-cp311-cp311-musllinux_1_1_x86_64.whl" , hash = "sha256:412ab4a3f6dbd2bf18aefa9f79c7cca23744846b31f1d6555c2ee2b05a2e14ca" } ,
{ file = "pydantic-1.10.14-cp311-cp311-win_amd64.whl" , hash = "sha256:e897c9f35281f7889873a3e6d6b69aa1447ceb024e8495a5f0d02ecd17742a7f" } ,
{ file = "pydantic-1.10.14-cp37-cp37m-macosx_10_9_x86_64.whl" , hash = "sha256:d604be0f0b44d473e54fdcb12302495fe0467c56509a2f80483476f3ba92b33c" } ,
{ file = "pydantic-1.10.14-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:a42c7d17706911199798d4c464b352e640cab4351efe69c2267823d619a937e5" } ,
{ file = "pydantic-1.10.14-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:596f12a1085e38dbda5cbb874d0973303e34227b400b6414782bf205cc14940c" } ,
{ file = "pydantic-1.10.14-cp37-cp37m-musllinux_1_1_i686.whl" , hash = "sha256:bfb113860e9288d0886e3b9e49d9cf4a9d48b441f52ded7d96db7819028514cc" } ,
{ file = "pydantic-1.10.14-cp37-cp37m-musllinux_1_1_x86_64.whl" , hash = "sha256:bc3ed06ab13660b565eed80887fcfbc0070f0aa0691fbb351657041d3e874efe" } ,
{ file = "pydantic-1.10.14-cp37-cp37m-win_amd64.whl" , hash = "sha256:ad8c2bc677ae5f6dbd3cf92f2c7dc613507eafe8f71719727cbc0a7dec9a8c01" } ,
{ file = "pydantic-1.10.14-cp38-cp38-macosx_10_9_x86_64.whl" , hash = "sha256:c37c28449752bb1f47975d22ef2882d70513c546f8f37201e0fec3a97b816eee" } ,
{ file = "pydantic-1.10.14-cp38-cp38-macosx_11_0_arm64.whl" , hash = "sha256:49a46a0994dd551ec051986806122767cf144b9702e31d47f6d493c336462597" } ,
{ file = "pydantic-1.10.14-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:53e3819bd20a42470d6dd0fe7fc1c121c92247bca104ce608e609b59bc7a77ee" } ,
{ file = "pydantic-1.10.14-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:0fbb503bbbbab0c588ed3cd21975a1d0d4163b87e360fec17a792f7d8c4ff29f" } ,
{ file = "pydantic-1.10.14-cp38-cp38-musllinux_1_1_i686.whl" , hash = "sha256:336709883c15c050b9c55a63d6c7ff09be883dbc17805d2b063395dd9d9d0022" } ,
{ file = "pydantic-1.10.14-cp38-cp38-musllinux_1_1_x86_64.whl" , hash = "sha256:4ae57b4d8e3312d486e2498d42aed3ece7b51848336964e43abbf9671584e67f" } ,
{ file = "pydantic-1.10.14-cp38-cp38-win_amd64.whl" , hash = "sha256:dba49d52500c35cfec0b28aa8b3ea5c37c9df183ffc7210b10ff2a415c125c4a" } ,
{ file = "pydantic-1.10.14-cp39-cp39-macosx_10_9_x86_64.whl" , hash = "sha256:c66609e138c31cba607d8e2a7b6a5dc38979a06c900815495b2d90ce6ded35b4" } ,
{ file = "pydantic-1.10.14-cp39-cp39-macosx_11_0_arm64.whl" , hash = "sha256:d986e115e0b39604b9eee3507987368ff8148222da213cd38c359f6f57b3b347" } ,
{ file = "pydantic-1.10.14-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:646b2b12df4295b4c3148850c85bff29ef6d0d9621a8d091e98094871a62e5c7" } ,
{ file = "pydantic-1.10.14-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:282613a5969c47c83a8710cc8bfd1e70c9223feb76566f74683af889faadc0ea" } ,
{ file = "pydantic-1.10.14-cp39-cp39-musllinux_1_1_i686.whl" , hash = "sha256:466669501d08ad8eb3c4fecd991c5e793c4e0bbd62299d05111d4f827cded64f" } ,
{ file = "pydantic-1.10.14-cp39-cp39-musllinux_1_1_x86_64.whl" , hash = "sha256:13e86a19dca96373dcf3190fcb8797d40a6f12f154a244a8d1e8e03b8f280593" } ,
{ file = "pydantic-1.10.14-cp39-cp39-win_amd64.whl" , hash = "sha256:08b6ec0917c30861e3fe71a93be1648a2aa4f62f866142ba21670b24444d7fd8" } ,
{ file = "pydantic-1.10.14-py3-none-any.whl" , hash = "sha256:8ee853cd12ac2ddbf0ecbac1c289f95882b2d4482258048079d13be700aa114c" } ,
{ file = "pydantic-1.10.14.tar.gz" , hash = "sha256:46f17b832fe27de7850896f3afee50ea682220dd218f7e9c88d436788419dca6" } ,
2023-12-11 21:53:30 +00:00
]
[ package . dependencies ]
2024-03-15 17:10:47 +00:00
email-validator = { version = ">=1.0.3" , optional = true , markers = "extra == \"email\"" }
2023-12-11 21:53:30 +00:00
typing-extensions = ">=4.2.0"
[ package . extras ]
dotenv = [ "python-dotenv (>=0.10.4)" ]
email = [ "email-validator (>=1.0.3)" ]
2024-03-15 17:10:47 +00:00
[ [ package ] ]
name = "pydeck"
version = "0.8.0"
description = "Widget for deck.gl maps"
optional = true
python-versions = ">=3.7"
files = [
{ file = "pydeck-0.8.0-py2.py3-none-any.whl" , hash = "sha256:a8fa7757c6f24bba033af39db3147cb020eef44012ba7e60d954de187f9ed4d5" } ,
{ file = "pydeck-0.8.0.tar.gz" , hash = "sha256:07edde833f7cfcef6749124351195aa7dcd24663d4909fd7898dbd0b6fbc01ec" } ,
]
[ package . dependencies ]
jinja2 = ">=2.10.1"
numpy = ">=1.16.4"
[ package . extras ]
carto = [ "pydeck-carto" ]
jupyter = [ "ipykernel (>=5.1.2)" , "ipython (>=5.8.0)" , "ipywidgets (>=7,<8)" , "traitlets (>=4.3.2)" ]
2023-12-11 21:53:30 +00:00
[ [ package ] ]
name = "pygments"
version = "2.17.2"
description = "Pygments is a syntax highlighting package written in Python."
optional = false
python-versions = ">=3.7"
files = [
{ file = "pygments-2.17.2-py3-none-any.whl" , hash = "sha256:b27c2826c47d0f3219f29554824c30c5e8945175d888647acd804ddd04af846c" } ,
{ file = "pygments-2.17.2.tar.gz" , hash = "sha256:da46cec9fd2de5be3a8a784f434e4c4ab670b4ff54d605c4c2717e9d49c4c367" } ,
]
[ package . extras ]
plugins = [ "importlib-metadata" ]
windows-terminal = [ "colorama (>=0.4.6)" ]
2024-03-15 17:10:47 +00:00
[ [ package ] ]
name = "pyjwt"
version = "2.8.0"
description = "JSON Web Token implementation in Python"
optional = true
python-versions = ">=3.7"
files = [
{ file = "PyJWT-2.8.0-py3-none-any.whl" , hash = "sha256:59127c392cc44c2da5bb3192169a91f429924e17aff6534d70fdc02ab3e04320" } ,
{ file = "PyJWT-2.8.0.tar.gz" , hash = "sha256:57e28d156e3d5c10088e0c68abb90bfac3df82b40a71bd0daa20c65ccd5c23de" } ,
]
[ package . dependencies ]
cryptography = { version = ">=3.4.0" , optional = true , markers = "extra == \"crypto\"" }
[ package . extras ]
crypto = [ "cryptography (>=3.4.0)" ]
dev = [ "coverage[toml] (==5.0.4)" , "cryptography (>=3.4.0)" , "pre-commit" , "pytest (>=6.0.0,<7.0.0)" , "sphinx (>=4.5.0,<5.0.0)" , "sphinx-rtd-theme" , "zope.interface" ]
docs = [ "sphinx (>=4.5.0,<5.0.0)" , "sphinx-rtd-theme" , "zope.interface" ]
tests = [ "coverage[toml] (==5.0.4)" , "pytest (>=6.0.0,<7.0.0)" ]
[ [ package ] ]
name = "pymongo"
version = "4.6.2"
description = "Python driver for MongoDB <http://www.mongodb.org>"
optional = true
python-versions = ">=3.7"
files = [
{ file = "pymongo-4.6.2-cp310-cp310-macosx_10_9_universal2.whl" , hash = "sha256:7640d176ee5b0afec76a1bda3684995cb731b2af7fcfd7c7ef8dc271c5d689af" } ,
{ file = "pymongo-4.6.2-cp310-cp310-manylinux1_i686.whl" , hash = "sha256:4e2129ec8f72806751b621470ac5d26aaa18fae4194796621508fa0e6068278a" } ,
{ file = "pymongo-4.6.2-cp310-cp310-manylinux2014_aarch64.whl" , hash = "sha256:c43205e85cbcbdf03cff62ad8f50426dd9d20134a915cfb626d805bab89a1844" } ,
{ file = "pymongo-4.6.2-cp310-cp310-manylinux2014_i686.whl" , hash = "sha256:91ddf95cedca12f115fbc5f442b841e81197d85aa3cc30b82aee3635a5208af2" } ,
{ file = "pymongo-4.6.2-cp310-cp310-manylinux2014_ppc64le.whl" , hash = "sha256:0fbdbf2fba1b4f5f1522e9f11e21c306e095b59a83340a69e908f8ed9b450070" } ,
{ file = "pymongo-4.6.2-cp310-cp310-manylinux2014_s390x.whl" , hash = "sha256:097791d5a8d44e2444e0c8c4d6e14570ac11e22bcb833808885a5db081c3dc2a" } ,
{ file = "pymongo-4.6.2-cp310-cp310-manylinux2014_x86_64.whl" , hash = "sha256:e0b208ebec3b47ee78a5c836e2e885e8c1e10f8ffd101aaec3d63997a4bdcd04" } ,
{ file = "pymongo-4.6.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:1849fd6f1917b4dc5dbf744b2f18e41e0538d08dd8e9ba9efa811c5149d665a3" } ,
{ file = "pymongo-4.6.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:fa0bbbfbd1f8ebbd5facaa10f9f333b20027b240af012748555148943616fdf3" } ,
{ file = "pymongo-4.6.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:4522ad69a4ab0e1b46a8367d62ad3865b8cd54cf77518c157631dac1fdc97584" } ,
{ file = "pymongo-4.6.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:397949a9cc85e4a1452f80b7f7f2175d557237177120954eff00bf79553e89d3" } ,
{ file = "pymongo-4.6.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:9d511db310f43222bc58d811037b176b4b88dc2b4617478c5ef01fea404f8601" } ,
{ file = "pymongo-4.6.2-cp310-cp310-win32.whl" , hash = "sha256:991e406db5da4d89fb220a94d8caaf974ffe14ce6b095957bae9273c609784a0" } ,
{ file = "pymongo-4.6.2-cp310-cp310-win_amd64.whl" , hash = "sha256:94637941fe343000f728e28d3fe04f1f52aec6376b67b85583026ff8dab2a0e0" } ,
{ file = "pymongo-4.6.2-cp311-cp311-macosx_10_9_universal2.whl" , hash = "sha256:84593447a5c5fe7a59ba86b72c2c89d813fbac71c07757acdf162fbfd5d005b9" } ,
{ file = "pymongo-4.6.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:9aebddb2ec2128d5fc2fe3aee6319afef8697e0374f8a1fcca3449d6f625e7b4" } ,
{ file = "pymongo-4.6.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:1f706c1a644ed33eaea91df0a8fb687ce572b53eeb4ff9b89270cb0247e5d0e1" } ,
{ file = "pymongo-4.6.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:18c422e6b08fa370ed9d8670c67e78d01f50d6517cec4522aa8627014dfa38b6" } ,
{ file = "pymongo-4.6.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:0d002ae456a15b1d790a78bb84f87af21af1cb716a63efb2c446ab6bcbbc48ca" } ,
{ file = "pymongo-4.6.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:9f86ba0c781b497a3c9c886765d7b6402a0e3ae079dd517365044c89cd7abb06" } ,
{ file = "pymongo-4.6.2-cp311-cp311-win32.whl" , hash = "sha256:ac20dd0c7b42555837c86f5ea46505f35af20a08b9cf5770cd1834288d8bd1b4" } ,
{ file = "pymongo-4.6.2-cp311-cp311-win_amd64.whl" , hash = "sha256:e78af59fd0eb262c2a5f7c7d7e3b95e8596a75480d31087ca5f02f2d4c6acd19" } ,
{ file = "pymongo-4.6.2-cp312-cp312-macosx_10_9_universal2.whl" , hash = "sha256:6125f73503407792c8b3f80165f8ab88a4e448d7d9234c762681a4d0b446fcb4" } ,
{ file = "pymongo-4.6.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:ba052446a14bd714ec83ca4e77d0d97904f33cd046d7bb60712a6be25eb31dbb" } ,
{ file = "pymongo-4.6.2-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:2b65433c90e07dc252b4a55dfd885ca0df94b1cf77c5b8709953ec1983aadc03" } ,
{ file = "pymongo-4.6.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:2160d9c8cd20ce1f76a893f0daf7c0d38af093f36f1b5c9f3dcf3e08f7142814" } ,
{ file = "pymongo-4.6.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:1f251f287e6d42daa3654b686ce1fcb6d74bf13b3907c3ae25954978c70f2cd4" } ,
{ file = "pymongo-4.6.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:d7d227a60b00925dd3aeae4675575af89c661a8e89a1f7d1677e57eba4a3693c" } ,
{ file = "pymongo-4.6.2-cp312-cp312-win32.whl" , hash = "sha256:311794ef3ccae374aaef95792c36b0e5c06e8d5cf04a1bdb1b2bf14619ac881f" } ,
{ file = "pymongo-4.6.2-cp312-cp312-win_amd64.whl" , hash = "sha256:f673b64a0884edcc56073bda0b363428dc1bf4eb1b5e7d0b689f7ec6173edad6" } ,
{ file = "pymongo-4.6.2-cp37-cp37m-macosx_10_6_intel.whl" , hash = "sha256:fe010154dfa9e428bd2fb3e9325eff2216ab20a69ccbd6b5cac6785ca2989161" } ,
{ file = "pymongo-4.6.2-cp37-cp37m-manylinux1_i686.whl" , hash = "sha256:1f5f4cd2969197e25b67e24d5b8aa2452d381861d2791d06c493eaa0b9c9fcfe" } ,
{ file = "pymongo-4.6.2-cp37-cp37m-manylinux1_x86_64.whl" , hash = "sha256:c9519c9d341983f3a1bd19628fecb1d72a48d8666cf344549879f2e63f54463b" } ,
{ file = "pymongo-4.6.2-cp37-cp37m-manylinux2014_aarch64.whl" , hash = "sha256:c68bf4a399e37798f1b5aa4f6c02886188ef465f4ac0b305a607b7579413e366" } ,
{ file = "pymongo-4.6.2-cp37-cp37m-manylinux2014_i686.whl" , hash = "sha256:a509db602462eb736666989739215b4b7d8f4bb8ac31d0bffd4be9eae96c63ef" } ,
{ file = "pymongo-4.6.2-cp37-cp37m-manylinux2014_ppc64le.whl" , hash = "sha256:362a5adf6f3f938a8ff220a4c4aaa93e84ef932a409abecd837c617d17a5990f" } ,
{ file = "pymongo-4.6.2-cp37-cp37m-manylinux2014_s390x.whl" , hash = "sha256:ee30a9d4c27a88042d0636aca0275788af09cc237ae365cd6ebb34524bddb9cc" } ,
{ file = "pymongo-4.6.2-cp37-cp37m-manylinux2014_x86_64.whl" , hash = "sha256:477914e13501bb1d4608339ee5bb618be056d2d0e7267727623516cfa902e652" } ,
{ file = "pymongo-4.6.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:ebd343ca44982d480f1e39372c48e8e263fc6f32e9af2be456298f146a3db715" } ,
{ file = "pymongo-4.6.2-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:c3797e0a628534e07a36544d2bfa69e251a578c6d013e975e9e3ed2ac41f2d95" } ,
{ file = "pymongo-4.6.2-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:97d81d357e1a2a248b3494d52ebc8bf15d223ee89d59ee63becc434e07438a24" } ,
{ file = "pymongo-4.6.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:ed694c0d1977cb54281cb808bc2b247c17fb64b678a6352d3b77eb678ebe1bd9" } ,
{ file = "pymongo-4.6.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:6ceaaff4b812ae368cf9774989dea81b9bbb71e5bed666feca6a9f3087c03e49" } ,
{ file = "pymongo-4.6.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl" , hash = "sha256:7dd63f7c2b3727541f7f37d0fb78d9942eb12a866180fbeb898714420aad74e2" } ,
{ file = "pymongo-4.6.2-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl" , hash = "sha256:e571434633f99a81e081738721bb38e697345281ed2f79c2f290f809ba3fbb2f" } ,
{ file = "pymongo-4.6.2-cp37-cp37m-win32.whl" , hash = "sha256:3e9f6e2f3da0a6af854a3e959a6962b5f8b43bbb8113cd0bff0421c5059b3106" } ,
{ file = "pymongo-4.6.2-cp37-cp37m-win_amd64.whl" , hash = "sha256:3a5280f496297537301e78bde250c96fadf4945e7b2c397d8bb8921861dd236d" } ,
{ file = "pymongo-4.6.2-cp38-cp38-macosx_11_0_universal2.whl" , hash = "sha256:5f6bcd2d012d82d25191a911a239fd05a8a72e8c5a7d81d056c0f3520cad14d1" } ,
{ file = "pymongo-4.6.2-cp38-cp38-manylinux1_i686.whl" , hash = "sha256:4fa30494601a6271a8b416554bd7cde7b2a848230f0ec03e3f08d84565b4bf8c" } ,
{ file = "pymongo-4.6.2-cp38-cp38-manylinux1_x86_64.whl" , hash = "sha256:bea62f03a50f363265a7a651b4e2a4429b4f138c1864b2d83d4bf6f9851994be" } ,
{ file = "pymongo-4.6.2-cp38-cp38-manylinux2014_aarch64.whl" , hash = "sha256:b2d445f1cf147331947cc35ec10342f898329f29dd1947a3f8aeaf7e0e6878d1" } ,
{ file = "pymongo-4.6.2-cp38-cp38-manylinux2014_i686.whl" , hash = "sha256:5db133d6ec7a4f7fc7e2bd098e4df23d7ad949f7be47b27b515c9fb9301c61e4" } ,
{ file = "pymongo-4.6.2-cp38-cp38-manylinux2014_ppc64le.whl" , hash = "sha256:9eec7140cf7513aa770ea51505d312000c7416626a828de24318fdcc9ac3214c" } ,
{ file = "pymongo-4.6.2-cp38-cp38-manylinux2014_s390x.whl" , hash = "sha256:5379ca6fd325387a34cda440aec2bd031b5ef0b0aa2e23b4981945cff1dab84c" } ,
{ file = "pymongo-4.6.2-cp38-cp38-manylinux2014_x86_64.whl" , hash = "sha256:579508536113dbd4c56e4738955a18847e8a6c41bf3c0b4ab18b51d81a6b7be8" } ,
{ file = "pymongo-4.6.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:f3bae553ca39ed52db099d76acd5e8566096064dc7614c34c9359bb239ec4081" } ,
{ file = "pymongo-4.6.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:d0257e0eebb50f242ca28a92ef195889a6ad03dcdde5bf1c7ab9f38b7e810801" } ,
{ file = "pymongo-4.6.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:fbafe3a1df21eeadb003c38fc02c1abf567648b6477ec50c4a3c042dca205371" } ,
{ file = "pymongo-4.6.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:aaecfafb407feb6f562c7f2f5b91f22bfacba6dd739116b1912788cff7124c4a" } ,
{ file = "pymongo-4.6.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:e942945e9112075a84d2e2d6e0d0c98833cdcdfe48eb8952b917f996025c7ffa" } ,
{ file = "pymongo-4.6.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl" , hash = "sha256:2f7b98f8d2cf3eeebde738d080ae9b4276d7250912d9751046a9ac1efc9b1ce2" } ,
{ file = "pymongo-4.6.2-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl" , hash = "sha256:8110b78fc4b37dced85081d56795ecbee6a7937966e918e05e33a3900e8ea07d" } ,
{ file = "pymongo-4.6.2-cp38-cp38-win32.whl" , hash = "sha256:df813f0c2c02281720ccce225edf39dc37855bf72cdfde6f789a1d1cf32ffb4b" } ,
{ file = "pymongo-4.6.2-cp38-cp38-win_amd64.whl" , hash = "sha256:64ec3e2dcab9af61bdbfcb1dd863c70d1b0c220b8e8ac11df8b57f80ee0402b3" } ,
{ file = "pymongo-4.6.2-cp39-cp39-macosx_10_9_universal2.whl" , hash = "sha256:bff601fbfcecd2166d9a2b70777c2985cb9689e2befb3278d91f7f93a0456cae" } ,
{ file = "pymongo-4.6.2-cp39-cp39-manylinux1_i686.whl" , hash = "sha256:f1febca6f79e91feafc572906871805bd9c271b6a2d98a8bb5499b6ace0befed" } ,
{ file = "pymongo-4.6.2-cp39-cp39-manylinux1_x86_64.whl" , hash = "sha256:d788cb5cc947d78934be26eef1623c78cec3729dc93a30c23f049b361aa6d835" } ,
{ file = "pymongo-4.6.2-cp39-cp39-manylinux2014_aarch64.whl" , hash = "sha256:5c2f258489de12a65b81e1b803a531ee8cf633fa416ae84de65cd5f82d2ceb37" } ,
{ file = "pymongo-4.6.2-cp39-cp39-manylinux2014_i686.whl" , hash = "sha256:fb24abcd50501b25d33a074c1790a1389b6460d2509e4b240d03fd2e5c79f463" } ,
{ file = "pymongo-4.6.2-cp39-cp39-manylinux2014_ppc64le.whl" , hash = "sha256:4d982c6db1da7cf3018183891883660ad085de97f21490d314385373f775915b" } ,
{ file = "pymongo-4.6.2-cp39-cp39-manylinux2014_s390x.whl" , hash = "sha256:b2dd8c874927a27995f64a3b44c890e8a944c98dec1ba79eab50e07f1e3f801b" } ,
{ file = "pymongo-4.6.2-cp39-cp39-manylinux2014_x86_64.whl" , hash = "sha256:4993593de44c741d1e9f230f221fe623179f500765f9855936e4ff6f33571bad" } ,
{ file = "pymongo-4.6.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:658f6c028edaeb02761ebcaca8d44d519c22594b2a51dcbc9bd2432aa93319e3" } ,
{ file = "pymongo-4.6.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:68109c13176749fbbbbbdb94dd4a58dcc604db6ea43ee300b2602154aebdd55f" } ,
{ file = "pymongo-4.6.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:707d28a822b918acf941cff590affaddb42a5d640614d71367c8956623a80cbc" } ,
{ file = "pymongo-4.6.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:f251db26c239aec2a4d57fbe869e0a27b7f6b5384ec6bf54aeb4a6a5e7408234" } ,
{ file = "pymongo-4.6.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:57c05f2e310701fc17ae358caafd99b1830014e316f0242d13ab6c01db0ab1c2" } ,
{ file = "pymongo-4.6.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl" , hash = "sha256:2b575fbe6396bbf21e4d0e5fd2e3cdb656dc90c930b6c5532192e9a89814f72d" } ,
{ file = "pymongo-4.6.2-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl" , hash = "sha256:ca5877754f3fa6e4fe5aacf5c404575f04c2d9efc8d22ed39576ed9098d555c8" } ,
{ file = "pymongo-4.6.2-cp39-cp39-win32.whl" , hash = "sha256:8caa73fb19070008e851a589b744aaa38edd1366e2487284c61158c77fdf72af" } ,
{ file = "pymongo-4.6.2-cp39-cp39-win_amd64.whl" , hash = "sha256:3e03c732cb64b96849310e1d8688fb70d75e2571385485bf2f1e7ad1d309fa53" } ,
{ file = "pymongo-4.6.2.tar.gz" , hash = "sha256:ab7d01ac832a1663dad592ccbd92bb0f0775bc8f98a1923c5e1a7d7fead495af" } ,
]
[ package . dependencies ]
dnspython = ">=1.16.0,<3.0.0"
[ package . extras ]
aws = [ "pymongo-auth-aws (<2.0.0)" ]
encryption = [ "certifi" , "pymongo[aws]" , "pymongocrypt (>=1.6.0,<2.0.0)" ]
gssapi = [ "pykerberos" , "winkerberos (>=0.5.0)" ]
ocsp = [ "certifi" , "cryptography (>=2.5)" , "pyopenssl (>=17.2.0)" , "requests (<3.0.0)" , "service-identity (>=18.1.0)" ]
snappy = [ "python-snappy" ]
test = [ "pytest (>=7)" ]
zstd = [ "zstandard" ]
[ [ package ] ]
name = "pymupdf"
version = "1.23.26"
description = "A high performance Python library for data extraction, analysis, conversion & manipulation of PDF (and other) documents."
optional = true
python-versions = ">=3.8"
files = [
{ file = "PyMuPDF-1.23.26-cp310-none-macosx_10_9_x86_64.whl" , hash = "sha256:645a05321aecc8c45739f71f0eb574ce33138d19189582ffa5241fea3a8e2549" } ,
{ file = "PyMuPDF-1.23.26-cp310-none-macosx_11_0_arm64.whl" , hash = "sha256:2dfc9e010669ae92fade6fb72aaea49ebe3b8dcd7ee4dcbbe50115abcaa4d3fe" } ,
{ file = "PyMuPDF-1.23.26-cp310-none-manylinux2014_x86_64.whl" , hash = "sha256:b22f8d854f8196ad5b20308c1cebad3d5189ed9f0988acbafa043947ea7e6c55" } ,
{ file = "PyMuPDF-1.23.26-cp310-none-win32.whl" , hash = "sha256:cc0f794e3466bc96b5bf79d42fbc1551428751e3fef38ebc10ac70396b676144" } ,
{ file = "PyMuPDF-1.23.26-cp310-none-win_amd64.whl" , hash = "sha256:2eb701247d8e685a24e45899d1175f01a3ce5fc792a4431c91fbb68633b29298" } ,
{ file = "PyMuPDF-1.23.26-cp311-none-macosx_10_9_x86_64.whl" , hash = "sha256:e2804a64bb57da414781e312fb0561f6be67658ad57ed4a73dce008b23fc70a6" } ,
{ file = "PyMuPDF-1.23.26-cp311-none-macosx_11_0_arm64.whl" , hash = "sha256:97b40bb22e3056874634617a90e0ed24a5172cf71791b9e25d1d91c6743bc567" } ,
{ file = "PyMuPDF-1.23.26-cp311-none-manylinux2014_x86_64.whl" , hash = "sha256:f25aafd3e7fb9d7761a22acf2b67d704f04cc36d4dc33a3773f0eb3f4ec3606f" } ,
{ file = "PyMuPDF-1.23.26-cp311-none-win32.whl" , hash = "sha256:05e672ed3e82caca7ef02a88ace30130b1dd392a1190f03b2b58ffe7aa331400" } ,
{ file = "PyMuPDF-1.23.26-cp311-none-win_amd64.whl" , hash = "sha256:92b3c4dd4d0491d495f333be2d41f4e1c155a409bc9d04b5ff29655dccbf4655" } ,
{ file = "PyMuPDF-1.23.26-cp312-none-macosx_10_9_x86_64.whl" , hash = "sha256:a217689ede18cc6991b4e6a78afee8a440b3075d53b9dec4ba5ef7487d4547e9" } ,
{ file = "PyMuPDF-1.23.26-cp312-none-macosx_11_0_arm64.whl" , hash = "sha256:42ad2b819b90ce1947e11b90ec5085889df0a2e3aa0207bc97ecacfc6157cabc" } ,
{ file = "PyMuPDF-1.23.26-cp312-none-manylinux2014_x86_64.whl" , hash = "sha256:bb42d4b8407b4de7cb58c28f01449f16f32a6daed88afb41108f1aeb3552bdd4" } ,
{ file = "PyMuPDF-1.23.26-cp312-none-win32.whl" , hash = "sha256:c40d044411615e6f0baa7d3d933b3032cf97e168c7fa77d1be8a46008c109aee" } ,
{ file = "PyMuPDF-1.23.26-cp312-none-win_amd64.whl" , hash = "sha256:3f876533aa7f9a94bcd9a0225ce72571b7808260903fec1d95c120bc842fb52d" } ,
{ file = "PyMuPDF-1.23.26-cp38-none-macosx_10_9_x86_64.whl" , hash = "sha256:52df831d46beb9ff494f5fba3e5d069af6d81f49abf6b6e799ee01f4f8fa6799" } ,
{ file = "PyMuPDF-1.23.26-cp38-none-macosx_11_0_arm64.whl" , hash = "sha256:0bbb0cf6593e53524f3fc26fb5e6ead17c02c64791caec7c4afe61b677dedf80" } ,
{ file = "PyMuPDF-1.23.26-cp38-none-manylinux2014_x86_64.whl" , hash = "sha256:d7cd88842b2e7f4c71eef4d87c98c35646b80b60e6375392d7ce40e519261f59" } ,
{ file = "PyMuPDF-1.23.26-cp38-none-win32.whl" , hash = "sha256:6577e2f473625e2d0df5f5a3bf1e4519e94ae749733cc9937994d1b256687bfa" } ,
{ file = "PyMuPDF-1.23.26-cp38-none-win_amd64.whl" , hash = "sha256:fbe1a3255b2cd0d769b2da2c4efdd0c0f30d4961a1aac02c0f75cf951b337aa4" } ,
{ file = "PyMuPDF-1.23.26-cp39-none-macosx_10_9_x86_64.whl" , hash = "sha256:73fce034f2afea886a59ead2d0caedf27e2b2a8558b5da16d0286882e0b1eb82" } ,
{ file = "PyMuPDF-1.23.26-cp39-none-macosx_11_0_arm64.whl" , hash = "sha256:b3de8618b7cb5b36db611083840b3bcf09b11a893e2d8262f4e042102c7e65de" } ,
{ file = "PyMuPDF-1.23.26-cp39-none-manylinux2014_x86_64.whl" , hash = "sha256:deee96c2fd415ded7b5070d8d5b2c60679aee6ed0e28ac0d2cb998060d835c2c" } ,
{ file = "PyMuPDF-1.23.26-cp39-none-win32.whl" , hash = "sha256:9f7f4ef99dd8ac97fb0b852efa3dcbee515798078b6c79a6a13c7b1e7c5d41a4" } ,
{ file = "PyMuPDF-1.23.26-cp39-none-win_amd64.whl" , hash = "sha256:ba9a54552c7afb9ec85432c765e2fa9a81413acfaa7d70db7c9b528297749e5b" } ,
{ file = "PyMuPDF-1.23.26.tar.gz" , hash = "sha256:a904261b317b761b0aa2bd2c1f6cd25d25aa4258be67a90c02a878efc5dca649" } ,
]
[ package . dependencies ]
PyMuPDFb = "1.23.22"
[ [ package ] ]
name = "pymupdfb"
version = "1.23.22"
description = "MuPDF shared libraries for PyMuPDF."
optional = true
python-versions = ">=3.8"
files = [
{ file = "PyMuPDFb-1.23.22-py3-none-macosx_10_9_x86_64.whl" , hash = "sha256:9085a1e2fbf16f2820f9f7ad3d25e85f81d9b9eb0409110c1670d4cf5a27a678" } ,
{ file = "PyMuPDFb-1.23.22-py3-none-macosx_11_0_arm64.whl" , hash = "sha256:01016dd33220cef4ecaf929d09fd27a584dc3ec3e5c9f4112dfe63613ea35135" } ,
{ file = "PyMuPDFb-1.23.22-py3-none-manylinux2014_aarch64.manylinux_2_17_aarch64.whl" , hash = "sha256:cf50e814db91f2a2325219302fbac229a23682c372cf8232aabd51ea3f18210e" } ,
{ file = "PyMuPDFb-1.23.22-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl" , hash = "sha256:3ffa713ad18e816e584c8a5f569995c32d22f8ac76ab6e4a61f2d2983c4b73d9" } ,
{ file = "PyMuPDFb-1.23.22-py3-none-win32.whl" , hash = "sha256:d00e372452845aea624659c302d25e935052269fd3aafe26948301576d6f2ee8" } ,
{ file = "PyMuPDFb-1.23.22-py3-none-win_amd64.whl" , hash = "sha256:7c9c157281fdee9f296e666a323307dbf74cb38f017921bb131fa7bfcd39c2bd" } ,
]
[ [ package ] ]
name = "pyopenssl"
version = "24.1.0"
description = "Python wrapper module around the OpenSSL library"
optional = true
python-versions = ">=3.7"
files = [
{ file = "pyOpenSSL-24.1.0-py3-none-any.whl" , hash = "sha256:17ed5be5936449c5418d1cd269a1a9e9081bc54c17aed272b45856a3d3dc86ad" } ,
{ file = "pyOpenSSL-24.1.0.tar.gz" , hash = "sha256:cabed4bfaa5df9f1a16c0ef64a0cb65318b5cd077a7eda7d6970131ca2f41a6f" } ,
]
[ package . dependencies ]
cryptography = ">=41.0.5,<43"
[ package . extras ]
docs = [ "sphinx (!=5.2.0,!=5.2.0.post0,!=7.2.5)" , "sphinx-rtd-theme" ]
test = [ "pretend" , "pytest (>=3.0.1)" , "pytest-rerunfailures" ]
[ [ package ] ]
name = "pyparsing"
version = "3.1.2"
description = "pyparsing module - Classes and methods to define and execute parsing grammars"
optional = true
python-versions = ">=3.6.8"
files = [
{ file = "pyparsing-3.1.2-py3-none-any.whl" , hash = "sha256:f9db75911801ed778fe61bb643079ff86601aca99fcae6345aa67292038fb742" } ,
{ file = "pyparsing-3.1.2.tar.gz" , hash = "sha256:a1bac0ce561155ecc3ed78ca94d3c9378656ad4c94c1270de543f621420f94ad" } ,
]
[ package . extras ]
diagrams = [ "jinja2" , "railroad-diagrams" ]
[ [ package ] ]
name = "pypdf"
version = "3.17.4"
description = "A pure-python PDF library capable of splitting, merging, cropping, and transforming PDF files"
optional = true
python-versions = ">=3.6"
files = [
{ file = "pypdf-3.17.4-py3-none-any.whl" , hash = "sha256:6aa0f61b33779b64486de3f42835d3668badd48dac4a536aeb87da187a5eacd2" } ,
{ file = "pypdf-3.17.4.tar.gz" , hash = "sha256:ec96e2e4fc9648ac609d19c00d41e9d606e0ae2ce5a0bbe7691426f5f157166a" } ,
]
[ package . dependencies ]
typing_extensions = { version = ">=3.7.4.3" , markers = "python_version < \"3.10\"" }
[ package . extras ]
crypto = [ "PyCryptodome" , "cryptography" ]
dev = [ "black" , "flit" , "pip-tools" , "pre-commit (<2.18.0)" , "pytest-cov" , "pytest-socket" , "pytest-timeout" , "pytest-xdist" , "wheel" ]
docs = [ "myst_parser" , "sphinx" , "sphinx_rtd_theme" ]
full = [ "Pillow (>=8.0.0)" , "PyCryptodome" , "cryptography" ]
image = [ "Pillow (>=8.0.0)" ]
[ [ package ] ]
name = "pypdfium2"
version = "4.28.0"
description = "Python bindings to PDFium"
optional = true
python-versions = ">= 3.6"
files = [
{ file = "pypdfium2-4.28.0-py3-none-macosx_10_13_x86_64.whl" , hash = "sha256:b95dcbd6320e769c81314f0042e3507f4f14c1eb954882ae26d9504a4afe843d" } ,
{ file = "pypdfium2-4.28.0-py3-none-macosx_11_0_arm64.whl" , hash = "sha256:c6159c2751773575fe7b74bb438f5cf6ed832432eb6db2095922af60803ed911" } ,
{ file = "pypdfium2-4.28.0-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:91e78c0830e1ff99461b00e3bd0f5b5242bb6b0de6f07e929cdea9d8b1cdbdce" } ,
{ file = "pypdfium2-4.28.0-py3-none-manylinux_2_17_armv7l.manylinux2014_armv7l.whl" , hash = "sha256:562dac267e1323a3206d87072ad1595f923b9a983ac77c8e17fe36aec0ae1b72" } ,
{ file = "pypdfium2-4.28.0-py3-none-manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:a7779fc76e4fa7ee1c1971f78e0995d5217da405167e8d6b55daa02194b4c2ae" } ,
{ file = "pypdfium2-4.28.0-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:5e223f3c0b702406927baed3cd581ac19c2a8a254019035387b47ae05051dd71" } ,
{ file = "pypdfium2-4.28.0-py3-none-musllinux_1_1_aarch64.whl" , hash = "sha256:1a647454bdc36f11264a8cbbbf8bdfd47997aa81abd2e4984965693428761c22" } ,
{ file = "pypdfium2-4.28.0-py3-none-musllinux_1_1_i686.whl" , hash = "sha256:0a168ac8de5b3ff6b78dfef575eaeb429a64bb6da5683f8138d3a6917eba6f39" } ,
{ file = "pypdfium2-4.28.0-py3-none-musllinux_1_1_x86_64.whl" , hash = "sha256:c999b2dc41e3050bf893252f1f9edb2af37e61d87ce17d9725975bf7bf00acaa" } ,
{ file = "pypdfium2-4.28.0-py3-none-win32.whl" , hash = "sha256:0b7b1e1748ac72f57d3e77580adc20b23d0d644598fd83339cd2ac4e803e9ed9" } ,
{ file = "pypdfium2-4.28.0-py3-none-win_amd64.whl" , hash = "sha256:927f9b9498d009573509b3f6f75bab2e9aaca689cac5af0afb6fbfbaa6279cc3" } ,
{ file = "pypdfium2-4.28.0-py3-none-win_arm64.whl" , hash = "sha256:61cb7f54d6cf26e9d9b996f553f803f2658d93fcee4f76016264b268f41c9bf7" } ,
{ file = "pypdfium2-4.28.0.tar.gz" , hash = "sha256:1f18981bcceb3a9e59c6de3e4e7e070cddc4de1f7faf419d9ad5f677b06fd909" } ,
]
[ [ package ] ]
name = "pyproj"
version = "3.5.0"
description = "Python interface to PROJ (cartographic projections and coordinate transformations library)"
optional = true
python-versions = ">=3.8"
files = [
{ file = "pyproj-3.5.0-cp310-cp310-macosx_10_9_x86_64.whl" , hash = "sha256:6475ce653880938468a1a1b7321267243909e34b972ba9e53d5982c41d555918" } ,
{ file = "pyproj-3.5.0-cp310-cp310-macosx_11_0_arm64.whl" , hash = "sha256:61e4ad57d89b03a7b173793b31bca8ee110112cde1937ef0f42a70b9120c827d" } ,
{ file = "pyproj-3.5.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:7bdd2021bb6f7f346bfe1d2a358aa109da017d22c4704af2d994e7c7ee0a7a53" } ,
{ file = "pyproj-3.5.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:5674923351e76222e2c10c58b5e1ac119d7a46b270d822c463035971b06f724b" } ,
{ file = "pyproj-3.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:cd5e2b6aa255023c4acd0b977590f1f7cc801ba21b4d806fcf6dfac3474ebb83" } ,
{ file = "pyproj-3.5.0-cp310-cp310-win32.whl" , hash = "sha256:6f316a66031a14e9c5a88c91f8b77aa97f5454895674541ed6ab630b682be35d" } ,
{ file = "pyproj-3.5.0-cp310-cp310-win_amd64.whl" , hash = "sha256:f7c2f4d9681e810cf40239caaca00079930a6d9ee6591139b88d592d36051d82" } ,
{ file = "pyproj-3.5.0-cp311-cp311-macosx_10_9_x86_64.whl" , hash = "sha256:7572983134e310e0ca809c63f1722557a040fe9443df5f247bf11ba887eb1229" } ,
{ file = "pyproj-3.5.0-cp311-cp311-macosx_11_0_arm64.whl" , hash = "sha256:eccb417b91d0be27805dfc97550bfb8b7db94e9fe1db5ebedb98f5b88d601323" } ,
{ file = "pyproj-3.5.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:621d78a9d8bf4d06e08bef2471021fbcb1a65aa629ad4a20c22e521ce729cc20" } ,
{ file = "pyproj-3.5.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:d9a024370e917c899bff9171f03ea6079deecdc7482a146a2c565f3b9df134ea" } ,
{ file = "pyproj-3.5.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:1b7c2113c4d11184a238077ec85e31eda1dcc58ffeb9a4429830e0a7036e787d" } ,
{ file = "pyproj-3.5.0-cp311-cp311-win32.whl" , hash = "sha256:a730f5b4c98c8a0f312437873e6e34dbd4cc6dc23d5afd91a6691c62724b1f68" } ,
{ file = "pyproj-3.5.0-cp311-cp311-win_amd64.whl" , hash = "sha256:e97573de0ab3bbbcb4c7748bc41f4ceb6da10b45d35b1a294b5820701e7c25f0" } ,
{ file = "pyproj-3.5.0-cp38-cp38-macosx_10_9_x86_64.whl" , hash = "sha256:2b708fd43453b985642b737d4a6e7f1d6a0ab1677ffa4e14cc258537b49224b0" } ,
{ file = "pyproj-3.5.0-cp38-cp38-macosx_11_0_arm64.whl" , hash = "sha256:b60d93a200639e8367c6542a964fd0aa2dbd152f256c1831dc18cd5aa470fb8a" } ,
{ file = "pyproj-3.5.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:38862fe07316ae12b79d82d298e390973a4f00b684f3c2d037238e20e00610ba" } ,
{ file = "pyproj-3.5.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:71b65f2a38cd9e16883dbb0f8ae82bdf8f6b79b1b02975c78483ab8428dbbf2f" } ,
{ file = "pyproj-3.5.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:b752b7d9c4b08181c7e8c0d9c7f277cbefff42227f34d3310696a87c863d9dd3" } ,
{ file = "pyproj-3.5.0-cp38-cp38-win32.whl" , hash = "sha256:b937215bfbaf404ec8f03ca741fc3f9f2c4c2c5590a02ccddddd820ae3c71331" } ,
{ file = "pyproj-3.5.0-cp38-cp38-win_amd64.whl" , hash = "sha256:97ed199033c2c770e7eea2ef80ff5e6413426ec2d7ec985b869792f04ab95d05" } ,
{ file = "pyproj-3.5.0-cp39-cp39-macosx_10_9_x86_64.whl" , hash = "sha256:052c49fce8b5d55943a35c36ccecb87350c68b48ba95bc02a789770c374ef819" } ,
{ file = "pyproj-3.5.0-cp39-cp39-macosx_11_0_arm64.whl" , hash = "sha256:1507138ea28bf2134d31797675380791cc1a7156a3aeda484e65a78a4aba9b62" } ,
{ file = "pyproj-3.5.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:c02742ef3d846401861a878a61ef7ad911ea7539d6cc4619ddb52dbdf7b45aee" } ,
{ file = "pyproj-3.5.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:385b0341861d3ebc8cad98337a738821dcb548d465576527399f4955ca24b6ed" } ,
{ file = "pyproj-3.5.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:8fe6bb1b68a35d07378d38be77b5b2f8dd2bea5910c957bfcc7bee55988d3910" } ,
{ file = "pyproj-3.5.0-cp39-cp39-win32.whl" , hash = "sha256:5c4b85ac10d733c42d73a2e6261c8d6745bf52433a31848dd1b6561c9a382da3" } ,
{ file = "pyproj-3.5.0-cp39-cp39-win_amd64.whl" , hash = "sha256:1798ff7d65d9057ebb2d017ffe8403268b8452f24d0428b2140018c25c7fa1bc" } ,
{ file = "pyproj-3.5.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl" , hash = "sha256:d711517a8487ef3245b08dc82f781a906df9abb3b6cb0ce0486f0eeb823ca570" } ,
{ file = "pyproj-3.5.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:788a5dadb532644a64efe0f5f01bf508c821eb7e984f13a677d56002f1e8a67a" } ,
{ file = "pyproj-3.5.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:73f7960a97225812f9b1d7aeda5fb83812f38de9441e3476fcc8abb3e2b2f4de" } ,
{ file = "pyproj-3.5.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl" , hash = "sha256:fde5ece4d2436b5a57c8f5f97b49b5de06a856d03959f836c957d3e609f2de7e" } ,
{ file = "pyproj-3.5.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:e08db25b61cf024648d55973cc3d1c3f1d0818fabf594d5f5a8e2318103d2aa0" } ,
{ file = "pyproj-3.5.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:6a87b419a2a352413fbf759ecb66da9da50bd19861c8f26db6a25439125b27b9" } ,
{ file = "pyproj-3.5.0.tar.gz" , hash = "sha256:9859d1591c1863414d875ae0759e72c2cffc01ab989dc64137fbac572cc81bf6" } ,
]
[ package . dependencies ]
certifi = "*"
[ [ package ] ]
name = "pyreadline3"
version = "3.4.1"
description = "A python implementation of GNU readline."
optional = true
python-versions = "*"
files = [
{ file = "pyreadline3-3.4.1-py3-none-any.whl" , hash = "sha256:b0efb6516fd4fb07b45949053826a62fa4cb353db5be2bbb4a7aa1fdd1e345fb" } ,
{ file = "pyreadline3-3.4.1.tar.gz" , hash = "sha256:6f3d1f7b8a31ba32b73917cefc1f28cc660562f39aea8646d30bd6eff21f7bae" } ,
]
[ [ package ] ]
name = "pyspark"
version = "3.5.1"
description = "Apache Spark Python API"
optional = true
python-versions = ">=3.8"
files = [
{ file = "pyspark-3.5.1.tar.gz" , hash = "sha256:dd6569e547365eadc4f887bf57f153e4d582a68c4b490de475d55b9981664910" } ,
]
[ package . dependencies ]
py4j = "0.10.9.7"
[ package . extras ]
connect = [ "googleapis-common-protos (>=1.56.4)" , "grpcio (>=1.56.0)" , "grpcio-status (>=1.56.0)" , "numpy (>=1.15)" , "pandas (>=1.0.5)" , "pyarrow (>=4.0.0)" ]
ml = [ "numpy (>=1.15)" ]
mllib = [ "numpy (>=1.15)" ]
pandas-on-spark = [ "numpy (>=1.15)" , "pandas (>=1.0.5)" , "pyarrow (>=4.0.0)" ]
sql = [ "numpy (>=1.15)" , "pandas (>=1.0.5)" , "pyarrow (>=4.0.0)" ]
2023-12-11 21:53:30 +00:00
[ [ package ] ]
name = "pytest"
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
version = "7.4.4"
2023-12-11 21:53:30 +00:00
description = "pytest: simple powerful testing with Python"
optional = false
python-versions = ">=3.7"
files = [
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
{ file = "pytest-7.4.4-py3-none-any.whl" , hash = "sha256:b090cdf5ed60bf4c45261be03239c2c1c22df034fbffe691abe93cd80cea01d8" } ,
{ file = "pytest-7.4.4.tar.gz" , hash = "sha256:2cf0005922c6ace4a3e2ec8b4080eb0d9753fdc93107415332f50ce9e7994280" } ,
2023-12-11 21:53:30 +00:00
]
[ package . dependencies ]
colorama = { version = "*" , markers = "sys_platform == \"win32\"" }
exceptiongroup = { version = ">=1.0.0rc8" , markers = "python_version < \"3.11\"" }
iniconfig = "*"
packaging = "*"
pluggy = ">=0.12,<2.0"
tomli = { version = ">=1.0.0" , markers = "python_version < \"3.11\"" }
[ package . extras ]
testing = [ "argcomplete" , "attrs (>=19.2.0)" , "hypothesis (>=3.56)" , "mock" , "nose" , "pygments (>=2.7.2)" , "requests" , "setuptools" , "xmlschema" ]
[ [ package ] ]
name = "pytest-asyncio"
version = "0.20.3"
description = "Pytest support for asyncio"
optional = false
python-versions = ">=3.7"
files = [
{ file = "pytest-asyncio-0.20.3.tar.gz" , hash = "sha256:83cbf01169ce3e8eb71c6c278ccb0574d1a7a3bb8eaaf5e50e0ad342afb33b36" } ,
{ file = "pytest_asyncio-0.20.3-py3-none-any.whl" , hash = "sha256:f129998b209d04fcc65c96fc85c11e5316738358909a8399e93be553d7656442" } ,
]
[ package . dependencies ]
pytest = ">=6.1.0"
[ package . extras ]
docs = [ "sphinx (>=5.3)" , "sphinx-rtd-theme (>=1.0)" ]
testing = [ "coverage (>=6.2)" , "flaky (>=3.5.0)" , "hypothesis (>=5.7.1)" , "mypy (>=0.931)" , "pytest-trio (>=0.7.0)" ]
[ [ package ] ]
name = "pytest-cov"
version = "4.1.0"
description = "Pytest plugin for measuring coverage."
optional = false
python-versions = ">=3.7"
files = [
{ file = "pytest-cov-4.1.0.tar.gz" , hash = "sha256:3904b13dfbfec47f003b8e77fd5b589cd11904a21ddf1ab38a64f204d6a10ef6" } ,
{ file = "pytest_cov-4.1.0-py3-none-any.whl" , hash = "sha256:6ba70b9e97e69fcc3fb45bfeab2d0a138fb65c4d0d6a41ef33983ad114be8c3a" } ,
]
[ package . dependencies ]
coverage = { version = ">=5.2.1" , extras = [ "toml" ] }
pytest = ">=4.6"
[ package . extras ]
testing = [ "fields" , "hunter" , "process-tests" , "pytest-xdist" , "six" , "virtualenv" ]
[ [ package ] ]
name = "pytest-dotenv"
version = "0.5.2"
description = "A py.test plugin that parses environment files before running tests"
optional = false
python-versions = "*"
files = [
{ file = "pytest-dotenv-0.5.2.tar.gz" , hash = "sha256:2dc6c3ac6d8764c71c6d2804e902d0ff810fa19692e95fe138aefc9b1aa73732" } ,
{ file = "pytest_dotenv-0.5.2-py3-none-any.whl" , hash = "sha256:40a2cece120a213898afaa5407673f6bd924b1fa7eafce6bda0e8abffe2f710f" } ,
]
[ package . dependencies ]
pytest = ">=5.0.0"
python-dotenv = ">=0.9.1"
[ [ package ] ]
name = "pytest-mock"
version = "3.12.0"
description = "Thin-wrapper around the mock package for easier use with pytest"
optional = false
python-versions = ">=3.8"
files = [
{ file = "pytest-mock-3.12.0.tar.gz" , hash = "sha256:31a40f038c22cad32287bb43932054451ff5583ff094bca6f675df2f8bc1a6e9" } ,
{ file = "pytest_mock-3.12.0-py3-none-any.whl" , hash = "sha256:0972719a7263072da3a21c7f4773069bcc7486027d7e8e1f81d98a47e701bc4f" } ,
]
[ package . dependencies ]
pytest = ">=5.0"
[ package . extras ]
dev = [ "pre-commit" , "pytest-asyncio" , "tox" ]
[ [ package ] ]
name = "pytest-socket"
version = "0.6.0"
description = "Pytest Plugin to disable socket calls during tests"
optional = false
python-versions = ">=3.7,<4.0"
files = [
{ file = "pytest_socket-0.6.0-py3-none-any.whl" , hash = "sha256:cca72f134ff01e0023c402e78d31b32e68da3efdf3493bf7788f8eba86a6824c" } ,
{ file = "pytest_socket-0.6.0.tar.gz" , hash = "sha256:363c1d67228315d4fc7912f1aabfd570de29d0e3db6217d61db5728adacd7138" } ,
]
[ package . dependencies ]
pytest = ">=3.6.3"
[ [ package ] ]
name = "pytest-vcr"
version = "1.0.2"
description = "Plugin for managing VCR.py cassettes"
optional = false
python-versions = "*"
files = [
{ file = "pytest-vcr-1.0.2.tar.gz" , hash = "sha256:23ee51b75abbcc43d926272773aae4f39f93aceb75ed56852d0bf618f92e1896" } ,
{ file = "pytest_vcr-1.0.2-py2.py3-none-any.whl" , hash = "sha256:2f316e0539399bea0296e8b8401145c62b6f85e9066af7e57b6151481b0d6d9c" } ,
]
[ package . dependencies ]
pytest = ">=3.6.0"
vcrpy = "*"
[ [ package ] ]
name = "pytest-watcher"
version = "0.2.6"
description = "Continiously runs pytest on changes in *.py files"
optional = false
python-versions = ">=3.7.0,<4.0.0"
files = [
{ file = "pytest-watcher-0.2.6.tar.gz" , hash = "sha256:351dfb3477366030ff275bfbfc9f29bee35cd07f16a3355b38bf92766886bae4" } ,
{ file = "pytest_watcher-0.2.6-py3-none-any.whl" , hash = "sha256:0a507159d051c9461790363e0f9b2827c1d82ad2ae8966319598695e485b1dd5" } ,
]
[ package . dependencies ]
watchdog = ">=2.0.0"
[ [ package ] ]
name = "python-dateutil"
2024-03-08 02:20:47 +00:00
version = "2.9.0.post0"
2023-12-11 21:53:30 +00:00
description = "Extensions to the standard Python datetime module"
optional = false
python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,>=2.7"
files = [
2024-03-08 02:20:47 +00:00
{ file = "python-dateutil-2.9.0.post0.tar.gz" , hash = "sha256:37dd54208da7e1cd875388217d5e00ebd4179249f90fb72437e91a35459a0ad3" } ,
{ file = "python_dateutil-2.9.0.post0-py2.py3-none-any.whl" , hash = "sha256:a8b2bc7bffae282281c8140a97d3aa9c14da0b136dfe83f850eea9a5f7470427" } ,
2023-12-11 21:53:30 +00:00
]
[ package . dependencies ]
six = ">=1.5"
[ [ package ] ]
name = "python-dotenv"
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
version = "1.0.1"
2023-12-11 21:53:30 +00:00
description = "Read key-value pairs from a .env file and set them as environment variables"
optional = false
python-versions = ">=3.8"
files = [
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
{ file = "python-dotenv-1.0.1.tar.gz" , hash = "sha256:e324ee90a023d808f1959c46bcbc04446a10ced277783dc6ee09987c37ec10ca" } ,
{ file = "python_dotenv-1.0.1-py3-none-any.whl" , hash = "sha256:f7b63ef50f1b690dddf550d03497b66d609393b40b564ed0d674909a68ebf16a" } ,
2023-12-11 21:53:30 +00:00
]
[ package . extras ]
cli = [ "click (>=5.0)" ]
[ [ package ] ]
name = "python-json-logger"
version = "2.0.7"
description = "A python library adding a json log formatter"
optional = false
python-versions = ">=3.6"
files = [
{ file = "python-json-logger-2.0.7.tar.gz" , hash = "sha256:23e7ec02d34237c5aa1e29a070193a4ea87583bb4e7f8fd06d3de8264c4b2e1c" } ,
{ file = "python_json_logger-2.0.7-py3-none-any.whl" , hash = "sha256:f380b826a991ebbe3de4d897aeec42760035ac760345e57b812938dc8b35e2bd" } ,
]
2024-03-15 17:10:47 +00:00
[ [ package ] ]
name = "python-jsonschema-objects"
version = "0.5.4"
description = "An object wrapper for JSON Schema definitions"
optional = true
python-versions = ">=3.8"
files = [
{ file = "python_jsonschema_objects-0.5.4-py2.py3-none-any.whl" , hash = "sha256:779e3253235fd3f0987161ebe695b4db251af78eedd8f531d6b05e6f063a6caf" } ,
{ file = "python_jsonschema_objects-0.5.4.tar.gz" , hash = "sha256:b2f3a27efdea34d97af6f74ecc20aaf90e7f3125b4db831eff15ececc5d05215" } ,
]
[ package . dependencies ]
inflection = ">=0.2"
jsonschema = ">=4.18"
Markdown = ">=2.4"
six = ">=1.5.2"
2023-12-11 21:53:30 +00:00
[ [ package ] ]
name = "pytz"
2024-03-08 02:20:47 +00:00
version = "2024.1"
2023-12-11 21:53:30 +00:00
description = "World timezone definitions, modern and historical"
optional = false
python-versions = "*"
files = [
2024-03-08 02:20:47 +00:00
{ file = "pytz-2024.1-py2.py3-none-any.whl" , hash = "sha256:328171f4e3623139da4983451950b28e95ac706e13f3f2630a879749e7a8b319" } ,
{ file = "pytz-2024.1.tar.gz" , hash = "sha256:2a29735ea9c18baf14b448846bde5a48030ed267578472d8955cd0e7443a9812" } ,
2023-12-11 21:53:30 +00:00
]
[ [ package ] ]
name = "pywin32"
version = "306"
description = "Python for Window Extensions"
optional = false
python-versions = "*"
files = [
{ file = "pywin32-306-cp310-cp310-win32.whl" , hash = "sha256:06d3420a5155ba65f0b72f2699b5bacf3109f36acbe8923765c22938a69dfc8d" } ,
{ file = "pywin32-306-cp310-cp310-win_amd64.whl" , hash = "sha256:84f4471dbca1887ea3803d8848a1616429ac94a4a8d05f4bc9c5dcfd42ca99c8" } ,
{ file = "pywin32-306-cp311-cp311-win32.whl" , hash = "sha256:e65028133d15b64d2ed8f06dd9fbc268352478d4f9289e69c190ecd6818b6407" } ,
{ file = "pywin32-306-cp311-cp311-win_amd64.whl" , hash = "sha256:a7639f51c184c0272e93f244eb24dafca9b1855707d94c192d4a0b4c01e1100e" } ,
{ file = "pywin32-306-cp311-cp311-win_arm64.whl" , hash = "sha256:70dba0c913d19f942a2db25217d9a1b726c278f483a919f1abfed79c9cf64d3a" } ,
{ file = "pywin32-306-cp312-cp312-win32.whl" , hash = "sha256:383229d515657f4e3ed1343da8be101000562bf514591ff383ae940cad65458b" } ,
{ file = "pywin32-306-cp312-cp312-win_amd64.whl" , hash = "sha256:37257794c1ad39ee9be652da0462dc2e394c8159dfd913a8a4e8eb6fd346da0e" } ,
{ file = "pywin32-306-cp312-cp312-win_arm64.whl" , hash = "sha256:5821ec52f6d321aa59e2db7e0a35b997de60c201943557d108af9d4ae1ec7040" } ,
{ file = "pywin32-306-cp37-cp37m-win32.whl" , hash = "sha256:1c73ea9a0d2283d889001998059f5eaaba3b6238f767c9cf2833b13e6a685f65" } ,
{ file = "pywin32-306-cp37-cp37m-win_amd64.whl" , hash = "sha256:72c5f621542d7bdd4fdb716227be0dd3f8565c11b280be6315b06ace35487d36" } ,
{ file = "pywin32-306-cp38-cp38-win32.whl" , hash = "sha256:e4c092e2589b5cf0d365849e73e02c391c1349958c5ac3e9d5ccb9a28e017b3a" } ,
{ file = "pywin32-306-cp38-cp38-win_amd64.whl" , hash = "sha256:e8ac1ae3601bee6ca9f7cb4b5363bf1c0badb935ef243c4733ff9a393b1690c0" } ,
{ file = "pywin32-306-cp39-cp39-win32.whl" , hash = "sha256:e25fd5b485b55ac9c057f67d94bc203f3f6595078d1fb3b458c9c28b7153a802" } ,
{ file = "pywin32-306-cp39-cp39-win_amd64.whl" , hash = "sha256:39b61c15272833b5c329a2989999dcae836b1eed650252ab1b7bfbe1d59f30f4" } ,
]
[ [ package ] ]
name = "pywinpty"
2024-03-08 02:20:47 +00:00
version = "2.0.13"
2023-12-11 21:53:30 +00:00
description = "Pseudo terminal support for Windows from Python."
optional = false
python-versions = ">=3.8"
files = [
2024-03-08 02:20:47 +00:00
{ file = "pywinpty-2.0.13-cp310-none-win_amd64.whl" , hash = "sha256:697bff211fb5a6508fee2dc6ff174ce03f34a9a233df9d8b5fe9c8ce4d5eaf56" } ,
{ file = "pywinpty-2.0.13-cp311-none-win_amd64.whl" , hash = "sha256:b96fb14698db1284db84ca38c79f15b4cfdc3172065b5137383910567591fa99" } ,
{ file = "pywinpty-2.0.13-cp312-none-win_amd64.whl" , hash = "sha256:2fd876b82ca750bb1333236ce98488c1be96b08f4f7647cfdf4129dfad83c2d4" } ,
{ file = "pywinpty-2.0.13-cp38-none-win_amd64.whl" , hash = "sha256:61d420c2116c0212808d31625611b51caf621fe67f8a6377e2e8b617ea1c1f7d" } ,
{ file = "pywinpty-2.0.13-cp39-none-win_amd64.whl" , hash = "sha256:71cb613a9ee24174730ac7ae439fd179ca34ccb8c5349e8d7b72ab5dea2c6f4b" } ,
{ file = "pywinpty-2.0.13.tar.gz" , hash = "sha256:c34e32351a3313ddd0d7da23d27f835c860d32fe4ac814d372a3ea9594f41dde" } ,
2023-12-11 21:53:30 +00:00
]
[ [ package ] ]
name = "pyyaml"
version = "6.0.1"
description = "YAML parser and emitter for Python"
optional = false
python-versions = ">=3.6"
files = [
{ file = "PyYAML-6.0.1-cp310-cp310-macosx_10_9_x86_64.whl" , hash = "sha256:d858aa552c999bc8a8d57426ed01e40bef403cd8ccdd0fc5f6f04a00414cac2a" } ,
{ file = "PyYAML-6.0.1-cp310-cp310-macosx_11_0_arm64.whl" , hash = "sha256:fd66fc5d0da6d9815ba2cebeb4205f95818ff4b79c3ebe268e75d961704af52f" } ,
{ file = "PyYAML-6.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:69b023b2b4daa7548bcfbd4aa3da05b3a74b772db9e23b982788168117739938" } ,
{ file = "PyYAML-6.0.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:81e0b275a9ecc9c0c0c07b4b90ba548307583c125f54d5b6946cfee6360c733d" } ,
{ file = "PyYAML-6.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:ba336e390cd8e4d1739f42dfe9bb83a3cc2e80f567d8805e11b46f4a943f5515" } ,
2024-02-19 19:13:33 +00:00
{ file = "PyYAML-6.0.1-cp310-cp310-musllinux_1_1_x86_64.whl" , hash = "sha256:326c013efe8048858a6d312ddd31d56e468118ad4cdeda36c719bf5bb6192290" } ,
2023-12-11 21:53:30 +00:00
{ file = "PyYAML-6.0.1-cp310-cp310-win32.whl" , hash = "sha256:bd4af7373a854424dabd882decdc5579653d7868b8fb26dc7d0e99f823aa5924" } ,
{ file = "PyYAML-6.0.1-cp310-cp310-win_amd64.whl" , hash = "sha256:fd1592b3fdf65fff2ad0004b5e363300ef59ced41c2e6b3a99d4089fa8c5435d" } ,
{ file = "PyYAML-6.0.1-cp311-cp311-macosx_10_9_x86_64.whl" , hash = "sha256:6965a7bc3cf88e5a1c3bd2e0b5c22f8d677dc88a455344035f03399034eb3007" } ,
{ file = "PyYAML-6.0.1-cp311-cp311-macosx_11_0_arm64.whl" , hash = "sha256:f003ed9ad21d6a4713f0a9b5a7a0a79e08dd0f221aff4525a2be4c346ee60aab" } ,
{ file = "PyYAML-6.0.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:42f8152b8dbc4fe7d96729ec2b99c7097d656dc1213a3229ca5383f973a5ed6d" } ,
{ file = "PyYAML-6.0.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:062582fca9fabdd2c8b54a3ef1c978d786e0f6b3a1510e0ac93ef59e0ddae2bc" } ,
{ file = "PyYAML-6.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:d2b04aac4d386b172d5b9692e2d2da8de7bfb6c387fa4f801fbf6fb2e6ba4673" } ,
2024-02-19 19:13:33 +00:00
{ file = "PyYAML-6.0.1-cp311-cp311-musllinux_1_1_x86_64.whl" , hash = "sha256:e7d73685e87afe9f3b36c799222440d6cf362062f78be1013661b00c5c6f678b" } ,
2023-12-11 21:53:30 +00:00
{ file = "PyYAML-6.0.1-cp311-cp311-win32.whl" , hash = "sha256:1635fd110e8d85d55237ab316b5b011de701ea0f29d07611174a1b42f1444741" } ,
{ file = "PyYAML-6.0.1-cp311-cp311-win_amd64.whl" , hash = "sha256:bf07ee2fef7014951eeb99f56f39c9bb4af143d8aa3c21b1677805985307da34" } ,
2024-02-19 19:13:33 +00:00
{ file = "PyYAML-6.0.1-cp312-cp312-macosx_10_9_x86_64.whl" , hash = "sha256:855fb52b0dc35af121542a76b9a84f8d1cd886ea97c84703eaa6d88e37a2ad28" } ,
{ file = "PyYAML-6.0.1-cp312-cp312-macosx_11_0_arm64.whl" , hash = "sha256:40df9b996c2b73138957fe23a16a4f0ba614f4c0efce1e9406a184b6d07fa3a9" } ,
2024-03-08 02:20:47 +00:00
{ file = "PyYAML-6.0.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:a08c6f0fe150303c1c6b71ebcd7213c2858041a7e01975da3a99aed1e7a378ef" } ,
2024-02-19 19:13:33 +00:00
{ file = "PyYAML-6.0.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:6c22bec3fbe2524cde73d7ada88f6566758a8f7227bfbf93a408a9d86bcc12a0" } ,
{ file = "PyYAML-6.0.1-cp312-cp312-musllinux_1_1_x86_64.whl" , hash = "sha256:8d4e9c88387b0f5c7d5f281e55304de64cf7f9c0021a3525bd3b1c542da3b0e4" } ,
{ file = "PyYAML-6.0.1-cp312-cp312-win32.whl" , hash = "sha256:d483d2cdf104e7c9fa60c544d92981f12ad66a457afae824d146093b8c294c54" } ,
{ file = "PyYAML-6.0.1-cp312-cp312-win_amd64.whl" , hash = "sha256:0d3304d8c0adc42be59c5f8a4d9e3d7379e6955ad754aa9d6ab7a398b59dd1df" } ,
2023-12-11 21:53:30 +00:00
{ file = "PyYAML-6.0.1-cp36-cp36m-macosx_10_9_x86_64.whl" , hash = "sha256:50550eb667afee136e9a77d6dc71ae76a44df8b3e51e41b77f6de2932bfe0f47" } ,
{ file = "PyYAML-6.0.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:1fe35611261b29bd1de0070f0b2f47cb6ff71fa6595c077e42bd0c419fa27b98" } ,
{ file = "PyYAML-6.0.1-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:704219a11b772aea0d8ecd7058d0082713c3562b4e271b849ad7dc4a5c90c13c" } ,
{ file = "PyYAML-6.0.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:afd7e57eddb1a54f0f1a974bc4391af8bcce0b444685d936840f125cf046d5bd" } ,
{ file = "PyYAML-6.0.1-cp36-cp36m-win32.whl" , hash = "sha256:fca0e3a251908a499833aa292323f32437106001d436eca0e6e7833256674585" } ,
{ file = "PyYAML-6.0.1-cp36-cp36m-win_amd64.whl" , hash = "sha256:f22ac1c3cac4dbc50079e965eba2c1058622631e526bd9afd45fedd49ba781fa" } ,
{ file = "PyYAML-6.0.1-cp37-cp37m-macosx_10_9_x86_64.whl" , hash = "sha256:b1275ad35a5d18c62a7220633c913e1b42d44b46ee12554e5fd39c70a243d6a3" } ,
{ file = "PyYAML-6.0.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:18aeb1bf9a78867dc38b259769503436b7c72f7a1f1f4c93ff9a17de54319b27" } ,
{ file = "PyYAML-6.0.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:596106435fa6ad000c2991a98fa58eeb8656ef2325d7e158344fb33864ed87e3" } ,
{ file = "PyYAML-6.0.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:baa90d3f661d43131ca170712d903e6295d1f7a0f595074f151c0aed377c9b9c" } ,
{ file = "PyYAML-6.0.1-cp37-cp37m-win32.whl" , hash = "sha256:9046c58c4395dff28dd494285c82ba00b546adfc7ef001486fbf0324bc174fba" } ,
{ file = "PyYAML-6.0.1-cp37-cp37m-win_amd64.whl" , hash = "sha256:4fb147e7a67ef577a588a0e2c17b6db51dda102c71de36f8549b6816a96e1867" } ,
{ file = "PyYAML-6.0.1-cp38-cp38-macosx_10_9_x86_64.whl" , hash = "sha256:1d4c7e777c441b20e32f52bd377e0c409713e8bb1386e1099c2415f26e479595" } ,
{ file = "PyYAML-6.0.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:a0cd17c15d3bb3fa06978b4e8958dcdc6e0174ccea823003a106c7d4d7899ac5" } ,
{ file = "PyYAML-6.0.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:28c119d996beec18c05208a8bd78cbe4007878c6dd15091efb73a30e90539696" } ,
{ file = "PyYAML-6.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:7e07cbde391ba96ab58e532ff4803f79c4129397514e1413a7dc761ccd755735" } ,
2024-02-19 19:13:33 +00:00
{ file = "PyYAML-6.0.1-cp38-cp38-musllinux_1_1_x86_64.whl" , hash = "sha256:49a183be227561de579b4a36efbb21b3eab9651dd81b1858589f796549873dd6" } ,
2023-12-11 21:53:30 +00:00
{ file = "PyYAML-6.0.1-cp38-cp38-win32.whl" , hash = "sha256:184c5108a2aca3c5b3d3bf9395d50893a7ab82a38004c8f61c258d4428e80206" } ,
{ file = "PyYAML-6.0.1-cp38-cp38-win_amd64.whl" , hash = "sha256:1e2722cc9fbb45d9b87631ac70924c11d3a401b2d7f410cc0e3bbf249f2dca62" } ,
{ file = "PyYAML-6.0.1-cp39-cp39-macosx_10_9_x86_64.whl" , hash = "sha256:9eb6caa9a297fc2c2fb8862bc5370d0303ddba53ba97e71f08023b6cd73d16a8" } ,
{ file = "PyYAML-6.0.1-cp39-cp39-macosx_11_0_arm64.whl" , hash = "sha256:c8098ddcc2a85b61647b2590f825f3db38891662cfc2fc776415143f599bb859" } ,
{ file = "PyYAML-6.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:5773183b6446b2c99bb77e77595dd486303b4faab2b086e7b17bc6bef28865f6" } ,
{ file = "PyYAML-6.0.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:b786eecbdf8499b9ca1d697215862083bd6d2a99965554781d0d8d1ad31e13a0" } ,
{ file = "PyYAML-6.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:bc1bf2925a1ecd43da378f4db9e4f799775d6367bdb94671027b73b393a7c42c" } ,
2024-02-19 19:13:33 +00:00
{ file = "PyYAML-6.0.1-cp39-cp39-musllinux_1_1_x86_64.whl" , hash = "sha256:04ac92ad1925b2cff1db0cfebffb6ffc43457495c9b3c39d3fcae417d7125dc5" } ,
2023-12-11 21:53:30 +00:00
{ file = "PyYAML-6.0.1-cp39-cp39-win32.whl" , hash = "sha256:faca3bdcf85b2fc05d06ff3fbc1f83e1391b3e724afa3feba7d13eeab355484c" } ,
{ file = "PyYAML-6.0.1-cp39-cp39-win_amd64.whl" , hash = "sha256:510c9deebc5c0225e8c96813043e62b680ba2f9c50a08d3724c7f28a747d1486" } ,
{ file = "PyYAML-6.0.1.tar.gz" , hash = "sha256:bfdf460b1736c775f2ba9f6a92bca30bc2095067b8a9d77876d1fad6cc3b4a43" } ,
]
[ [ package ] ]
name = "pyzmq"
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
version = "25.1.2"
2023-12-11 21:53:30 +00:00
description = "Python bindings for 0MQ"
optional = false
python-versions = ">=3.6"
files = [
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
{ file = "pyzmq-25.1.2-cp310-cp310-macosx_10_15_universal2.whl" , hash = "sha256:e624c789359f1a16f83f35e2c705d07663ff2b4d4479bad35621178d8f0f6ea4" } ,
{ file = "pyzmq-25.1.2-cp310-cp310-macosx_10_9_x86_64.whl" , hash = "sha256:49151b0efece79f6a79d41a461d78535356136ee70084a1c22532fc6383f4ad0" } ,
{ file = "pyzmq-25.1.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:d9a5f194cf730f2b24d6af1f833c14c10f41023da46a7f736f48b6d35061e76e" } ,
{ file = "pyzmq-25.1.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:faf79a302f834d9e8304fafdc11d0d042266667ac45209afa57e5efc998e3872" } ,
{ file = "pyzmq-25.1.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:7f51a7b4ead28d3fca8dda53216314a553b0f7a91ee8fc46a72b402a78c3e43d" } ,
{ file = "pyzmq-25.1.2-cp310-cp310-manylinux_2_28_x86_64.whl" , hash = "sha256:0ddd6d71d4ef17ba5a87becf7ddf01b371eaba553c603477679ae817a8d84d75" } ,
{ file = "pyzmq-25.1.2-cp310-cp310-musllinux_1_1_aarch64.whl" , hash = "sha256:246747b88917e4867e2367b005fc8eefbb4a54b7db363d6c92f89d69abfff4b6" } ,
{ file = "pyzmq-25.1.2-cp310-cp310-musllinux_1_1_i686.whl" , hash = "sha256:00c48ae2fd81e2a50c3485de1b9d5c7c57cd85dc8ec55683eac16846e57ac979" } ,
{ file = "pyzmq-25.1.2-cp310-cp310-musllinux_1_1_x86_64.whl" , hash = "sha256:5a68d491fc20762b630e5db2191dd07ff89834086740f70e978bb2ef2668be08" } ,
{ file = "pyzmq-25.1.2-cp310-cp310-win32.whl" , hash = "sha256:09dfe949e83087da88c4a76767df04b22304a682d6154de2c572625c62ad6886" } ,
{ file = "pyzmq-25.1.2-cp310-cp310-win_amd64.whl" , hash = "sha256:fa99973d2ed20417744fca0073390ad65ce225b546febb0580358e36aa90dba6" } ,
{ file = "pyzmq-25.1.2-cp311-cp311-macosx_10_15_universal2.whl" , hash = "sha256:82544e0e2d0c1811482d37eef297020a040c32e0687c1f6fc23a75b75db8062c" } ,
{ file = "pyzmq-25.1.2-cp311-cp311-macosx_10_9_x86_64.whl" , hash = "sha256:01171fc48542348cd1a360a4b6c3e7d8f46cdcf53a8d40f84db6707a6768acc1" } ,
{ file = "pyzmq-25.1.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:bc69c96735ab501419c432110016329bf0dea8898ce16fab97c6d9106dc0b348" } ,
{ file = "pyzmq-25.1.2-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:3e124e6b1dd3dfbeb695435dff0e383256655bb18082e094a8dd1f6293114642" } ,
{ file = "pyzmq-25.1.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:7598d2ba821caa37a0f9d54c25164a4fa351ce019d64d0b44b45540950458840" } ,
{ file = "pyzmq-25.1.2-cp311-cp311-manylinux_2_28_x86_64.whl" , hash = "sha256:d1299d7e964c13607efd148ca1f07dcbf27c3ab9e125d1d0ae1d580a1682399d" } ,
{ file = "pyzmq-25.1.2-cp311-cp311-musllinux_1_1_aarch64.whl" , hash = "sha256:4e6f689880d5ad87918430957297c975203a082d9a036cc426648fcbedae769b" } ,
{ file = "pyzmq-25.1.2-cp311-cp311-musllinux_1_1_i686.whl" , hash = "sha256:cc69949484171cc961e6ecd4a8911b9ce7a0d1f738fcae717177c231bf77437b" } ,
{ file = "pyzmq-25.1.2-cp311-cp311-musllinux_1_1_x86_64.whl" , hash = "sha256:9880078f683466b7f567b8624bfc16cad65077be046b6e8abb53bed4eeb82dd3" } ,
{ file = "pyzmq-25.1.2-cp311-cp311-win32.whl" , hash = "sha256:4e5837af3e5aaa99a091302df5ee001149baff06ad22b722d34e30df5f0d9097" } ,
{ file = "pyzmq-25.1.2-cp311-cp311-win_amd64.whl" , hash = "sha256:25c2dbb97d38b5ac9fd15586e048ec5eb1e38f3d47fe7d92167b0c77bb3584e9" } ,
{ file = "pyzmq-25.1.2-cp312-cp312-macosx_10_15_universal2.whl" , hash = "sha256:11e70516688190e9c2db14fcf93c04192b02d457b582a1f6190b154691b4c93a" } ,
{ file = "pyzmq-25.1.2-cp312-cp312-macosx_10_9_x86_64.whl" , hash = "sha256:313c3794d650d1fccaaab2df942af9f2c01d6217c846177cfcbc693c7410839e" } ,
{ file = "pyzmq-25.1.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:1b3cbba2f47062b85fe0ef9de5b987612140a9ba3a9c6d2543c6dec9f7c2ab27" } ,
{ file = "pyzmq-25.1.2-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:fc31baa0c32a2ca660784d5af3b9487e13b61b3032cb01a115fce6588e1bed30" } ,
{ file = "pyzmq-25.1.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:02c9087b109070c5ab0b383079fa1b5f797f8d43e9a66c07a4b8b8bdecfd88ee" } ,
{ file = "pyzmq-25.1.2-cp312-cp312-manylinux_2_28_x86_64.whl" , hash = "sha256:f8429b17cbb746c3e043cb986328da023657e79d5ed258b711c06a70c2ea7537" } ,
{ file = "pyzmq-25.1.2-cp312-cp312-musllinux_1_1_aarch64.whl" , hash = "sha256:5074adeacede5f810b7ef39607ee59d94e948b4fd954495bdb072f8c54558181" } ,
{ file = "pyzmq-25.1.2-cp312-cp312-musllinux_1_1_i686.whl" , hash = "sha256:7ae8f354b895cbd85212da245f1a5ad8159e7840e37d78b476bb4f4c3f32a9fe" } ,
{ file = "pyzmq-25.1.2-cp312-cp312-musllinux_1_1_x86_64.whl" , hash = "sha256:b264bf2cc96b5bc43ce0e852be995e400376bd87ceb363822e2cb1964fcdc737" } ,
{ file = "pyzmq-25.1.2-cp312-cp312-win32.whl" , hash = "sha256:02bbc1a87b76e04fd780b45e7f695471ae6de747769e540da909173d50ff8e2d" } ,
{ file = "pyzmq-25.1.2-cp312-cp312-win_amd64.whl" , hash = "sha256:ced111c2e81506abd1dc142e6cd7b68dd53747b3b7ae5edbea4578c5eeff96b7" } ,
{ file = "pyzmq-25.1.2-cp36-cp36m-macosx_10_9_x86_64.whl" , hash = "sha256:7b6d09a8962a91151f0976008eb7b29b433a560fde056ec7a3db9ec8f1075438" } ,
{ file = "pyzmq-25.1.2-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:967668420f36878a3c9ecb5ab33c9d0ff8d054f9c0233d995a6d25b0e95e1b6b" } ,
{ file = "pyzmq-25.1.2-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.whl" , hash = "sha256:5edac3f57c7ddaacdb4d40f6ef2f9e299471fc38d112f4bc6d60ab9365445fb0" } ,
{ file = "pyzmq-25.1.2-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl" , hash = "sha256:0dabfb10ef897f3b7e101cacba1437bd3a5032ee667b7ead32bbcdd1a8422fe7" } ,
{ file = "pyzmq-25.1.2-cp36-cp36m-musllinux_1_1_aarch64.whl" , hash = "sha256:2c6441e0398c2baacfe5ba30c937d274cfc2dc5b55e82e3749e333aabffde561" } ,
{ file = "pyzmq-25.1.2-cp36-cp36m-musllinux_1_1_i686.whl" , hash = "sha256:16b726c1f6c2e7625706549f9dbe9b06004dfbec30dbed4bf50cbdfc73e5b32a" } ,
{ file = "pyzmq-25.1.2-cp36-cp36m-musllinux_1_1_x86_64.whl" , hash = "sha256:a86c2dd76ef71a773e70551a07318b8e52379f58dafa7ae1e0a4be78efd1ff16" } ,
{ file = "pyzmq-25.1.2-cp36-cp36m-win32.whl" , hash = "sha256:359f7f74b5d3c65dae137f33eb2bcfa7ad9ebefd1cab85c935f063f1dbb245cc" } ,
{ file = "pyzmq-25.1.2-cp36-cp36m-win_amd64.whl" , hash = "sha256:55875492f820d0eb3417b51d96fea549cde77893ae3790fd25491c5754ea2f68" } ,
{ file = "pyzmq-25.1.2-cp37-cp37m-macosx_10_9_x86_64.whl" , hash = "sha256:b8c8a419dfb02e91b453615c69568442e897aaf77561ee0064d789705ff37a92" } ,
{ file = "pyzmq-25.1.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:8807c87fa893527ae8a524c15fc505d9950d5e856f03dae5921b5e9aa3b8783b" } ,
{ file = "pyzmq-25.1.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl" , hash = "sha256:5e319ed7d6b8f5fad9b76daa0a68497bc6f129858ad956331a5835785761e003" } ,
{ file = "pyzmq-25.1.2-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl" , hash = "sha256:3c53687dde4d9d473c587ae80cc328e5b102b517447456184b485587ebd18b62" } ,
{ file = "pyzmq-25.1.2-cp37-cp37m-musllinux_1_1_aarch64.whl" , hash = "sha256:9add2e5b33d2cd765ad96d5eb734a5e795a0755f7fc49aa04f76d7ddda73fd70" } ,
{ file = "pyzmq-25.1.2-cp37-cp37m-musllinux_1_1_i686.whl" , hash = "sha256:e690145a8c0c273c28d3b89d6fb32c45e0d9605b2293c10e650265bf5c11cfec" } ,
{ file = "pyzmq-25.1.2-cp37-cp37m-musllinux_1_1_x86_64.whl" , hash = "sha256:00a06faa7165634f0cac1abb27e54d7a0b3b44eb9994530b8ec73cf52e15353b" } ,
{ file = "pyzmq-25.1.2-cp37-cp37m-win32.whl" , hash = "sha256:0f97bc2f1f13cb16905a5f3e1fbdf100e712d841482b2237484360f8bc4cb3d7" } ,
{ file = "pyzmq-25.1.2-cp37-cp37m-win_amd64.whl" , hash = "sha256:6cc0020b74b2e410287e5942e1e10886ff81ac77789eb20bec13f7ae681f0fdd" } ,
{ file = "pyzmq-25.1.2-cp38-cp38-macosx_10_15_universal2.whl" , hash = "sha256:bef02cfcbded83473bdd86dd8d3729cd82b2e569b75844fb4ea08fee3c26ae41" } ,
{ file = "pyzmq-25.1.2-cp38-cp38-macosx_10_9_x86_64.whl" , hash = "sha256:e10a4b5a4b1192d74853cc71a5e9fd022594573926c2a3a4802020360aa719d8" } ,
{ file = "pyzmq-25.1.2-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl" , hash = "sha256:8c5f80e578427d4695adac6fdf4370c14a2feafdc8cb35549c219b90652536ae" } ,
{ file = "pyzmq-25.1.2-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl" , hash = "sha256:5dde6751e857910c1339890f3524de74007958557593b9e7e8c5f01cd919f8a7" } ,
{ file = "pyzmq-25.1.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:ea1608dd169da230a0ad602d5b1ebd39807ac96cae1845c3ceed39af08a5c6df" } ,
{ file = "pyzmq-25.1.2-cp38-cp38-musllinux_1_1_aarch64.whl" , hash = "sha256:0f513130c4c361201da9bc69df25a086487250e16b5571ead521b31ff6b02220" } ,
{ file = "pyzmq-25.1.2-cp38-cp38-musllinux_1_1_i686.whl" , hash = "sha256:019744b99da30330798bb37df33549d59d380c78e516e3bab9c9b84f87a9592f" } ,
{ file = "pyzmq-25.1.2-cp38-cp38-musllinux_1_1_x86_64.whl" , hash = "sha256:2e2713ef44be5d52dd8b8e2023d706bf66cb22072e97fc71b168e01d25192755" } ,
{ file = "pyzmq-25.1.2-cp38-cp38-win32.whl" , hash = "sha256:07cd61a20a535524906595e09344505a9bd46f1da7a07e504b315d41cd42eb07" } ,
{ file = "pyzmq-25.1.2-cp38-cp38-win_amd64.whl" , hash = "sha256:eb7e49a17fb8c77d3119d41a4523e432eb0c6932187c37deb6fbb00cc3028088" } ,
{ file = "pyzmq-25.1.2-cp39-cp39-macosx_10_15_universal2.whl" , hash = "sha256:94504ff66f278ab4b7e03e4cba7e7e400cb73bfa9d3d71f58d8972a8dc67e7a6" } ,
{ file = "pyzmq-25.1.2-cp39-cp39-macosx_10_9_x86_64.whl" , hash = "sha256:6dd0d50bbf9dca1d0bdea219ae6b40f713a3fb477c06ca3714f208fd69e16fd8" } ,
{ file = "pyzmq-25.1.2-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl" , hash = "sha256:004ff469d21e86f0ef0369717351073e0e577428e514c47c8480770d5e24a565" } ,
{ file = "pyzmq-25.1.2-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl" , hash = "sha256:c0b5ca88a8928147b7b1e2dfa09f3b6c256bc1135a1338536cbc9ea13d3b7add" } ,
{ file = "pyzmq-25.1.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:2c9a79f1d2495b167119d02be7448bfba57fad2a4207c4f68abc0bab4b92925b" } ,
{ file = "pyzmq-25.1.2-cp39-cp39-musllinux_1_1_aarch64.whl" , hash = "sha256:518efd91c3d8ac9f9b4f7dd0e2b7b8bf1a4fe82a308009016b07eaa48681af82" } ,
{ file = "pyzmq-25.1.2-cp39-cp39-musllinux_1_1_i686.whl" , hash = "sha256:1ec23bd7b3a893ae676d0e54ad47d18064e6c5ae1fadc2f195143fb27373f7f6" } ,
{ file = "pyzmq-25.1.2-cp39-cp39-musllinux_1_1_x86_64.whl" , hash = "sha256:db36c27baed588a5a8346b971477b718fdc66cf5b80cbfbd914b4d6d355e44e2" } ,
{ file = "pyzmq-25.1.2-cp39-cp39-win32.whl" , hash = "sha256:39b1067f13aba39d794a24761e385e2eddc26295826530a8c7b6c6c341584289" } ,
{ file = "pyzmq-25.1.2-cp39-cp39-win_amd64.whl" , hash = "sha256:8e9f3fabc445d0ce320ea2c59a75fe3ea591fdbdeebec5db6de530dd4b09412e" } ,
{ file = "pyzmq-25.1.2-pp310-pypy310_pp73-macosx_10_9_x86_64.whl" , hash = "sha256:a8c1d566344aee826b74e472e16edae0a02e2a044f14f7c24e123002dcff1c05" } ,
{ file = "pyzmq-25.1.2-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:759cfd391a0996345ba94b6a5110fca9c557ad4166d86a6e81ea526c376a01e8" } ,
{ file = "pyzmq-25.1.2-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:7c61e346ac34b74028ede1c6b4bcecf649d69b707b3ff9dc0fab453821b04d1e" } ,
{ file = "pyzmq-25.1.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:4cb8fc1f8d69b411b8ec0b5f1ffbcaf14c1db95b6bccea21d83610987435f1a4" } ,
{ file = "pyzmq-25.1.2-pp310-pypy310_pp73-win_amd64.whl" , hash = "sha256:3c00c9b7d1ca8165c610437ca0c92e7b5607b2f9076f4eb4b095c85d6e680a1d" } ,
{ file = "pyzmq-25.1.2-pp37-pypy37_pp73-macosx_10_9_x86_64.whl" , hash = "sha256:df0c7a16ebb94452d2909b9a7b3337940e9a87a824c4fc1c7c36bb4404cb0cde" } ,
{ file = "pyzmq-25.1.2-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl" , hash = "sha256:45999e7f7ed5c390f2e87ece7f6c56bf979fb213550229e711e45ecc7d42ccb8" } ,
{ file = "pyzmq-25.1.2-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl" , hash = "sha256:ac170e9e048b40c605358667aca3d94e98f604a18c44bdb4c102e67070f3ac9b" } ,
{ file = "pyzmq-25.1.2-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:d1b604734bec94f05f81b360a272fc824334267426ae9905ff32dc2be433ab96" } ,
{ file = "pyzmq-25.1.2-pp37-pypy37_pp73-win_amd64.whl" , hash = "sha256:a793ac733e3d895d96f865f1806f160696422554e46d30105807fdc9841b9f7d" } ,
{ file = "pyzmq-25.1.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl" , hash = "sha256:0806175f2ae5ad4b835ecd87f5f85583316b69f17e97786f7443baaf54b9bb98" } ,
{ file = "pyzmq-25.1.2-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl" , hash = "sha256:ef12e259e7bc317c7597d4f6ef59b97b913e162d83b421dd0db3d6410f17a244" } ,
{ file = "pyzmq-25.1.2-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl" , hash = "sha256:ea253b368eb41116011add00f8d5726762320b1bda892f744c91997b65754d73" } ,
{ file = "pyzmq-25.1.2-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:1b9b1f2ad6498445a941d9a4fee096d387fee436e45cc660e72e768d3d8ee611" } ,
{ file = "pyzmq-25.1.2-pp38-pypy38_pp73-win_amd64.whl" , hash = "sha256:8b14c75979ce932c53b79976a395cb2a8cd3aaf14aef75e8c2cb55a330b9b49d" } ,
{ file = "pyzmq-25.1.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl" , hash = "sha256:889370d5174a741a62566c003ee8ddba4b04c3f09a97b8000092b7ca83ec9c49" } ,
{ file = "pyzmq-25.1.2-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:9a18fff090441a40ffda8a7f4f18f03dc56ae73f148f1832e109f9bffa85df15" } ,
{ file = "pyzmq-25.1.2-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:99a6b36f95c98839ad98f8c553d8507644c880cf1e0a57fe5e3a3f3969040882" } ,
{ file = "pyzmq-25.1.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:4345c9a27f4310afbb9c01750e9461ff33d6fb74cd2456b107525bbeebcb5be3" } ,
{ file = "pyzmq-25.1.2-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl" , hash = "sha256:3516e0b6224cf6e43e341d56da15fd33bdc37fa0c06af4f029f7d7dfceceabbc" } ,
{ file = "pyzmq-25.1.2-pp39-pypy39_pp73-win_amd64.whl" , hash = "sha256:146b9b1f29ead41255387fb07be56dc29639262c0f7344f570eecdcd8d683314" } ,
{ file = "pyzmq-25.1.2.tar.gz" , hash = "sha256:93f1aa311e8bb912e34f004cf186407a4e90eec4f0ecc0efd26056bf7eda0226" } ,
2023-12-11 21:53:30 +00:00
]
[ package . dependencies ]
cffi = { version = "*" , markers = "implementation_name == \"pypy\"" }
[ [ package ] ]
name = "qtconsole"
version = "5.5.1"
description = "Jupyter Qt console"
optional = false
python-versions = ">= 3.8"
files = [
{ file = "qtconsole-5.5.1-py3-none-any.whl" , hash = "sha256:8c75fa3e9b4ed884880ff7cea90a1b67451219279ec33deaee1d59e3df1a5d2b" } ,
{ file = "qtconsole-5.5.1.tar.gz" , hash = "sha256:a0e806c6951db9490628e4df80caec9669b65149c7ba40f9bf033c025a5b56bc" } ,
]
[ package . dependencies ]
ipykernel = ">=4.1"
jupyter-client = ">=4.1"
jupyter-core = "*"
packaging = "*"
pygments = "*"
pyzmq = ">=17.1"
qtpy = ">=2.4.0"
traitlets = "<5.2.1 || >5.2.1,<5.2.2 || >5.2.2"
[ package . extras ]
doc = [ "Sphinx (>=1.3)" ]
test = [ "flaky" , "pytest" , "pytest-qt" ]
[ [ package ] ]
name = "qtpy"
version = "2.4.1"
description = "Provides an abstraction layer on top of the various Qt bindings (PyQt5/6 and PySide2/6)."
optional = false
python-versions = ">=3.7"
files = [
{ file = "QtPy-2.4.1-py3-none-any.whl" , hash = "sha256:1c1d8c4fa2c884ae742b069151b0abe15b3f70491f3972698c683b8e38de839b" } ,
{ file = "QtPy-2.4.1.tar.gz" , hash = "sha256:a5a15ffd519550a1361bdc56ffc07fda56a6af7292f17c7b395d4083af632987" } ,
]
[ package . dependencies ]
packaging = "*"
[ package . extras ]
test = [ "pytest (>=6,!=7.0.0,!=7.0.1)" , "pytest-cov (>=3.0.0)" , "pytest-qt" ]
2024-03-15 17:10:47 +00:00
[ [ package ] ]
name = "rank-bm25"
version = "0.2.2"
description = "Various BM25 algorithms for document ranking"
optional = true
python-versions = "*"
files = [
{ file = "rank_bm25-0.2.2-py3-none-any.whl" , hash = "sha256:7bd4a95571adadfc271746fa146a4bcfd89c0cf731e49c3d1ad863290adbe8ae" } ,
{ file = "rank_bm25-0.2.2.tar.gz" , hash = "sha256:096ccef76f8188563419aaf384a02f0ea459503fdf77901378d4fd9d87e5e51d" } ,
]
[ package . dependencies ]
numpy = "*"
[ package . extras ]
dev = [ "pytest" ]
[ [ package ] ]
name = "rapidfuzz"
version = "3.6.2"
description = "rapid fuzzy string matching"
optional = true
python-versions = ">=3.8"
files = [
{ file = "rapidfuzz-3.6.2-cp310-cp310-macosx_10_9_universal2.whl" , hash = "sha256:a5637e6bf11b15b5aff6ee818c76bdec99ad208511b78985e6209ba648a6e3ee" } ,
{ file = "rapidfuzz-3.6.2-cp310-cp310-macosx_10_9_x86_64.whl" , hash = "sha256:380586664f2f63807050ddb95e7702888b4f0b425abf17655940c411f39287ad" } ,
{ file = "rapidfuzz-3.6.2-cp310-cp310-macosx_11_0_arm64.whl" , hash = "sha256:3168ff565d4b8c239cf11fb604dd2507d30e9bcaac76a4077c0ac23cf2c866ed" } ,
{ file = "rapidfuzz-3.6.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:be69f7fd46b5c6467fe5e2fd4cff3816b0c03048eed8a4becb9a73e6000960e7" } ,
{ file = "rapidfuzz-3.6.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:cbd5894f23fdf5697499cf759523639838ac822bd1600e343fdce7313baa02ae" } ,
{ file = "rapidfuzz-3.6.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:85a5b6e026393fe39fb61146b9c17c5af66fffbe1410e992c4bb06d9ec327bd3" } ,
{ file = "rapidfuzz-3.6.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:ab269adfc64480f209e99f253391a10735edd5c09046e04899adab5fb132f20e" } ,
{ file = "rapidfuzz-3.6.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:35aeac852bca06023d6bbd50c1fc504ca5a9a3613d5e75a140f0be7601fa34ef" } ,
{ file = "rapidfuzz-3.6.2-cp310-cp310-musllinux_1_1_aarch64.whl" , hash = "sha256:e706f302c6a3ae0d74edd0d6ace46aee1ae07c563b436ccf5ff04db2b3571e60" } ,
{ file = "rapidfuzz-3.6.2-cp310-cp310-musllinux_1_1_i686.whl" , hash = "sha256:bec353f022011e6e5cd28ccb8700fbd2a33918197af0d4e0abb3c3f4845cc864" } ,
{ file = "rapidfuzz-3.6.2-cp310-cp310-musllinux_1_1_ppc64le.whl" , hash = "sha256:ef3925daaa93eed20401012e219f569ff0c039ed5bf4ce2d3737b4f75d441622" } ,
{ file = "rapidfuzz-3.6.2-cp310-cp310-musllinux_1_1_s390x.whl" , hash = "sha256:6ee98d88ae9ccc77ff61992ed33b2496478def5dc0da55c9a9aa06fcb725a352" } ,
{ file = "rapidfuzz-3.6.2-cp310-cp310-musllinux_1_1_x86_64.whl" , hash = "sha256:423c7c588b09d618601097b7a0017dfcb91132a2076bef29023c5f3cd2dc3de1" } ,
{ file = "rapidfuzz-3.6.2-cp310-cp310-win32.whl" , hash = "sha256:c17c5efee347a40a6f4c1eec59e3d7d1e22f7613a97f8b8a07733ef723483a04" } ,
{ file = "rapidfuzz-3.6.2-cp310-cp310-win_amd64.whl" , hash = "sha256:4209816626d8d6ff8ae7dc248061c6059e618b70c6e6f6e4d7444ae3740b2b85" } ,
{ file = "rapidfuzz-3.6.2-cp310-cp310-win_arm64.whl" , hash = "sha256:1c54d3c85e522d3ac9ee39415f183c8fa184c4f87e7e5a37938f15a6d50e853a" } ,
{ file = "rapidfuzz-3.6.2-cp311-cp311-macosx_10_9_universal2.whl" , hash = "sha256:e06f6d270112f5db001f1cba5a97e1a48aee3d3dbdcbea3ec027c230462dbf9b" } ,
{ file = "rapidfuzz-3.6.2-cp311-cp311-macosx_10_9_x86_64.whl" , hash = "sha256:080cb71b50cb6aff11d1c6aeb157f273e2da0b2bdb3f9d7b01257e49e69a8576" } ,
{ file = "rapidfuzz-3.6.2-cp311-cp311-macosx_11_0_arm64.whl" , hash = "sha256:a7895e04a22d6515bc91a850e0831f2405547605aa311d1ffec51e4818abc3c1" } ,
{ file = "rapidfuzz-3.6.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:bd82f9838519136b7083dd1e3149ee80344521f3dc37f744f227505ff0883efb" } ,
{ file = "rapidfuzz-3.6.2-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:a945567c2b0b6e069454c9782d5234b0b6795718adf7a9f868bd3144afa6a023" } ,
{ file = "rapidfuzz-3.6.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:673ba2c343644805acdae1cb949c6a4de71aa2f62a998978551ebea59603af3f" } ,
{ file = "rapidfuzz-3.6.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:9d457c89bac1471442002e70551e8268e639b3870b4a4521eae363c07253be87" } ,
{ file = "rapidfuzz-3.6.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:495c0d8e14e6f12520eb7fc71b9ba9fcaafb47fc23a654e6e89b6c7985ec0020" } ,
{ file = "rapidfuzz-3.6.2-cp311-cp311-musllinux_1_1_aarch64.whl" , hash = "sha256:6d67b649bf3e1b1722d04eca44d37919aef88305ce7ad05564502d013cf550fd" } ,
{ file = "rapidfuzz-3.6.2-cp311-cp311-musllinux_1_1_i686.whl" , hash = "sha256:e48dde8ca83d11daa00900cf6a5d281a1297aef9b7bfa73801af6e8822be5019" } ,
{ file = "rapidfuzz-3.6.2-cp311-cp311-musllinux_1_1_ppc64le.whl" , hash = "sha256:824cc381cf81cbf8d158f6935664ec2a69e6ac3b1d39fa201988bf81a257f775" } ,
{ file = "rapidfuzz-3.6.2-cp311-cp311-musllinux_1_1_s390x.whl" , hash = "sha256:1dfe4c24957474ce0ac75d886387e30e292b4be39228a6d71f76de414dc187db" } ,
{ file = "rapidfuzz-3.6.2-cp311-cp311-musllinux_1_1_x86_64.whl" , hash = "sha256:d57b98013b802621bbc8b12a46bfc9d36ac552ab51ca207f7ce167ad46adabeb" } ,
{ file = "rapidfuzz-3.6.2-cp311-cp311-win32.whl" , hash = "sha256:9a07dffac439223b4f1025dbfc68f4445a3460a859309c9858c2a3fa29617cdc" } ,
{ file = "rapidfuzz-3.6.2-cp311-cp311-win_amd64.whl" , hash = "sha256:95a49c6b8bf1229743ae585dd5b7d57f0d15a7eb6e826866d5c9965ba958503c" } ,
{ file = "rapidfuzz-3.6.2-cp311-cp311-win_arm64.whl" , hash = "sha256:af7c19ec86e11488539380d3db1755be5d561a3c0e7b04ff9d07abd7f9a8e9d8" } ,
{ file = "rapidfuzz-3.6.2-cp312-cp312-macosx_10_9_universal2.whl" , hash = "sha256:de8adc12161bf282c60f12dc9233bb31632f71d446a010fe7469a69b8153427f" } ,
{ file = "rapidfuzz-3.6.2-cp312-cp312-macosx_10_9_x86_64.whl" , hash = "sha256:337e357f693130c4c6be740652542b260e36f622c59e01fa33d58f1d2750c930" } ,
{ file = "rapidfuzz-3.6.2-cp312-cp312-macosx_11_0_arm64.whl" , hash = "sha256:6468f8bc8c3c50604f43631550ef9cfec873515dba5023ca34d461be94669fc8" } ,
{ file = "rapidfuzz-3.6.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:74c6773b11445b5e5cf93ca383171cd0ac0cdeafea11a7b2a5688f8bf8d813e6" } ,
{ file = "rapidfuzz-3.6.2-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:e1507fc5769aa109dda4de3a15f822a0f6a03e18d627bd0ba3ddbb253cf70e07" } ,
{ file = "rapidfuzz-3.6.2-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:617949a70150e6fffdaed19253dd49f7a53528411dc8bf7663d499ba21e0f61e" } ,
{ file = "rapidfuzz-3.6.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:f8b77779174b1b40aa70827692571ab457061897846255ad7d5d559e2edb1932" } ,
{ file = "rapidfuzz-3.6.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:80e51b22a7da83f9c87a97e92df07ed0612c74c35496590255f4b5d5b4212dfe" } ,
{ file = "rapidfuzz-3.6.2-cp312-cp312-musllinux_1_1_aarch64.whl" , hash = "sha256:3ae7c86914cb6673e97e187ba431b9c4cf4177d9ae77f8a1e5b2ba9a5628839e" } ,
{ file = "rapidfuzz-3.6.2-cp312-cp312-musllinux_1_1_i686.whl" , hash = "sha256:ddc380ffaa90f204cc9ddcb779114b9ab6f015246d549de9d47871a97ef9f18a" } ,
{ file = "rapidfuzz-3.6.2-cp312-cp312-musllinux_1_1_ppc64le.whl" , hash = "sha256:3c1dc078ef371fce09f9f3eec2ca4eaa2a8cd412ec53941015b4f39f14d34407" } ,
{ file = "rapidfuzz-3.6.2-cp312-cp312-musllinux_1_1_s390x.whl" , hash = "sha256:9a74102fc5a2534fe91f7507838623e1f3a149d8e05648389c42bb42e14b1c3f" } ,
{ file = "rapidfuzz-3.6.2-cp312-cp312-musllinux_1_1_x86_64.whl" , hash = "sha256:48e1eaea8fcd522fca7f04f0480663f0f0cfb77957092cce60a93f4462864996" } ,
{ file = "rapidfuzz-3.6.2-cp312-cp312-win32.whl" , hash = "sha256:66b008bf2972740cd2dda5d382eb8bdb87265cd88198e71c7797bdc0d1f79d20" } ,
{ file = "rapidfuzz-3.6.2-cp312-cp312-win_amd64.whl" , hash = "sha256:87ac3a87f2251ae2e95fc9478ca5c759de6d141d04c84d3fec9f9cdcfc167b33" } ,
{ file = "rapidfuzz-3.6.2-cp312-cp312-win_arm64.whl" , hash = "sha256:b593cc51aed887e93b78c2f94dfae9008be2b23d17afd3b1f1d3eb3913b58f26" } ,
{ file = "rapidfuzz-3.6.2-cp38-cp38-macosx_10_9_universal2.whl" , hash = "sha256:7d830bc7a9b586a374147ec60b08b1f9ae5996b43f75cc514f37faef3866b519" } ,
{ file = "rapidfuzz-3.6.2-cp38-cp38-macosx_10_9_x86_64.whl" , hash = "sha256:dbee7f5ff11872b76505cbd87c814abc823e8757f11c69062eb3b25130a283da" } ,
{ file = "rapidfuzz-3.6.2-cp38-cp38-macosx_11_0_arm64.whl" , hash = "sha256:28c011fb31f2c3f82f503aedd6097d3d3854e574e327a119a3b7eb2cf90b79ca" } ,
{ file = "rapidfuzz-3.6.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:cda81d0e0ce0c13abfa46b24e10c1e85f9c6acb628f0a9a948f5779f9c2076a2" } ,
{ file = "rapidfuzz-3.6.2-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:4c279928651ce0e9e5220dcb25a00cc53b65e592a0861336a38299bcdca3a596" } ,
{ file = "rapidfuzz-3.6.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:35bd4bc9c40e6994c5d6edea4b9319388b4d9711c13c66d543bb4c37624b4184" } ,
{ file = "rapidfuzz-3.6.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:d07899506a5a8760448d9df036d528b55a554bf571714173635c79eef4a86e58" } ,
{ file = "rapidfuzz-3.6.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:eb2e51d01b9c6d6954a3e055c57a80d4685b4fc82719db5519fc153566bcd6bb" } ,
{ file = "rapidfuzz-3.6.2-cp38-cp38-musllinux_1_1_aarch64.whl" , hash = "sha256:153d065e353371cc0aeff32b99999a5758266a64e958d1364189367c1c9f6814" } ,
{ file = "rapidfuzz-3.6.2-cp38-cp38-musllinux_1_1_i686.whl" , hash = "sha256:4edcceebb85ebfa49a3ddcde20ad891d36c08dc0fd592efdab0e7d313a4e36af" } ,
{ file = "rapidfuzz-3.6.2-cp38-cp38-musllinux_1_1_ppc64le.whl" , hash = "sha256:3549123fca5bb817341025f98e8e49ca99f84596c7c4f92b658f8e5836040d4a" } ,
{ file = "rapidfuzz-3.6.2-cp38-cp38-musllinux_1_1_s390x.whl" , hash = "sha256:84c1032ae42628465b7a5cc35249906061e18a8193c9c27cbd2db54e9823a9a6" } ,
{ file = "rapidfuzz-3.6.2-cp38-cp38-musllinux_1_1_x86_64.whl" , hash = "sha256:9bcc91ebd8fc69a6bd3b5711c8250f5f4e70606b4da75ef415f57ad209978205" } ,
{ file = "rapidfuzz-3.6.2-cp38-cp38-win32.whl" , hash = "sha256:f3a70f341c4c111bad910d2df69c78577a98af140319a996af24c9385939335d" } ,
{ file = "rapidfuzz-3.6.2-cp38-cp38-win_amd64.whl" , hash = "sha256:354ad5fe655beb7b279390cb58334903931c5452ecbad1b1666ffb06786498e2" } ,
{ file = "rapidfuzz-3.6.2-cp39-cp39-macosx_10_9_universal2.whl" , hash = "sha256:1b86b93d93020c2b3edc1665d75c8855784845fc0a739b312c26c3a4bf0c80d5" } ,
{ file = "rapidfuzz-3.6.2-cp39-cp39-macosx_10_9_x86_64.whl" , hash = "sha256:28243086ed0e50808bb56632e5442c457241646aeafafd501ac87901f40a3237" } ,
{ file = "rapidfuzz-3.6.2-cp39-cp39-macosx_11_0_arm64.whl" , hash = "sha256:ed52461ae5a9ea4c400d38e2649c74a413f1a6d8fb8308b66f1fbd122514732f" } ,
{ file = "rapidfuzz-3.6.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:2a46220f86a5f9cb016af31525e0d0865cad437d02239aa0d8aed2ab8bff1f1c" } ,
{ file = "rapidfuzz-3.6.2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:81a630ed2fc3ec5fc7400eb66bab1f87e282b4d47f0abe3e48c6634dfa13b5e4" } ,
{ file = "rapidfuzz-3.6.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:d8e5a437b9089df6242a718d9c31ab1742989e9400a0977af012ef483b63b4c2" } ,
{ file = "rapidfuzz-3.6.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:16270b5529de83b7bae7457e952e4d9cf3fbf029a837dd32d415bb9e0eb8e599" } ,
{ file = "rapidfuzz-3.6.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:5378c04102c7f084cde30a100154fa6d7e2baf0d51a6bdd2f912545559c1fb35" } ,
{ file = "rapidfuzz-3.6.2-cp39-cp39-musllinux_1_1_aarch64.whl" , hash = "sha256:7f18397c8d6a65fc0b288d2fc29bc7baeea6ba91eeb95163a3cd98f23cd3bc85" } ,
{ file = "rapidfuzz-3.6.2-cp39-cp39-musllinux_1_1_i686.whl" , hash = "sha256:2acd2514defce81e6ff4bbff50252d5e7df8e85a731442c4b83e44c86cf1c916" } ,
{ file = "rapidfuzz-3.6.2-cp39-cp39-musllinux_1_1_ppc64le.whl" , hash = "sha256:1df2faf80201952e252413b6fac6f3e146080dcebb87bb1bb722508e67558ed8" } ,
{ file = "rapidfuzz-3.6.2-cp39-cp39-musllinux_1_1_s390x.whl" , hash = "sha256:6440ed0b3007c1c9286b0b88fe2ab2d9e83edd60cd62293b3dfabb732b4e8a30" } ,
{ file = "rapidfuzz-3.6.2-cp39-cp39-musllinux_1_1_x86_64.whl" , hash = "sha256:4fcfa23b5553b27f4016df77c53172ea743454cf12c28cfa7c35a309a2be93b3" } ,
{ file = "rapidfuzz-3.6.2-cp39-cp39-win32.whl" , hash = "sha256:2d580d937146e803c8e5e1b87916cab8d6f84013b6392713e201efcda335c7d8" } ,
{ file = "rapidfuzz-3.6.2-cp39-cp39-win_amd64.whl" , hash = "sha256:fe2a68be734e8e88af23385c68d6467e15818b6b1df1cbfebf7bff577226c957" } ,
{ file = "rapidfuzz-3.6.2-cp39-cp39-win_arm64.whl" , hash = "sha256:6478f7803efebf5f644d0b758439c5b25728550fdfbb19783d150004c46a75a9" } ,
{ file = "rapidfuzz-3.6.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl" , hash = "sha256:36ce7b68a7b90b787cdd73480a68d2f1ca63c31a3a9d5a79a8736f978e1e9344" } ,
{ file = "rapidfuzz-3.6.2-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:53597fd72a9340bcdd80d3620f4957c2b92f9b569313b969a3abdaffd193aae6" } ,
{ file = "rapidfuzz-3.6.2-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:d4f6de745fe6ce46a422d353ee10599013631d7d714a36d025f164b2d4e8c000" } ,
{ file = "rapidfuzz-3.6.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:62df2136068e2515ed8beb01756381ff62c29384d785e3bf46e3111d4ea3ba1e" } ,
{ file = "rapidfuzz-3.6.2-pp38-pypy38_pp73-win_amd64.whl" , hash = "sha256:7382c90170f60c846c81a07ddd80bb2e8c43c8383754486fa37f67391a571897" } ,
{ file = "rapidfuzz-3.6.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl" , hash = "sha256:f31314fd2e2f3dc3e519e6f93669462ce7953df2def1c344aa8f5345976d0eb2" } ,
{ file = "rapidfuzz-3.6.2-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:012221629d54d3bee954148247f711eb86d4d390b589ebfe03172ea0b37a7531" } ,
{ file = "rapidfuzz-3.6.2-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:d41dd59a70decfce6595315367a2fea2af660d92a9d144acc6479030501014d7" } ,
{ file = "rapidfuzz-3.6.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:7f9fa14136a5b0cba1ec42531f7c3e0b0d3edb7fd6bc5e5ae7b498541f3855ab" } ,
{ file = "rapidfuzz-3.6.2-pp39-pypy39_pp73-win_amd64.whl" , hash = "sha256:259364199cbfeca33b1af369fc7951f71717aa285184a3fa5a7b1772da1b89db" } ,
{ file = "rapidfuzz-3.6.2.tar.gz" , hash = "sha256:cf911e792ab0c431694c9bf2648afabfd92099103f2e31492893e078ddca5e1a" } ,
]
[ package . extras ]
full = [ "numpy" ]
[ [ package ] ]
name = "rapidocr-onnxruntime"
version = "1.3.15"
description = "A cross platform OCR Library based on OnnxRuntime."
optional = true
python-versions = ">=3.6,<3.12"
files = [
{ file = "rapidocr_onnxruntime-1.3.15-py3-none-any.whl" , hash = "sha256:8bbe3b91584c825ce9b4c443aedd94e45e57e15e57272933e51bf24387aeeaff" } ,
]
[ package . dependencies ]
numpy = ">=1.19.5"
onnxruntime = ">=1.7.0"
opencv-python = ">=4.5.1.48"
Pillow = "*"
pyclipper = ">=1.2.0"
PyYAML = "*"
Shapely = ">=1.7.1"
six = ">=1.15.0"
[ [ package ] ]
name = "rdflib"
version = "7.0.0"
description = "RDFLib is a Python library for working with RDF, a simple yet powerful language for representing information."
optional = true
python-versions = ">=3.8.1,<4.0.0"
files = [
{ file = "rdflib-7.0.0-py3-none-any.whl" , hash = "sha256:0438920912a642c866a513de6fe8a0001bd86ef975057d6962c79ce4771687cd" } ,
{ file = "rdflib-7.0.0.tar.gz" , hash = "sha256:9995eb8569428059b8c1affd26b25eac510d64f5043d9ce8c84e0d0036e995ae" } ,
]
[ package . dependencies ]
isodate = ">=0.6.0,<0.7.0"
pyparsing = ">=2.1.0,<4"
[ package . extras ]
berkeleydb = [ "berkeleydb (>=18.1.0,<19.0.0)" ]
html = [ "html5lib (>=1.0,<2.0)" ]
lxml = [ "lxml (>=4.3.0,<5.0.0)" ]
networkx = [ "networkx (>=2.0.0,<3.0.0)" ]
2023-12-11 21:53:30 +00:00
[ [ package ] ]
name = "referencing"
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
version = "0.33.0"
2023-12-11 21:53:30 +00:00
description = "JSON Referencing + Python"
optional = false
python-versions = ">=3.8"
files = [
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
{ file = "referencing-0.33.0-py3-none-any.whl" , hash = "sha256:39240f2ecc770258f28b642dd47fd74bc8b02484de54e1882b74b35ebd779bd5" } ,
{ file = "referencing-0.33.0.tar.gz" , hash = "sha256:c775fedf74bc0f9189c2a3be1c12fd03e8c23f4d371dce795df44e06c5b412f7" } ,
2023-12-11 21:53:30 +00:00
]
[ package . dependencies ]
attrs = ">=22.2.0"
rpds-py = ">=0.7.0"
[ [ package ] ]
name = "regex"
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
version = "2023.12.25"
2023-12-11 21:53:30 +00:00
description = "Alternative regular expression module, to replace re."
optional = false
python-versions = ">=3.7"
files = [
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
{ file = "regex-2023.12.25-cp310-cp310-macosx_10_9_universal2.whl" , hash = "sha256:0694219a1d54336fd0445ea382d49d36882415c0134ee1e8332afd1529f0baa5" } ,
{ file = "regex-2023.12.25-cp310-cp310-macosx_10_9_x86_64.whl" , hash = "sha256:b014333bd0217ad3d54c143de9d4b9a3ca1c5a29a6d0d554952ea071cff0f1f8" } ,
{ file = "regex-2023.12.25-cp310-cp310-macosx_11_0_arm64.whl" , hash = "sha256:d865984b3f71f6d0af64d0d88f5733521698f6c16f445bb09ce746c92c97c586" } ,
{ file = "regex-2023.12.25-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:1e0eabac536b4cc7f57a5f3d095bfa557860ab912f25965e08fe1545e2ed8b4c" } ,
{ file = "regex-2023.12.25-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:c25a8ad70e716f96e13a637802813f65d8a6760ef48672aa3502f4c24ea8b400" } ,
{ file = "regex-2023.12.25-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:a9b6d73353f777630626f403b0652055ebfe8ff142a44ec2cf18ae470395766e" } ,
{ file = "regex-2023.12.25-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:a9cc99d6946d750eb75827cb53c4371b8b0fe89c733a94b1573c9dd16ea6c9e4" } ,
{ file = "regex-2023.12.25-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:88d1f7bef20c721359d8675f7d9f8e414ec5003d8f642fdfd8087777ff7f94b5" } ,
{ file = "regex-2023.12.25-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl" , hash = "sha256:cb3fe77aec8f1995611f966d0c656fdce398317f850d0e6e7aebdfe61f40e1cd" } ,
{ file = "regex-2023.12.25-cp310-cp310-musllinux_1_1_aarch64.whl" , hash = "sha256:7aa47c2e9ea33a4a2a05f40fcd3ea36d73853a2aae7b4feab6fc85f8bf2c9704" } ,
{ file = "regex-2023.12.25-cp310-cp310-musllinux_1_1_i686.whl" , hash = "sha256:df26481f0c7a3f8739fecb3e81bc9da3fcfae34d6c094563b9d4670b047312e1" } ,
{ file = "regex-2023.12.25-cp310-cp310-musllinux_1_1_ppc64le.whl" , hash = "sha256:c40281f7d70baf6e0db0c2f7472b31609f5bc2748fe7275ea65a0b4601d9b392" } ,
{ file = "regex-2023.12.25-cp310-cp310-musllinux_1_1_s390x.whl" , hash = "sha256:d94a1db462d5690ebf6ae86d11c5e420042b9898af5dcf278bd97d6bda065423" } ,
{ file = "regex-2023.12.25-cp310-cp310-musllinux_1_1_x86_64.whl" , hash = "sha256:ba1b30765a55acf15dce3f364e4928b80858fa8f979ad41f862358939bdd1f2f" } ,
{ file = "regex-2023.12.25-cp310-cp310-win32.whl" , hash = "sha256:150c39f5b964e4d7dba46a7962a088fbc91f06e606f023ce57bb347a3b2d4630" } ,
{ file = "regex-2023.12.25-cp310-cp310-win_amd64.whl" , hash = "sha256:09da66917262d9481c719599116c7dc0c321ffcec4b1f510c4f8a066f8768105" } ,
{ file = "regex-2023.12.25-cp311-cp311-macosx_10_9_universal2.whl" , hash = "sha256:1b9d811f72210fa9306aeb88385b8f8bcef0dfbf3873410413c00aa94c56c2b6" } ,
{ file = "regex-2023.12.25-cp311-cp311-macosx_10_9_x86_64.whl" , hash = "sha256:d902a43085a308cef32c0d3aea962524b725403fd9373dea18110904003bac97" } ,
{ file = "regex-2023.12.25-cp311-cp311-macosx_11_0_arm64.whl" , hash = "sha256:d166eafc19f4718df38887b2bbe1467a4f74a9830e8605089ea7a30dd4da8887" } ,
{ file = "regex-2023.12.25-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:c7ad32824b7f02bb3c9f80306d405a1d9b7bb89362d68b3c5a9be53836caebdb" } ,
{ file = "regex-2023.12.25-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:636ba0a77de609d6510235b7f0e77ec494d2657108f777e8765efc060094c98c" } ,
{ file = "regex-2023.12.25-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:0fda75704357805eb953a3ee15a2b240694a9a514548cd49b3c5124b4e2ad01b" } ,
{ file = "regex-2023.12.25-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:f72cbae7f6b01591f90814250e636065850c5926751af02bb48da94dfced7baa" } ,
{ file = "regex-2023.12.25-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:db2a0b1857f18b11e3b0e54ddfefc96af46b0896fb678c85f63fb8c37518b3e7" } ,
{ file = "regex-2023.12.25-cp311-cp311-musllinux_1_1_aarch64.whl" , hash = "sha256:7502534e55c7c36c0978c91ba6f61703faf7ce733715ca48f499d3dbbd7657e0" } ,
{ file = "regex-2023.12.25-cp311-cp311-musllinux_1_1_i686.whl" , hash = "sha256:e8c7e08bb566de4faaf11984af13f6bcf6a08f327b13631d41d62592681d24fe" } ,
{ file = "regex-2023.12.25-cp311-cp311-musllinux_1_1_ppc64le.whl" , hash = "sha256:283fc8eed679758de38fe493b7d7d84a198b558942b03f017b1f94dda8efae80" } ,
{ file = "regex-2023.12.25-cp311-cp311-musllinux_1_1_s390x.whl" , hash = "sha256:f44dd4d68697559d007462b0a3a1d9acd61d97072b71f6d1968daef26bc744bd" } ,
{ file = "regex-2023.12.25-cp311-cp311-musllinux_1_1_x86_64.whl" , hash = "sha256:67d3ccfc590e5e7197750fcb3a2915b416a53e2de847a728cfa60141054123d4" } ,
{ file = "regex-2023.12.25-cp311-cp311-win32.whl" , hash = "sha256:68191f80a9bad283432385961d9efe09d783bcd36ed35a60fb1ff3f1ec2efe87" } ,
{ file = "regex-2023.12.25-cp311-cp311-win_amd64.whl" , hash = "sha256:7d2af3f6b8419661a0c421584cfe8aaec1c0e435ce7e47ee2a97e344b98f794f" } ,
{ file = "regex-2023.12.25-cp312-cp312-macosx_10_9_universal2.whl" , hash = "sha256:8a0ccf52bb37d1a700375a6b395bff5dd15c50acb745f7db30415bae3c2b0715" } ,
{ file = "regex-2023.12.25-cp312-cp312-macosx_10_9_x86_64.whl" , hash = "sha256:c3c4a78615b7762740531c27cf46e2f388d8d727d0c0c739e72048beb26c8a9d" } ,
{ file = "regex-2023.12.25-cp312-cp312-macosx_11_0_arm64.whl" , hash = "sha256:ad83e7545b4ab69216cef4cc47e344d19622e28aabec61574b20257c65466d6a" } ,
{ file = "regex-2023.12.25-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:b7a635871143661feccce3979e1727c4e094f2bdfd3ec4b90dfd4f16f571a87a" } ,
{ file = "regex-2023.12.25-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:d498eea3f581fbe1b34b59c697512a8baef88212f92e4c7830fcc1499f5b45a5" } ,
{ file = "regex-2023.12.25-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:43f7cd5754d02a56ae4ebb91b33461dc67be8e3e0153f593c509e21d219c5060" } ,
{ file = "regex-2023.12.25-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:51f4b32f793812714fd5307222a7f77e739b9bc566dc94a18126aba3b92b98a3" } ,
{ file = "regex-2023.12.25-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:ba99d8077424501b9616b43a2d208095746fb1284fc5ba490139651f971d39d9" } ,
{ file = "regex-2023.12.25-cp312-cp312-musllinux_1_1_aarch64.whl" , hash = "sha256:4bfc2b16e3ba8850e0e262467275dd4d62f0d045e0e9eda2bc65078c0110a11f" } ,
{ file = "regex-2023.12.25-cp312-cp312-musllinux_1_1_i686.whl" , hash = "sha256:8c2c19dae8a3eb0ea45a8448356ed561be843b13cbc34b840922ddf565498c1c" } ,
{ file = "regex-2023.12.25-cp312-cp312-musllinux_1_1_ppc64le.whl" , hash = "sha256:60080bb3d8617d96f0fb7e19796384cc2467447ef1c491694850ebd3670bc457" } ,
{ file = "regex-2023.12.25-cp312-cp312-musllinux_1_1_s390x.whl" , hash = "sha256:b77e27b79448e34c2c51c09836033056a0547aa360c45eeeb67803da7b0eedaf" } ,
{ file = "regex-2023.12.25-cp312-cp312-musllinux_1_1_x86_64.whl" , hash = "sha256:518440c991f514331f4850a63560321f833979d145d7d81186dbe2f19e27ae3d" } ,
{ file = "regex-2023.12.25-cp312-cp312-win32.whl" , hash = "sha256:e2610e9406d3b0073636a3a2e80db05a02f0c3169b5632022b4e81c0364bcda5" } ,
{ file = "regex-2023.12.25-cp312-cp312-win_amd64.whl" , hash = "sha256:cc37b9aeebab425f11f27e5e9e6cf580be7206c6582a64467a14dda211abc232" } ,
{ file = "regex-2023.12.25-cp37-cp37m-macosx_10_9_x86_64.whl" , hash = "sha256:da695d75ac97cb1cd725adac136d25ca687da4536154cdc2815f576e4da11c69" } ,
{ file = "regex-2023.12.25-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:d126361607b33c4eb7b36debc173bf25d7805847346dd4d99b5499e1fef52bc7" } ,
{ file = "regex-2023.12.25-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:4719bb05094d7d8563a450cf8738d2e1061420f79cfcc1fa7f0a44744c4d8f73" } ,
{ file = "regex-2023.12.25-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:5dd58946bce44b53b06d94aa95560d0b243eb2fe64227cba50017a8d8b3cd3e2" } ,
{ file = "regex-2023.12.25-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:22a86d9fff2009302c440b9d799ef2fe322416d2d58fc124b926aa89365ec482" } ,
{ file = "regex-2023.12.25-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:2aae8101919e8aa05ecfe6322b278f41ce2994c4a430303c4cd163fef746e04f" } ,
{ file = "regex-2023.12.25-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl" , hash = "sha256:e692296c4cc2873967771345a876bcfc1c547e8dd695c6b89342488b0ea55cd8" } ,
{ file = "regex-2023.12.25-cp37-cp37m-musllinux_1_1_aarch64.whl" , hash = "sha256:263ef5cc10979837f243950637fffb06e8daed7f1ac1e39d5910fd29929e489a" } ,
{ file = "regex-2023.12.25-cp37-cp37m-musllinux_1_1_i686.whl" , hash = "sha256:d6f7e255e5fa94642a0724e35406e6cb7001c09d476ab5fce002f652b36d0c39" } ,
{ file = "regex-2023.12.25-cp37-cp37m-musllinux_1_1_ppc64le.whl" , hash = "sha256:88ad44e220e22b63b0f8f81f007e8abbb92874d8ced66f32571ef8beb0643b2b" } ,
{ file = "regex-2023.12.25-cp37-cp37m-musllinux_1_1_s390x.whl" , hash = "sha256:3a17d3ede18f9cedcbe23d2daa8a2cd6f59fe2bf082c567e43083bba3fb00347" } ,
{ file = "regex-2023.12.25-cp37-cp37m-musllinux_1_1_x86_64.whl" , hash = "sha256:d15b274f9e15b1a0b7a45d2ac86d1f634d983ca40d6b886721626c47a400bf39" } ,
{ file = "regex-2023.12.25-cp37-cp37m-win32.whl" , hash = "sha256:ed19b3a05ae0c97dd8f75a5d8f21f7723a8c33bbc555da6bbe1f96c470139d3c" } ,
{ file = "regex-2023.12.25-cp37-cp37m-win_amd64.whl" , hash = "sha256:a6d1047952c0b8104a1d371f88f4ab62e6275567d4458c1e26e9627ad489b445" } ,
{ file = "regex-2023.12.25-cp38-cp38-macosx_10_9_universal2.whl" , hash = "sha256:b43523d7bc2abd757119dbfb38af91b5735eea45537ec6ec3a5ec3f9562a1c53" } ,
{ file = "regex-2023.12.25-cp38-cp38-macosx_10_9_x86_64.whl" , hash = "sha256:efb2d82f33b2212898f1659fb1c2e9ac30493ac41e4d53123da374c3b5541e64" } ,
{ file = "regex-2023.12.25-cp38-cp38-macosx_11_0_arm64.whl" , hash = "sha256:b7fca9205b59c1a3d5031f7e64ed627a1074730a51c2a80e97653e3e9fa0d415" } ,
{ file = "regex-2023.12.25-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:086dd15e9435b393ae06f96ab69ab2d333f5d65cbe65ca5a3ef0ec9564dfe770" } ,
{ file = "regex-2023.12.25-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:e81469f7d01efed9b53740aedd26085f20d49da65f9c1f41e822a33992cb1590" } ,
{ file = "regex-2023.12.25-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:34e4af5b27232f68042aa40a91c3b9bb4da0eeb31b7632e0091afc4310afe6cb" } ,
{ file = "regex-2023.12.25-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:9852b76ab558e45b20bf1893b59af64a28bd3820b0c2efc80e0a70a4a3ea51c1" } ,
{ file = "regex-2023.12.25-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:ff100b203092af77d1a5a7abe085b3506b7eaaf9abf65b73b7d6905b6cb76988" } ,
{ file = "regex-2023.12.25-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl" , hash = "sha256:cc038b2d8b1470364b1888a98fd22d616fba2b6309c5b5f181ad4483e0017861" } ,
{ file = "regex-2023.12.25-cp38-cp38-musllinux_1_1_aarch64.whl" , hash = "sha256:094ba386bb5c01e54e14434d4caabf6583334090865b23ef58e0424a6286d3dc" } ,
{ file = "regex-2023.12.25-cp38-cp38-musllinux_1_1_i686.whl" , hash = "sha256:5cd05d0f57846d8ba4b71d9c00f6f37d6b97d5e5ef8b3c3840426a475c8f70f4" } ,
{ file = "regex-2023.12.25-cp38-cp38-musllinux_1_1_ppc64le.whl" , hash = "sha256:9aa1a67bbf0f957bbe096375887b2505f5d8ae16bf04488e8b0f334c36e31360" } ,
{ file = "regex-2023.12.25-cp38-cp38-musllinux_1_1_s390x.whl" , hash = "sha256:98a2636994f943b871786c9e82bfe7883ecdaba2ef5df54e1450fa9869d1f756" } ,
{ file = "regex-2023.12.25-cp38-cp38-musllinux_1_1_x86_64.whl" , hash = "sha256:37f8e93a81fc5e5bd8db7e10e62dc64261bcd88f8d7e6640aaebe9bc180d9ce2" } ,
{ file = "regex-2023.12.25-cp38-cp38-win32.whl" , hash = "sha256:d78bd484930c1da2b9679290a41cdb25cc127d783768a0369d6b449e72f88beb" } ,
{ file = "regex-2023.12.25-cp38-cp38-win_amd64.whl" , hash = "sha256:b521dcecebc5b978b447f0f69b5b7f3840eac454862270406a39837ffae4e697" } ,
{ file = "regex-2023.12.25-cp39-cp39-macosx_10_9_universal2.whl" , hash = "sha256:f7bc09bc9c29ebead055bcba136a67378f03d66bf359e87d0f7c759d6d4ffa31" } ,
{ file = "regex-2023.12.25-cp39-cp39-macosx_10_9_x86_64.whl" , hash = "sha256:e14b73607d6231f3cc4622809c196b540a6a44e903bcfad940779c80dffa7be7" } ,
{ file = "regex-2023.12.25-cp39-cp39-macosx_11_0_arm64.whl" , hash = "sha256:9eda5f7a50141291beda3edd00abc2d4a5b16c29c92daf8d5bd76934150f3edc" } ,
{ file = "regex-2023.12.25-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:cc6bb9aa69aacf0f6032c307da718f61a40cf970849e471254e0e91c56ffca95" } ,
{ file = "regex-2023.12.25-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:298dc6354d414bc921581be85695d18912bea163a8b23cac9a2562bbcd5088b1" } ,
{ file = "regex-2023.12.25-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:2f4e475a80ecbd15896a976aa0b386c5525d0ed34d5c600b6d3ebac0a67c7ddf" } ,
{ file = "regex-2023.12.25-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:531ac6cf22b53e0696f8e1d56ce2396311254eb806111ddd3922c9d937151dae" } ,
{ file = "regex-2023.12.25-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:22f3470f7524b6da61e2020672df2f3063676aff444db1daa283c2ea4ed259d6" } ,
{ file = "regex-2023.12.25-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl" , hash = "sha256:89723d2112697feaa320c9d351e5f5e7b841e83f8b143dba8e2d2b5f04e10923" } ,
{ file = "regex-2023.12.25-cp39-cp39-musllinux_1_1_aarch64.whl" , hash = "sha256:0ecf44ddf9171cd7566ef1768047f6e66975788258b1c6c6ca78098b95cf9a3d" } ,
{ file = "regex-2023.12.25-cp39-cp39-musllinux_1_1_i686.whl" , hash = "sha256:905466ad1702ed4acfd67a902af50b8db1feeb9781436372261808df7a2a7bca" } ,
{ file = "regex-2023.12.25-cp39-cp39-musllinux_1_1_ppc64le.whl" , hash = "sha256:4558410b7a5607a645e9804a3e9dd509af12fb72b9825b13791a37cd417d73a5" } ,
{ file = "regex-2023.12.25-cp39-cp39-musllinux_1_1_s390x.whl" , hash = "sha256:7e316026cc1095f2a3e8cc012822c99f413b702eaa2ca5408a513609488cb62f" } ,
{ file = "regex-2023.12.25-cp39-cp39-musllinux_1_1_x86_64.whl" , hash = "sha256:3b1de218d5375cd6ac4b5493e0b9f3df2be331e86520f23382f216c137913d20" } ,
{ file = "regex-2023.12.25-cp39-cp39-win32.whl" , hash = "sha256:11a963f8e25ab5c61348d090bf1b07f1953929c13bd2309a0662e9ff680763c9" } ,
{ file = "regex-2023.12.25-cp39-cp39-win_amd64.whl" , hash = "sha256:e693e233ac92ba83a87024e1d32b5f9ab15ca55ddd916d878146f4e3406b5c91" } ,
{ file = "regex-2023.12.25.tar.gz" , hash = "sha256:29171aa128da69afdf4bde412d5bedc335f2ca8fcfe4489038577d05f16181e5" } ,
2023-12-11 21:53:30 +00:00
]
[ [ package ] ]
name = "requests"
version = "2.31.0"
description = "Python HTTP for Humans."
optional = false
python-versions = ">=3.7"
files = [
{ file = "requests-2.31.0-py3-none-any.whl" , hash = "sha256:58cd2187c01e70e6e26505bca751777aa9f2ee0b7f4300988b709f44e013003f" } ,
{ file = "requests-2.31.0.tar.gz" , hash = "sha256:942c5a758f98d790eaed1a29cb6eefc7ffb0d1cf7af05c3d2791656dbd6ad1e1" } ,
]
[ package . dependencies ]
certifi = ">=2017.4.17"
charset-normalizer = ">=2,<4"
idna = ">=2.5,<4"
urllib3 = ">=1.21.1,<3"
[ package . extras ]
socks = [ "PySocks (>=1.5.6,!=1.5.7)" ]
use-chardet-on-py3 = [ "chardet (>=3.0.2,<6)" ]
2024-03-15 17:10:47 +00:00
[ [ package ] ]
name = "requests-file"
version = "2.0.0"
description = "File transport adapter for Requests"
optional = true
python-versions = "*"
files = [
{ file = "requests-file-2.0.0.tar.gz" , hash = "sha256:20c5931629c558fda566cacc10cfe2cd502433e628f568c34c80d96a0cc95972" } ,
{ file = "requests_file-2.0.0-py2.py3-none-any.whl" , hash = "sha256:3e493d390adb44aa102ebea827a48717336d5268968c370eaf19abaf5cae13bf" } ,
]
[ package . dependencies ]
requests = ">=1.0.0"
2023-12-11 21:53:30 +00:00
[ [ package ] ]
name = "requests-mock"
version = "1.11.0"
description = "Mock out responses from the requests package"
optional = false
python-versions = "*"
files = [
{ file = "requests-mock-1.11.0.tar.gz" , hash = "sha256:ef10b572b489a5f28e09b708697208c4a3b2b89ef80a9f01584340ea357ec3c4" } ,
{ file = "requests_mock-1.11.0-py2.py3-none-any.whl" , hash = "sha256:f7fae383f228633f6bececebdab236c478ace2284d6292c6e7e2867b9ab74d15" } ,
]
[ package . dependencies ]
requests = ">=2.3,<3"
six = "*"
[ package . extras ]
fixture = [ "fixtures" ]
test = [ "fixtures" , "mock" , "purl" , "pytest" , "requests-futures" , "sphinx" , "testtools" ]
2024-03-15 17:10:47 +00:00
[ [ package ] ]
name = "requests-oauthlib"
version = "1.4.0"
description = "OAuthlib authentication support for Requests."
optional = true
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*"
files = [
{ file = "requests-oauthlib-1.4.0.tar.gz" , hash = "sha256:acee623221e4a39abcbb919312c8ff04bd44e7e417087fb4bd5e2a2f53d5e79a" } ,
{ file = "requests_oauthlib-1.4.0-py2.py3-none-any.whl" , hash = "sha256:7a3130d94a17520169e38db6c8d75f2c974643788465ecc2e4b36d288bf13033" } ,
]
[ package . dependencies ]
oauthlib = ">=3.0.0"
requests = ">=2.0.0"
[ package . extras ]
rsa = [ "oauthlib[signedtoken] (>=3.0.0)" ]
[ [ package ] ]
name = "requests-toolbelt"
version = "1.0.0"
description = "A utility belt for advanced users of python-requests"
optional = true
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*"
files = [
{ file = "requests-toolbelt-1.0.0.tar.gz" , hash = "sha256:7681a0a3d047012b5bdc0ee37d7f8f07ebe76ab08caeccfc3921ce23c88d5bc6" } ,
{ file = "requests_toolbelt-1.0.0-py2.py3-none-any.whl" , hash = "sha256:cccfdd665f0a24fcf4726e690f65639d272bb0637b9b92dfd91a5568ccf6bd06" } ,
]
[ package . dependencies ]
requests = ">=2.0.1,<3.0.0"
2023-12-11 21:53:30 +00:00
[ [ package ] ]
name = "responses"
version = "0.22.0"
description = "A utility library for mocking out the `requests` Python library."
optional = false
python-versions = ">=3.7"
files = [
{ file = "responses-0.22.0-py3-none-any.whl" , hash = "sha256:dcf294d204d14c436fddcc74caefdbc5764795a40ff4e6a7740ed8ddbf3294be" } ,
{ file = "responses-0.22.0.tar.gz" , hash = "sha256:396acb2a13d25297789a5866b4881cf4e46ffd49cc26c43ab1117f40b973102e" } ,
]
[ package . dependencies ]
requests = ">=2.22.0,<3.0"
toml = "*"
types-toml = "*"
urllib3 = ">=1.25.10"
[ package . extras ]
tests = [ "coverage (>=6.0.0)" , "flake8" , "mypy" , "pytest (>=7.0.0)" , "pytest-asyncio" , "pytest-cov" , "pytest-httpserver" , "types-requests" ]
[ [ package ] ]
name = "rfc3339-validator"
version = "0.1.4"
description = "A pure python RFC3339 validator"
optional = false
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*"
files = [
{ file = "rfc3339_validator-0.1.4-py2.py3-none-any.whl" , hash = "sha256:24f6ec1eda14ef823da9e36ec7113124b39c04d50a4d3d3a3c2859577e7791fa" } ,
{ file = "rfc3339_validator-0.1.4.tar.gz" , hash = "sha256:138a2abdf93304ad60530167e51d2dfb9549521a836871b88d7f4695d0022f6b" } ,
]
[ package . dependencies ]
six = "*"
[ [ package ] ]
name = "rfc3986-validator"
version = "0.1.1"
description = "Pure python rfc3986 validator"
optional = false
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*"
files = [
{ file = "rfc3986_validator-0.1.1-py2.py3-none-any.whl" , hash = "sha256:2f235c432ef459970b4306369336b9d5dbdda31b510ca1e327636e01f528bfa9" } ,
{ file = "rfc3986_validator-0.1.1.tar.gz" , hash = "sha256:3d44bde7921b3b9ec3ae4e3adca370438eccebc676456449b145d533b240d055" } ,
]
2024-03-15 17:10:47 +00:00
[ [ package ] ]
name = "rich"
version = "12.6.0"
description = "Render rich text, tables, progress bars, syntax highlighting, markdown and more to the terminal"
optional = true
python-versions = ">=3.6.3,<4.0.0"
files = [
{ file = "rich-12.6.0-py3-none-any.whl" , hash = "sha256:a4eb26484f2c82589bd9a17c73d32a010b1e29d89f1604cd9bf3a2097b81bb5e" } ,
{ file = "rich-12.6.0.tar.gz" , hash = "sha256:ba3a3775974105c221d31141f2c116f4fd65c5ceb0698657a11e9f295ec93fd0" } ,
]
[ package . dependencies ]
commonmark = ">=0.9.0,<0.10.0"
pygments = ">=2.6.0,<3.0.0"
typing-extensions = { version = ">=4.0.0,<5.0" , markers = "python_version < \"3.9\"" }
[ package . extras ]
jupyter = [ "ipywidgets (>=7.5.1,<8.0.0)" ]
2023-12-11 21:53:30 +00:00
[ [ package ] ]
name = "rpds-py"
2024-03-08 02:20:47 +00:00
version = "0.18.0"
2023-12-11 21:53:30 +00:00
description = "Python bindings to Rust's persistent data structures (rpds)"
optional = false
python-versions = ">=3.8"
files = [
2024-03-08 02:20:47 +00:00
{ file = "rpds_py-0.18.0-cp310-cp310-macosx_10_12_x86_64.whl" , hash = "sha256:5b4e7d8d6c9b2e8ee2d55c90b59c707ca59bc30058269b3db7b1f8df5763557e" } ,
{ file = "rpds_py-0.18.0-cp310-cp310-macosx_11_0_arm64.whl" , hash = "sha256:c463ed05f9dfb9baebef68048aed8dcdc94411e4bf3d33a39ba97e271624f8f7" } ,
{ file = "rpds_py-0.18.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:01e36a39af54a30f28b73096dd39b6802eddd04c90dbe161c1b8dbe22353189f" } ,
{ file = "rpds_py-0.18.0-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl" , hash = "sha256:d62dec4976954a23d7f91f2f4530852b0c7608116c257833922a896101336c51" } ,
{ file = "rpds_py-0.18.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:dd18772815d5f008fa03d2b9a681ae38d5ae9f0e599f7dda233c439fcaa00d40" } ,
{ file = "rpds_py-0.18.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:923d39efa3cfb7279a0327e337a7958bff00cc447fd07a25cddb0a1cc9a6d2da" } ,
{ file = "rpds_py-0.18.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:39514da80f971362f9267c600b6d459bfbbc549cffc2cef8e47474fddc9b45b1" } ,
{ file = "rpds_py-0.18.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl" , hash = "sha256:a34d557a42aa28bd5c48a023c570219ba2593bcbbb8dc1b98d8cf5d529ab1434" } ,
{ file = "rpds_py-0.18.0-cp310-cp310-musllinux_1_2_aarch64.whl" , hash = "sha256:93df1de2f7f7239dc9cc5a4a12408ee1598725036bd2dedadc14d94525192fc3" } ,
{ file = "rpds_py-0.18.0-cp310-cp310-musllinux_1_2_i686.whl" , hash = "sha256:34b18ba135c687f4dac449aa5157d36e2cbb7c03cbea4ddbd88604e076aa836e" } ,
{ file = "rpds_py-0.18.0-cp310-cp310-musllinux_1_2_x86_64.whl" , hash = "sha256:c0b5dcf9193625afd8ecc92312d6ed78781c46ecbf39af9ad4681fc9f464af88" } ,
{ file = "rpds_py-0.18.0-cp310-none-win32.whl" , hash = "sha256:c4325ff0442a12113a6379af66978c3fe562f846763287ef66bdc1d57925d337" } ,
{ file = "rpds_py-0.18.0-cp310-none-win_amd64.whl" , hash = "sha256:7223a2a5fe0d217e60a60cdae28d6949140dde9c3bcc714063c5b463065e3d66" } ,
{ file = "rpds_py-0.18.0-cp311-cp311-macosx_10_12_x86_64.whl" , hash = "sha256:3a96e0c6a41dcdba3a0a581bbf6c44bb863f27c541547fb4b9711fd8cf0ffad4" } ,
{ file = "rpds_py-0.18.0-cp311-cp311-macosx_11_0_arm64.whl" , hash = "sha256:30f43887bbae0d49113cbaab729a112251a940e9b274536613097ab8b4899cf6" } ,
{ file = "rpds_py-0.18.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:fcb25daa9219b4cf3a0ab24b0eb9a5cc8949ed4dc72acb8fa16b7e1681aa3c58" } ,
{ file = "rpds_py-0.18.0-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl" , hash = "sha256:d68c93e381010662ab873fea609bf6c0f428b6d0bb00f2c6939782e0818d37bf" } ,
{ file = "rpds_py-0.18.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:b34b7aa8b261c1dbf7720b5d6f01f38243e9b9daf7e6b8bc1fd4657000062f2c" } ,
{ file = "rpds_py-0.18.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:2e6d75ab12b0bbab7215e5d40f1e5b738aa539598db27ef83b2ec46747df90e1" } ,
{ file = "rpds_py-0.18.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:0b8612cd233543a3781bc659c731b9d607de65890085098986dfd573fc2befe5" } ,
{ file = "rpds_py-0.18.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl" , hash = "sha256:aec493917dd45e3c69d00a8874e7cbed844efd935595ef78a0f25f14312e33c6" } ,
{ file = "rpds_py-0.18.0-cp311-cp311-musllinux_1_2_aarch64.whl" , hash = "sha256:661d25cbffaf8cc42e971dd570d87cb29a665f49f4abe1f9e76be9a5182c4688" } ,
{ file = "rpds_py-0.18.0-cp311-cp311-musllinux_1_2_i686.whl" , hash = "sha256:1df3659d26f539ac74fb3b0c481cdf9d725386e3552c6fa2974f4d33d78e544b" } ,
{ file = "rpds_py-0.18.0-cp311-cp311-musllinux_1_2_x86_64.whl" , hash = "sha256:a1ce3ba137ed54f83e56fb983a5859a27d43a40188ba798993812fed73c70836" } ,
{ file = "rpds_py-0.18.0-cp311-none-win32.whl" , hash = "sha256:69e64831e22a6b377772e7fb337533c365085b31619005802a79242fee620bc1" } ,
{ file = "rpds_py-0.18.0-cp311-none-win_amd64.whl" , hash = "sha256:998e33ad22dc7ec7e030b3df701c43630b5bc0d8fbc2267653577e3fec279afa" } ,
{ file = "rpds_py-0.18.0-cp312-cp312-macosx_10_12_x86_64.whl" , hash = "sha256:7f2facbd386dd60cbbf1a794181e6aa0bd429bd78bfdf775436020172e2a23f0" } ,
{ file = "rpds_py-0.18.0-cp312-cp312-macosx_11_0_arm64.whl" , hash = "sha256:1d9a5be316c15ffb2b3c405c4ff14448c36b4435be062a7f578ccd8b01f0c4d8" } ,
{ file = "rpds_py-0.18.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:cd5bf1af8efe569654bbef5a3e0a56eca45f87cfcffab31dd8dde70da5982475" } ,
{ file = "rpds_py-0.18.0-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl" , hash = "sha256:5417558f6887e9b6b65b4527232553c139b57ec42c64570569b155262ac0754f" } ,
{ file = "rpds_py-0.18.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:56a737287efecafc16f6d067c2ea0117abadcd078d58721f967952db329a3e5c" } ,
{ file = "rpds_py-0.18.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:8f03bccbd8586e9dd37219bce4d4e0d3ab492e6b3b533e973fa08a112cb2ffc9" } ,
{ file = "rpds_py-0.18.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:4457a94da0d5c53dc4b3e4de1158bdab077db23c53232f37a3cb7afdb053a4e3" } ,
{ file = "rpds_py-0.18.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl" , hash = "sha256:0ab39c1ba9023914297dd88ec3b3b3c3f33671baeb6acf82ad7ce883f6e8e157" } ,
{ file = "rpds_py-0.18.0-cp312-cp312-musllinux_1_2_aarch64.whl" , hash = "sha256:9d54553c1136b50fd12cc17e5b11ad07374c316df307e4cfd6441bea5fb68496" } ,
{ file = "rpds_py-0.18.0-cp312-cp312-musllinux_1_2_i686.whl" , hash = "sha256:0af039631b6de0397ab2ba16eaf2872e9f8fca391b44d3d8cac317860a700a3f" } ,
{ file = "rpds_py-0.18.0-cp312-cp312-musllinux_1_2_x86_64.whl" , hash = "sha256:84ffab12db93b5f6bad84c712c92060a2d321b35c3c9960b43d08d0f639d60d7" } ,
{ file = "rpds_py-0.18.0-cp312-none-win32.whl" , hash = "sha256:685537e07897f173abcf67258bee3c05c374fa6fff89d4c7e42fb391b0605e98" } ,
{ file = "rpds_py-0.18.0-cp312-none-win_amd64.whl" , hash = "sha256:e003b002ec72c8d5a3e3da2989c7d6065b47d9eaa70cd8808b5384fbb970f4ec" } ,
{ file = "rpds_py-0.18.0-cp38-cp38-macosx_10_12_x86_64.whl" , hash = "sha256:08f9ad53c3f31dfb4baa00da22f1e862900f45908383c062c27628754af2e88e" } ,
{ file = "rpds_py-0.18.0-cp38-cp38-macosx_11_0_arm64.whl" , hash = "sha256:c0013fe6b46aa496a6749c77e00a3eb07952832ad6166bd481c74bda0dcb6d58" } ,
{ file = "rpds_py-0.18.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:e32a92116d4f2a80b629778280103d2a510a5b3f6314ceccd6e38006b5e92dcb" } ,
{ file = "rpds_py-0.18.0-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl" , hash = "sha256:e541ec6f2ec456934fd279a3120f856cd0aedd209fc3852eca563f81738f6861" } ,
{ file = "rpds_py-0.18.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:bed88b9a458e354014d662d47e7a5baafd7ff81c780fd91584a10d6ec842cb73" } ,
{ file = "rpds_py-0.18.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:2644e47de560eb7bd55c20fc59f6daa04682655c58d08185a9b95c1970fa1e07" } ,
{ file = "rpds_py-0.18.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:8e8916ae4c720529e18afa0b879473049e95949bf97042e938530e072fde061d" } ,
{ file = "rpds_py-0.18.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl" , hash = "sha256:465a3eb5659338cf2a9243e50ad9b2296fa15061736d6e26240e713522b6235c" } ,
{ file = "rpds_py-0.18.0-cp38-cp38-musllinux_1_2_aarch64.whl" , hash = "sha256:ea7d4a99f3b38c37eac212dbd6ec42b7a5ec51e2c74b5d3223e43c811609e65f" } ,
{ file = "rpds_py-0.18.0-cp38-cp38-musllinux_1_2_i686.whl" , hash = "sha256:67071a6171e92b6da534b8ae326505f7c18022c6f19072a81dcf40db2638767c" } ,
{ file = "rpds_py-0.18.0-cp38-cp38-musllinux_1_2_x86_64.whl" , hash = "sha256:41ef53e7c58aa4ef281da975f62c258950f54b76ec8e45941e93a3d1d8580594" } ,
{ file = "rpds_py-0.18.0-cp38-none-win32.whl" , hash = "sha256:fdea4952db2793c4ad0bdccd27c1d8fdd1423a92f04598bc39425bcc2b8ee46e" } ,
{ file = "rpds_py-0.18.0-cp38-none-win_amd64.whl" , hash = "sha256:7cd863afe7336c62ec78d7d1349a2f34c007a3cc6c2369d667c65aeec412a5b1" } ,
{ file = "rpds_py-0.18.0-cp39-cp39-macosx_10_12_x86_64.whl" , hash = "sha256:5307def11a35f5ae4581a0b658b0af8178c65c530e94893345bebf41cc139d33" } ,
{ file = "rpds_py-0.18.0-cp39-cp39-macosx_11_0_arm64.whl" , hash = "sha256:77f195baa60a54ef9d2de16fbbfd3ff8b04edc0c0140a761b56c267ac11aa467" } ,
{ file = "rpds_py-0.18.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:39f5441553f1c2aed4de4377178ad8ff8f9d733723d6c66d983d75341de265ab" } ,
{ file = "rpds_py-0.18.0-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl" , hash = "sha256:9a00312dea9310d4cb7dbd7787e722d2e86a95c2db92fbd7d0155f97127bcb40" } ,
{ file = "rpds_py-0.18.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:8f2fc11e8fe034ee3c34d316d0ad8808f45bc3b9ce5857ff29d513f3ff2923a1" } ,
{ file = "rpds_py-0.18.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:586f8204935b9ec884500498ccc91aa869fc652c40c093bd9e1471fbcc25c022" } ,
{ file = "rpds_py-0.18.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:ddc2f4dfd396c7bfa18e6ce371cba60e4cf9d2e5cdb71376aa2da264605b60b9" } ,
{ file = "rpds_py-0.18.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl" , hash = "sha256:5ddcba87675b6d509139d1b521e0c8250e967e63b5909a7e8f8944d0f90ff36f" } ,
{ file = "rpds_py-0.18.0-cp39-cp39-musllinux_1_2_aarch64.whl" , hash = "sha256:7bd339195d84439cbe5771546fe8a4e8a7a045417d8f9de9a368c434e42a721e" } ,
{ file = "rpds_py-0.18.0-cp39-cp39-musllinux_1_2_i686.whl" , hash = "sha256:d7c36232a90d4755b720fbd76739d8891732b18cf240a9c645d75f00639a9024" } ,
{ file = "rpds_py-0.18.0-cp39-cp39-musllinux_1_2_x86_64.whl" , hash = "sha256:6b0817e34942b2ca527b0e9298373e7cc75f429e8da2055607f4931fded23e20" } ,
{ file = "rpds_py-0.18.0-cp39-none-win32.whl" , hash = "sha256:99f70b740dc04d09e6b2699b675874367885217a2e9f782bdf5395632ac663b7" } ,
{ file = "rpds_py-0.18.0-cp39-none-win_amd64.whl" , hash = "sha256:6ef687afab047554a2d366e112dd187b62d261d49eb79b77e386f94644363294" } ,
{ file = "rpds_py-0.18.0-pp310-pypy310_pp73-macosx_10_12_x86_64.whl" , hash = "sha256:ad36cfb355e24f1bd37cac88c112cd7730873f20fb0bdaf8ba59eedf8216079f" } ,
{ file = "rpds_py-0.18.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl" , hash = "sha256:36b3ee798c58ace201289024b52788161e1ea133e4ac93fba7d49da5fec0ef9e" } ,
{ file = "rpds_py-0.18.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:f8a2f084546cc59ea99fda8e070be2fd140c3092dc11524a71aa8f0f3d5a55ca" } ,
{ file = "rpds_py-0.18.0-pp310-pypy310_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl" , hash = "sha256:e4461d0f003a0aa9be2bdd1b798a041f177189c1a0f7619fe8c95ad08d9a45d7" } ,
{ file = "rpds_py-0.18.0-pp310-pypy310_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:8db715ebe3bb7d86d77ac1826f7d67ec11a70dbd2376b7cc214199360517b641" } ,
{ file = "rpds_py-0.18.0-pp310-pypy310_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:793968759cd0d96cac1e367afd70c235867831983f876a53389ad869b043c948" } ,
{ file = "rpds_py-0.18.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:66e6a3af5a75363d2c9a48b07cb27c4ea542938b1a2e93b15a503cdfa8490795" } ,
{ file = "rpds_py-0.18.0-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl" , hash = "sha256:6ef0befbb5d79cf32d0266f5cff01545602344eda89480e1dd88aca964260b18" } ,
{ file = "rpds_py-0.18.0-pp310-pypy310_pp73-musllinux_1_2_aarch64.whl" , hash = "sha256:1d4acf42190d449d5e89654d5c1ed3a4f17925eec71f05e2a41414689cda02d1" } ,
{ file = "rpds_py-0.18.0-pp310-pypy310_pp73-musllinux_1_2_i686.whl" , hash = "sha256:a5f446dd5055667aabaee78487f2b5ab72e244f9bc0b2ffebfeec79051679984" } ,
{ file = "rpds_py-0.18.0-pp310-pypy310_pp73-musllinux_1_2_x86_64.whl" , hash = "sha256:9dbbeb27f4e70bfd9eec1be5477517365afe05a9b2c441a0b21929ee61048124" } ,
{ file = "rpds_py-0.18.0-pp38-pypy38_pp73-macosx_10_12_x86_64.whl" , hash = "sha256:22806714311a69fd0af9b35b7be97c18a0fc2826e6827dbb3a8c94eac6cf7eeb" } ,
{ file = "rpds_py-0.18.0-pp38-pypy38_pp73-macosx_11_0_arm64.whl" , hash = "sha256:b34ae4636dfc4e76a438ab826a0d1eed2589ca7d9a1b2d5bb546978ac6485461" } ,
{ file = "rpds_py-0.18.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:8c8370641f1a7f0e0669ddccca22f1da893cef7628396431eb445d46d893e5cd" } ,
{ file = "rpds_py-0.18.0-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl" , hash = "sha256:c8362467a0fdeccd47935f22c256bec5e6abe543bf0d66e3d3d57a8fb5731863" } ,
{ file = "rpds_py-0.18.0-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:11a8c85ef4a07a7638180bf04fe189d12757c696eb41f310d2426895356dcf05" } ,
{ file = "rpds_py-0.18.0-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:b316144e85316da2723f9d8dc75bada12fa58489a527091fa1d5a612643d1a0e" } ,
{ file = "rpds_py-0.18.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:cf1ea2e34868f6fbf070e1af291c8180480310173de0b0c43fc38a02929fc0e3" } ,
{ file = "rpds_py-0.18.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl" , hash = "sha256:e546e768d08ad55b20b11dbb78a745151acbd938f8f00d0cfbabe8b0199b9880" } ,
{ file = "rpds_py-0.18.0-pp38-pypy38_pp73-musllinux_1_2_aarch64.whl" , hash = "sha256:4901165d170a5fde6f589acb90a6b33629ad1ec976d4529e769c6f3d885e3e80" } ,
{ file = "rpds_py-0.18.0-pp38-pypy38_pp73-musllinux_1_2_i686.whl" , hash = "sha256:618a3d6cae6ef8ec88bb76dd80b83cfe415ad4f1d942ca2a903bf6b6ff97a2da" } ,
{ file = "rpds_py-0.18.0-pp38-pypy38_pp73-musllinux_1_2_x86_64.whl" , hash = "sha256:ed4eb745efbff0a8e9587d22a84be94a5eb7d2d99c02dacf7bd0911713ed14dd" } ,
{ file = "rpds_py-0.18.0-pp39-pypy39_pp73-macosx_10_12_x86_64.whl" , hash = "sha256:6c81e5f372cd0dc5dc4809553d34f832f60a46034a5f187756d9b90586c2c307" } ,
{ file = "rpds_py-0.18.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl" , hash = "sha256:43fbac5f22e25bee1d482c97474f930a353542855f05c1161fd804c9dc74a09d" } ,
{ file = "rpds_py-0.18.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:6d7faa6f14017c0b1e69f5e2c357b998731ea75a442ab3841c0dbbbfe902d2c4" } ,
{ file = "rpds_py-0.18.0-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl" , hash = "sha256:08231ac30a842bd04daabc4d71fddd7e6d26189406d5a69535638e4dcb88fe76" } ,
{ file = "rpds_py-0.18.0-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:044a3e61a7c2dafacae99d1e722cc2d4c05280790ec5a05031b3876809d89a5c" } ,
{ file = "rpds_py-0.18.0-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:3f26b5bd1079acdb0c7a5645e350fe54d16b17bfc5e71f371c449383d3342e17" } ,
{ file = "rpds_py-0.18.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:482103aed1dfe2f3b71a58eff35ba105289b8d862551ea576bd15479aba01f66" } ,
{ file = "rpds_py-0.18.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl" , hash = "sha256:1374f4129f9bcca53a1bba0bb86bf78325a0374577cf7e9e4cd046b1e6f20e24" } ,
{ file = "rpds_py-0.18.0-pp39-pypy39_pp73-musllinux_1_2_aarch64.whl" , hash = "sha256:635dc434ff724b178cb192c70016cc0ad25a275228f749ee0daf0eddbc8183b1" } ,
{ file = "rpds_py-0.18.0-pp39-pypy39_pp73-musllinux_1_2_i686.whl" , hash = "sha256:bc362ee4e314870a70f4ae88772d72d877246537d9f8cb8f7eacf10884862432" } ,
{ file = "rpds_py-0.18.0-pp39-pypy39_pp73-musllinux_1_2_x86_64.whl" , hash = "sha256:4832d7d380477521a8c1644bbab6588dfedea5e30a7d967b5fb75977c45fd77f" } ,
{ file = "rpds_py-0.18.0.tar.gz" , hash = "sha256:42821446ee7a76f5d9f71f9e33a4fb2ffd724bb3e7f93386150b61a43115788d" } ,
2023-12-11 21:53:30 +00:00
]
2024-03-15 17:10:47 +00:00
[ [ package ] ]
name = "rsa"
version = "4.9"
description = "Pure-Python RSA implementation"
optional = true
python-versions = ">=3.6,<4"
files = [
{ file = "rsa-4.9-py3-none-any.whl" , hash = "sha256:90260d9058e514786967344d0ef75fa8727eed8a7d2e43ce9f4bcf1b536174f7" } ,
{ file = "rsa-4.9.tar.gz" , hash = "sha256:e38464a49c6c85d7f1351b0126661487a7e0a14a50f1675ec50eb34d4f20ef21" } ,
]
[ package . dependencies ]
pyasn1 = ">=0.1.3"
[ [ package ] ]
name = "rspace-client"
version = "2.5.0"
description = "A client for calling RSpace ELN and Inventory APIs"
optional = true
python-versions = ">=3.7.11,<4.0.0"
files = [
{ file = "rspace-client-2.5.0.tar.gz" , hash = "sha256:101abc83d094051d2babcaa133fa1a47221b3d5953d72eef3c331ef7084071a1" } ,
{ file = "rspace_client-2.5.0-py3-none-any.whl" , hash = "sha256:b1072df88dfa8f068f3137584d20cf135493b0521a9809c2f6ddec6b378a9cc3" } ,
]
[ package . dependencies ]
beautifulsoup4 = ">=4.9.3,<5.0.0"
requests = ">=2.25.1,<3.0.0"
2023-12-11 21:53:30 +00:00
[ [ package ] ]
name = "ruff"
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
version = "0.1.15"
2023-12-11 21:53:30 +00:00
description = "An extremely fast Python linter and code formatter, written in Rust."
optional = false
python-versions = ">=3.7"
files = [
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
{ file = "ruff-0.1.15-py3-none-macosx_10_12_x86_64.macosx_11_0_arm64.macosx_10_12_universal2.whl" , hash = "sha256:5fe8d54df166ecc24106db7dd6a68d44852d14eb0729ea4672bb4d96c320b7df" } ,
{ file = "ruff-0.1.15-py3-none-macosx_10_12_x86_64.whl" , hash = "sha256:6f0bfbb53c4b4de117ac4d6ddfd33aa5fc31beeaa21d23c45c6dd249faf9126f" } ,
{ file = "ruff-0.1.15-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:e0d432aec35bfc0d800d4f70eba26e23a352386be3a6cf157083d18f6f5881c8" } ,
{ file = "ruff-0.1.15-py3-none-manylinux_2_17_armv7l.manylinux2014_armv7l.whl" , hash = "sha256:9405fa9ac0e97f35aaddf185a1be194a589424b8713e3b97b762336ec79ff807" } ,
{ file = "ruff-0.1.15-py3-none-manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:c66ec24fe36841636e814b8f90f572a8c0cb0e54d8b5c2d0e300d28a0d7bffec" } ,
{ file = "ruff-0.1.15-py3-none-manylinux_2_17_ppc64.manylinux2014_ppc64.whl" , hash = "sha256:6f8ad828f01e8dd32cc58bc28375150171d198491fc901f6f98d2a39ba8e3ff5" } ,
{ file = "ruff-0.1.15-py3-none-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:86811954eec63e9ea162af0ffa9f8d09088bab51b7438e8b6488b9401863c25e" } ,
{ file = "ruff-0.1.15-py3-none-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:fd4025ac5e87d9b80e1f300207eb2fd099ff8200fa2320d7dc066a3f4622dc6b" } ,
{ file = "ruff-0.1.15-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:b17b93c02cdb6aeb696effecea1095ac93f3884a49a554a9afa76bb125c114c1" } ,
{ file = "ruff-0.1.15-py3-none-musllinux_1_2_aarch64.whl" , hash = "sha256:ddb87643be40f034e97e97f5bc2ef7ce39de20e34608f3f829db727a93fb82c5" } ,
{ file = "ruff-0.1.15-py3-none-musllinux_1_2_armv7l.whl" , hash = "sha256:abf4822129ed3a5ce54383d5f0e964e7fef74a41e48eb1dfad404151efc130a2" } ,
{ file = "ruff-0.1.15-py3-none-musllinux_1_2_i686.whl" , hash = "sha256:6c629cf64bacfd136c07c78ac10a54578ec9d1bd2a9d395efbee0935868bf852" } ,
{ file = "ruff-0.1.15-py3-none-musllinux_1_2_x86_64.whl" , hash = "sha256:1bab866aafb53da39c2cadfb8e1c4550ac5340bb40300083eb8967ba25481447" } ,
{ file = "ruff-0.1.15-py3-none-win32.whl" , hash = "sha256:2417e1cb6e2068389b07e6fa74c306b2810fe3ee3476d5b8a96616633f40d14f" } ,
{ file = "ruff-0.1.15-py3-none-win_amd64.whl" , hash = "sha256:3837ac73d869efc4182d9036b1405ef4c73d9b1f88da2413875e34e0d6919587" } ,
{ file = "ruff-0.1.15-py3-none-win_arm64.whl" , hash = "sha256:9a933dfb1c14ec7a33cceb1e49ec4a16b51ce3c20fd42663198746efc0427360" } ,
{ file = "ruff-0.1.15.tar.gz" , hash = "sha256:f6dfa8c1b21c913c326919056c390966648b680966febcb796cc9d1aaab8564e" } ,
2023-12-11 21:53:30 +00:00
]
2024-03-15 17:10:47 +00:00
[ [ package ] ]
name = "s3transfer"
version = "0.10.0"
description = "An Amazon S3 Transfer Manager"
optional = true
python-versions = ">= 3.8"
files = [
{ file = "s3transfer-0.10.0-py3-none-any.whl" , hash = "sha256:3cdb40f5cfa6966e812209d0994f2a4709b561c88e90cf00c2696d2df4e56b2e" } ,
{ file = "s3transfer-0.10.0.tar.gz" , hash = "sha256:d0c8bbf672d5eebbe4e57945e23b972d963f07d82f661cabf678a5c88831595b" } ,
]
[ package . dependencies ]
botocore = ">=1.33.2,<2.0a.0"
[ package . extras ]
crt = [ "botocore[crt] (>=1.33.2,<2.0a.0)" ]
[ [ package ] ]
name = "scikit-learn"
version = "1.3.2"
description = "A set of python modules for machine learning and data mining"
optional = true
python-versions = ">=3.8"
files = [
{ file = "scikit-learn-1.3.2.tar.gz" , hash = "sha256:a2f54c76accc15a34bfb9066e6c7a56c1e7235dda5762b990792330b52ccfb05" } ,
{ file = "scikit_learn-1.3.2-cp310-cp310-macosx_10_9_x86_64.whl" , hash = "sha256:e326c0eb5cf4d6ba40f93776a20e9a7a69524c4db0757e7ce24ba222471ee8a1" } ,
{ file = "scikit_learn-1.3.2-cp310-cp310-macosx_12_0_arm64.whl" , hash = "sha256:535805c2a01ccb40ca4ab7d081d771aea67e535153e35a1fd99418fcedd1648a" } ,
{ file = "scikit_learn-1.3.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:1215e5e58e9880b554b01187b8c9390bf4dc4692eedeaf542d3273f4785e342c" } ,
{ file = "scikit_learn-1.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:0ee107923a623b9f517754ea2f69ea3b62fc898a3641766cb7deb2f2ce450161" } ,
{ file = "scikit_learn-1.3.2-cp310-cp310-win_amd64.whl" , hash = "sha256:35a22e8015048c628ad099da9df5ab3004cdbf81edc75b396fd0cff8699ac58c" } ,
{ file = "scikit_learn-1.3.2-cp311-cp311-macosx_10_9_x86_64.whl" , hash = "sha256:6fb6bc98f234fda43163ddbe36df8bcde1d13ee176c6dc9b92bb7d3fc842eb66" } ,
{ file = "scikit_learn-1.3.2-cp311-cp311-macosx_12_0_arm64.whl" , hash = "sha256:18424efee518a1cde7b0b53a422cde2f6625197de6af36da0b57ec502f126157" } ,
{ file = "scikit_learn-1.3.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:3271552a5eb16f208a6f7f617b8cc6d1f137b52c8a1ef8edf547db0259b2c9fb" } ,
{ file = "scikit_learn-1.3.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:fc4144a5004a676d5022b798d9e573b05139e77f271253a4703eed295bde0433" } ,
{ file = "scikit_learn-1.3.2-cp311-cp311-win_amd64.whl" , hash = "sha256:67f37d708f042a9b8d59551cf94d30431e01374e00dc2645fa186059c6c5d78b" } ,
{ file = "scikit_learn-1.3.2-cp312-cp312-macosx_10_9_x86_64.whl" , hash = "sha256:8db94cd8a2e038b37a80a04df8783e09caac77cbe052146432e67800e430c028" } ,
{ file = "scikit_learn-1.3.2-cp312-cp312-macosx_12_0_arm64.whl" , hash = "sha256:61a6efd384258789aa89415a410dcdb39a50e19d3d8410bd29be365bcdd512d5" } ,
{ file = "scikit_learn-1.3.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:cb06f8dce3f5ddc5dee1715a9b9f19f20d295bed8e3cd4fa51e1d050347de525" } ,
{ file = "scikit_learn-1.3.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:5b2de18d86f630d68fe1f87af690d451388bb186480afc719e5f770590c2ef6c" } ,
{ file = "scikit_learn-1.3.2-cp312-cp312-win_amd64.whl" , hash = "sha256:0402638c9a7c219ee52c94cbebc8fcb5eb9fe9c773717965c1f4185588ad3107" } ,
{ file = "scikit_learn-1.3.2-cp38-cp38-macosx_10_9_x86_64.whl" , hash = "sha256:a19f90f95ba93c1a7f7924906d0576a84da7f3b2282ac3bfb7a08a32801add93" } ,
{ file = "scikit_learn-1.3.2-cp38-cp38-macosx_12_0_arm64.whl" , hash = "sha256:b8692e395a03a60cd927125eef3a8e3424d86dde9b2370d544f0ea35f78a8073" } ,
{ file = "scikit_learn-1.3.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:15e1e94cc23d04d39da797ee34236ce2375ddea158b10bee3c343647d615581d" } ,
{ file = "scikit_learn-1.3.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:785a2213086b7b1abf037aeadbbd6d67159feb3e30263434139c98425e3dcfcf" } ,
{ file = "scikit_learn-1.3.2-cp38-cp38-win_amd64.whl" , hash = "sha256:64381066f8aa63c2710e6b56edc9f0894cc7bf59bd71b8ce5613a4559b6145e0" } ,
{ file = "scikit_learn-1.3.2-cp39-cp39-macosx_10_9_x86_64.whl" , hash = "sha256:6c43290337f7a4b969d207e620658372ba3c1ffb611f8bc2b6f031dc5c6d1d03" } ,
{ file = "scikit_learn-1.3.2-cp39-cp39-macosx_12_0_arm64.whl" , hash = "sha256:dc9002fc200bed597d5d34e90c752b74df516d592db162f756cc52836b38fe0e" } ,
{ file = "scikit_learn-1.3.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:1d08ada33e955c54355d909b9c06a4789a729977f165b8bae6f225ff0a60ec4a" } ,
{ file = "scikit_learn-1.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:763f0ae4b79b0ff9cca0bf3716bcc9915bdacff3cebea15ec79652d1cc4fa5c9" } ,
{ file = "scikit_learn-1.3.2-cp39-cp39-win_amd64.whl" , hash = "sha256:ed932ea780517b00dae7431e031faae6b49b20eb6950918eb83bd043237950e0" } ,
]
[ package . dependencies ]
joblib = ">=1.1.1"
numpy = ">=1.17.3,<2.0"
scipy = ">=1.5.0"
threadpoolctl = ">=2.0.0"
[ package . extras ]
benchmark = [ "matplotlib (>=3.1.3)" , "memory-profiler (>=0.57.0)" , "pandas (>=1.0.5)" ]
docs = [ "Pillow (>=7.1.2)" , "matplotlib (>=3.1.3)" , "memory-profiler (>=0.57.0)" , "numpydoc (>=1.2.0)" , "pandas (>=1.0.5)" , "plotly (>=5.14.0)" , "pooch (>=1.6.0)" , "scikit-image (>=0.16.2)" , "seaborn (>=0.9.0)" , "sphinx (>=6.0.0)" , "sphinx-copybutton (>=0.5.2)" , "sphinx-gallery (>=0.10.1)" , "sphinx-prompt (>=1.3.0)" , "sphinxext-opengraph (>=0.4.2)" ]
examples = [ "matplotlib (>=3.1.3)" , "pandas (>=1.0.5)" , "plotly (>=5.14.0)" , "pooch (>=1.6.0)" , "scikit-image (>=0.16.2)" , "seaborn (>=0.9.0)" ]
tests = [ "black (>=23.3.0)" , "matplotlib (>=3.1.3)" , "mypy (>=1.3)" , "numpydoc (>=1.2.0)" , "pandas (>=1.0.5)" , "pooch (>=1.6.0)" , "pyamg (>=4.0.0)" , "pytest (>=7.1.2)" , "pytest-cov (>=2.9.0)" , "ruff (>=0.0.272)" , "scikit-image (>=0.16.2)" ]
[ [ package ] ]
name = "scipy"
version = "1.9.3"
description = "Fundamental algorithms for scientific computing in Python"
optional = true
python-versions = ">=3.8"
files = [
{ file = "scipy-1.9.3-cp310-cp310-macosx_10_9_x86_64.whl" , hash = "sha256:1884b66a54887e21addf9c16fb588720a8309a57b2e258ae1c7986d4444d3bc0" } ,
{ file = "scipy-1.9.3-cp310-cp310-macosx_12_0_arm64.whl" , hash = "sha256:83b89e9586c62e787f5012e8475fbb12185bafb996a03257e9675cd73d3736dd" } ,
{ file = "scipy-1.9.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:1a72d885fa44247f92743fc20732ae55564ff2a519e8302fb7e18717c5355a8b" } ,
{ file = "scipy-1.9.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:d01e1dd7b15bd2449c8bfc6b7cc67d630700ed655654f0dfcf121600bad205c9" } ,
{ file = "scipy-1.9.3-cp310-cp310-win_amd64.whl" , hash = "sha256:68239b6aa6f9c593da8be1509a05cb7f9efe98b80f43a5861cd24c7557e98523" } ,
{ file = "scipy-1.9.3-cp311-cp311-macosx_10_9_x86_64.whl" , hash = "sha256:b41bc822679ad1c9a5f023bc93f6d0543129ca0f37c1ce294dd9d386f0a21096" } ,
{ file = "scipy-1.9.3-cp311-cp311-macosx_12_0_arm64.whl" , hash = "sha256:90453d2b93ea82a9f434e4e1cba043e779ff67b92f7a0e85d05d286a3625df3c" } ,
{ file = "scipy-1.9.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:83c06e62a390a9167da60bedd4575a14c1f58ca9dfde59830fc42e5197283dab" } ,
{ file = "scipy-1.9.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:abaf921531b5aeaafced90157db505e10345e45038c39e5d9b6c7922d68085cb" } ,
{ file = "scipy-1.9.3-cp311-cp311-win_amd64.whl" , hash = "sha256:06d2e1b4c491dc7d8eacea139a1b0b295f74e1a1a0f704c375028f8320d16e31" } ,
{ file = "scipy-1.9.3-cp38-cp38-macosx_10_9_x86_64.whl" , hash = "sha256:5a04cd7d0d3eff6ea4719371cbc44df31411862b9646db617c99718ff68d4840" } ,
{ file = "scipy-1.9.3-cp38-cp38-macosx_12_0_arm64.whl" , hash = "sha256:545c83ffb518094d8c9d83cce216c0c32f8c04aaf28b92cc8283eda0685162d5" } ,
{ file = "scipy-1.9.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:0d54222d7a3ba6022fdf5773931b5d7c56efe41ede7f7128c7b1637700409108" } ,
{ file = "scipy-1.9.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:cff3a5295234037e39500d35316a4c5794739433528310e117b8a9a0c76d20fc" } ,
{ file = "scipy-1.9.3-cp38-cp38-win_amd64.whl" , hash = "sha256:2318bef588acc7a574f5bfdff9c172d0b1bf2c8143d9582e05f878e580a3781e" } ,
{ file = "scipy-1.9.3-cp39-cp39-macosx_10_9_x86_64.whl" , hash = "sha256:d644a64e174c16cb4b2e41dfea6af722053e83d066da7343f333a54dae9bc31c" } ,
{ file = "scipy-1.9.3-cp39-cp39-macosx_12_0_arm64.whl" , hash = "sha256:da8245491d73ed0a994ed9c2e380fd058ce2fa8a18da204681f2fe1f57f98f95" } ,
{ file = "scipy-1.9.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:4db5b30849606a95dcf519763dd3ab6fe9bd91df49eba517359e450a7d80ce2e" } ,
{ file = "scipy-1.9.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:c68db6b290cbd4049012990d7fe71a2abd9ffbe82c0056ebe0f01df8be5436b0" } ,
{ file = "scipy-1.9.3-cp39-cp39-win_amd64.whl" , hash = "sha256:5b88e6d91ad9d59478fafe92a7c757d00c59e3bdc3331be8ada76a4f8d683f58" } ,
{ file = "scipy-1.9.3.tar.gz" , hash = "sha256:fbc5c05c85c1a02be77b1ff591087c83bc44579c6d2bd9fb798bb64ea5e1a027" } ,
]
[ package . dependencies ]
numpy = ">=1.18.5,<1.26.0"
[ package . extras ]
dev = [ "flake8" , "mypy" , "pycodestyle" , "typing_extensions" ]
doc = [ "matplotlib (>2)" , "numpydoc" , "pydata-sphinx-theme (==0.9.0)" , "sphinx (!=4.1.0)" , "sphinx-panels (>=0.5.2)" , "sphinx-tabs" ]
test = [ "asv" , "gmpy2" , "mpmath" , "pytest" , "pytest-cov" , "pytest-xdist" , "scikit-umfpack" , "threadpoolctl" ]
2023-12-11 21:53:30 +00:00
[ [ package ] ]
name = "send2trash"
version = "1.8.2"
description = "Send file to trash natively under Mac OS X, Windows and Linux"
optional = false
python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,>=2.7"
files = [
{ file = "Send2Trash-1.8.2-py3-none-any.whl" , hash = "sha256:a384719d99c07ce1eefd6905d2decb6f8b7ed054025bb0e618919f945de4f679" } ,
{ file = "Send2Trash-1.8.2.tar.gz" , hash = "sha256:c132d59fa44b9ca2b1699af5c86f57ce9f4c5eb56629d5d55fbb7a35f84e2312" } ,
]
[ package . extras ]
nativelib = [ "pyobjc-framework-Cocoa" , "pywin32" ]
objc = [ "pyobjc-framework-Cocoa" ]
win32 = [ "pywin32" ]
[ [ package ] ]
name = "setuptools"
version = "67.8.0"
description = "Easily download, build, install, upgrade, and uninstall Python packages"
optional = false
python-versions = ">=3.7"
files = [
{ file = "setuptools-67.8.0-py3-none-any.whl" , hash = "sha256:5df61bf30bb10c6f756eb19e7c9f3b473051f48db77fddbe06ff2ca307df9a6f" } ,
{ file = "setuptools-67.8.0.tar.gz" , hash = "sha256:62642358adc77ffa87233bc4d2354c4b2682d214048f500964dbe760ccedf102" } ,
]
[ package . extras ]
docs = [ "furo" , "jaraco.packaging (>=9)" , "jaraco.tidelift (>=1.4)" , "pygments-github-lexers (==0.0.5)" , "rst.linker (>=1.9)" , "sphinx (>=3.5)" , "sphinx-favicon" , "sphinx-hoverxref (<2)" , "sphinx-inline-tabs" , "sphinx-lint" , "sphinx-notfound-page (==0.8.3)" , "sphinx-reredirects" , "sphinxcontrib-towncrier" ]
testing = [ "build[virtualenv]" , "filelock (>=3.4.0)" , "flake8-2020" , "ini2toml[lite] (>=0.9)" , "jaraco.envs (>=2.2)" , "jaraco.path (>=3.2.0)" , "pip (>=19.1)" , "pip-run (>=8.8)" , "pytest (>=6)" , "pytest-black (>=0.3.7)" , "pytest-checkdocs (>=2.4)" , "pytest-cov" , "pytest-enabler (>=1.3)" , "pytest-mypy (>=0.9.1)" , "pytest-perf" , "pytest-ruff" , "pytest-timeout" , "pytest-xdist" , "tomli-w (>=1.0.0)" , "virtualenv (>=13.0.0)" , "wheel" ]
2024-03-15 05:55:30 +00:00
testing-integration = [ "build[virtualenv]" , "filelock (>=3.4.0)" , "jaraco.envs (>=2.2)" , "jaraco.path (>=3.2.0)" , "pytest" , "pytest-enabler" , "pytest-xdist" , "tomli" , "virtualenv (>=13.0.0)" , "wheel" ]
2023-12-11 21:53:30 +00:00
2024-03-15 17:10:47 +00:00
[ [ package ] ]
name = "sgmllib3k"
version = "1.0.0"
description = "Py3k port of sgmllib."
optional = true
python-versions = "*"
files = [
{ file = "sgmllib3k-1.0.0.tar.gz" , hash = "sha256:7868fb1c8bfa764c1ac563d3cf369c381d1325d36124933a726f29fcdaa812e9" } ,
]
[ [ package ] ]
name = "shapely"
version = "2.0.3"
description = "Manipulation and analysis of geometric objects"
optional = true
python-versions = ">=3.7"
files = [
{ file = "shapely-2.0.3-cp310-cp310-macosx_10_9_universal2.whl" , hash = "sha256:af7e9abe180b189431b0f490638281b43b84a33a960620e6b2e8d3e3458b61a1" } ,
{ file = "shapely-2.0.3-cp310-cp310-macosx_10_9_x86_64.whl" , hash = "sha256:98040462b36ced9671e266b95c326b97f41290d9d17504a1ee4dc313a7667b9c" } ,
{ file = "shapely-2.0.3-cp310-cp310-macosx_11_0_arm64.whl" , hash = "sha256:71eb736ef2843f23473c6e37f6180f90f0a35d740ab284321548edf4e55d9a52" } ,
{ file = "shapely-2.0.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:881eb9dbbb4a6419667e91fcb20313bfc1e67f53dbb392c6840ff04793571ed1" } ,
{ file = "shapely-2.0.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:f10d2ccf0554fc0e39fad5886c839e47e207f99fdf09547bc687a2330efda35b" } ,
{ file = "shapely-2.0.3-cp310-cp310-win32.whl" , hash = "sha256:6dfdc077a6fcaf74d3eab23a1ace5abc50c8bce56ac7747d25eab582c5a2990e" } ,
{ file = "shapely-2.0.3-cp310-cp310-win_amd64.whl" , hash = "sha256:64c5013dacd2d81b3bb12672098a0b2795c1bf8190cfc2980e380f5ef9d9e4d9" } ,
{ file = "shapely-2.0.3-cp311-cp311-macosx_10_9_universal2.whl" , hash = "sha256:56cee3e4e8159d6f2ce32e421445b8e23154fd02a0ac271d6a6c0b266a8e3cce" } ,
{ file = "shapely-2.0.3-cp311-cp311-macosx_10_9_x86_64.whl" , hash = "sha256:619232c8276fded09527d2a9fd91a7885ff95c0ff9ecd5e3cb1e34fbb676e2ae" } ,
{ file = "shapely-2.0.3-cp311-cp311-macosx_11_0_arm64.whl" , hash = "sha256:b2a7d256db6f5b4b407dc0c98dd1b2fcf1c9c5814af9416e5498d0a2e4307a4b" } ,
{ file = "shapely-2.0.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:e45f0c8cd4583647db3216d965d49363e6548c300c23fd7e57ce17a03f824034" } ,
{ file = "shapely-2.0.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:13cb37d3826972a82748a450328fe02a931dcaed10e69a4d83cc20ba021bc85f" } ,
{ file = "shapely-2.0.3-cp311-cp311-win32.whl" , hash = "sha256:9302d7011e3e376d25acd30d2d9e70d315d93f03cc748784af19b00988fc30b1" } ,
{ file = "shapely-2.0.3-cp311-cp311-win_amd64.whl" , hash = "sha256:6b464f2666b13902835f201f50e835f2f153f37741db88f68c7f3b932d3505fa" } ,
{ file = "shapely-2.0.3-cp312-cp312-macosx_10_9_universal2.whl" , hash = "sha256:e86e7cb8e331a4850e0c2a8b2d66dc08d7a7b301b8d1d34a13060e3a5b4b3b55" } ,
{ file = "shapely-2.0.3-cp312-cp312-macosx_10_9_x86_64.whl" , hash = "sha256:c91981c99ade980fc49e41a544629751a0ccd769f39794ae913e53b07b2f78b9" } ,
{ file = "shapely-2.0.3-cp312-cp312-macosx_11_0_arm64.whl" , hash = "sha256:bd45d456983dc60a42c4db437496d3f08a4201fbf662b69779f535eb969660af" } ,
{ file = "shapely-2.0.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:882fb1ffc7577e88c1194f4f1757e277dc484ba096a3b94844319873d14b0f2d" } ,
{ file = "shapely-2.0.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:b9f2d93bff2ea52fa93245798cddb479766a18510ea9b93a4fb9755c79474889" } ,
{ file = "shapely-2.0.3-cp312-cp312-win32.whl" , hash = "sha256:99abad1fd1303b35d991703432c9481e3242b7b3a393c186cfb02373bf604004" } ,
{ file = "shapely-2.0.3-cp312-cp312-win_amd64.whl" , hash = "sha256:6f555fe3304a1f40398977789bc4fe3c28a11173196df9ece1e15c5bc75a48db" } ,
{ file = "shapely-2.0.3-cp37-cp37m-macosx_10_9_x86_64.whl" , hash = "sha256:a983cc418c1fa160b7d797cfef0e0c9f8c6d5871e83eae2c5793fce6a837fad9" } ,
{ file = "shapely-2.0.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:18bddb8c327f392189a8d5d6b9a858945722d0bb95ccbd6a077b8e8fc4c7890d" } ,
{ file = "shapely-2.0.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:442f4dcf1eb58c5a4e3428d88e988ae153f97ab69a9f24e07bf4af8038536325" } ,
{ file = "shapely-2.0.3-cp37-cp37m-win32.whl" , hash = "sha256:31a40b6e3ab00a4fd3a1d44efb2482278642572b8e0451abdc8e0634b787173e" } ,
{ file = "shapely-2.0.3-cp37-cp37m-win_amd64.whl" , hash = "sha256:59b16976c2473fec85ce65cc9239bef97d4205ab3acead4e6cdcc72aee535679" } ,
{ file = "shapely-2.0.3-cp38-cp38-macosx_10_9_universal2.whl" , hash = "sha256:705efbce1950a31a55b1daa9c6ae1c34f1296de71ca8427974ec2f27d57554e3" } ,
{ file = "shapely-2.0.3-cp38-cp38-macosx_10_9_x86_64.whl" , hash = "sha256:601c5c0058a6192df704cb889439f64994708563f57f99574798721e9777a44b" } ,
{ file = "shapely-2.0.3-cp38-cp38-macosx_11_0_arm64.whl" , hash = "sha256:f24ecbb90a45c962b3b60d8d9a387272ed50dc010bfe605f1d16dfc94772d8a1" } ,
{ file = "shapely-2.0.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:d8c2a2989222c6062f7a0656e16276c01bb308bc7e5d999e54bf4e294ce62e76" } ,
{ file = "shapely-2.0.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:42bceb9bceb3710a774ce04908fda0f28b291323da2688f928b3f213373b5aee" } ,
{ file = "shapely-2.0.3-cp38-cp38-win32.whl" , hash = "sha256:54d925c9a311e4d109ec25f6a54a8bd92cc03481a34ae1a6a92c1fe6729b7e01" } ,
{ file = "shapely-2.0.3-cp38-cp38-win_amd64.whl" , hash = "sha256:300d203b480a4589adefff4c4af0b13919cd6d760ba3cbb1e56275210f96f654" } ,
{ file = "shapely-2.0.3-cp39-cp39-macosx_10_9_universal2.whl" , hash = "sha256:083d026e97b6c1f4a9bd2a9171c7692461092ed5375218170d91705550eecfd5" } ,
{ file = "shapely-2.0.3-cp39-cp39-macosx_10_9_x86_64.whl" , hash = "sha256:27b6e1910094d93e9627f2664121e0e35613262fc037051680a08270f6058daf" } ,
{ file = "shapely-2.0.3-cp39-cp39-macosx_11_0_arm64.whl" , hash = "sha256:71b2de56a9e8c0e5920ae5ddb23b923490557ac50cb0b7fa752761bf4851acde" } ,
{ file = "shapely-2.0.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:4d279e56bbb68d218d63f3efc80c819cedcceef0e64efbf058a1df89dc57201b" } ,
{ file = "shapely-2.0.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:88566d01a30f0453f7d038db46bc83ce125e38e47c5f6bfd4c9c287010e9bf74" } ,
{ file = "shapely-2.0.3-cp39-cp39-win32.whl" , hash = "sha256:58afbba12c42c6ed44c4270bc0e22f3dadff5656d711b0ad335c315e02d04707" } ,
{ file = "shapely-2.0.3-cp39-cp39-win_amd64.whl" , hash = "sha256:5026b30433a70911979d390009261b8c4021ff87c7c3cbd825e62bb2ffa181bc" } ,
{ file = "shapely-2.0.3.tar.gz" , hash = "sha256:4d65d0aa7910af71efa72fd6447e02a8e5dd44da81a983de9d736d6e6ccbe674" } ,
]
[ package . dependencies ]
numpy = ">=1.14,<2"
[ package . extras ]
docs = [ "matplotlib" , "numpydoc (==1.1.*)" , "sphinx" , "sphinx-book-theme" , "sphinx-remove-toctrees" ]
test = [ "pytest" , "pytest-cov" ]
2023-12-11 21:53:30 +00:00
[ [ package ] ]
name = "six"
version = "1.16.0"
description = "Python 2 and 3 compatibility utilities"
optional = false
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*"
files = [
{ file = "six-1.16.0-py2.py3-none-any.whl" , hash = "sha256:8abb2f1d86890a2dfb989f9a77cfcfd3e47c2a354b01111771326f8aa26e0254" } ,
{ file = "six-1.16.0.tar.gz" , hash = "sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926" } ,
]
2024-03-15 17:10:47 +00:00
[ [ package ] ]
name = "smmap"
version = "5.0.1"
description = "A pure Python implementation of a sliding window memory map manager"
optional = true
python-versions = ">=3.7"
files = [
{ file = "smmap-5.0.1-py3-none-any.whl" , hash = "sha256:e6d8668fa5f93e706934a62d7b4db19c8d9eb8cf2adbb75ef1b675aa332b69da" } ,
{ file = "smmap-5.0.1.tar.gz" , hash = "sha256:dceeb6c0028fdb6734471eb07c0cd2aae706ccaecab45965ee83f11c8d3b1f62" } ,
]
2023-12-11 21:53:30 +00:00
[ [ package ] ]
name = "sniffio"
2024-03-08 02:20:47 +00:00
version = "1.3.1"
2023-12-11 21:53:30 +00:00
description = "Sniff out which async library your code is running under"
optional = false
python-versions = ">=3.7"
files = [
2024-03-08 02:20:47 +00:00
{ file = "sniffio-1.3.1-py3-none-any.whl" , hash = "sha256:2f6da418d1f1e0fddd844478f41680e794e6051915791a034ff65e5f100525a2" } ,
{ file = "sniffio-1.3.1.tar.gz" , hash = "sha256:f4324edc670a0f49750a81b895f35c3adb843cca46f0530f79fc1babb23789dc" } ,
2023-12-11 21:53:30 +00:00
]
[ [ package ] ]
name = "soupsieve"
version = "2.5"
description = "A modern CSS selector implementation for Beautiful Soup."
optional = false
python-versions = ">=3.8"
files = [
{ file = "soupsieve-2.5-py3-none-any.whl" , hash = "sha256:eaa337ff55a1579b6549dc679565eac1e3d000563bcb1c8ab0d0fefbc0c2cdc7" } ,
{ file = "soupsieve-2.5.tar.gz" , hash = "sha256:5663d5a7b3bfaeee0bc4372e7fc48f9cff4940b3eec54a6451cc5299f1097690" } ,
]
[ [ package ] ]
name = "sqlalchemy"
2024-03-08 02:20:47 +00:00
version = "2.0.28"
2023-12-11 21:53:30 +00:00
description = "Database Abstraction Library"
optional = false
python-versions = ">=3.7"
files = [
2024-03-08 02:20:47 +00:00
{ file = "SQLAlchemy-2.0.28-cp310-cp310-macosx_10_9_x86_64.whl" , hash = "sha256:e0b148ab0438f72ad21cb004ce3bdaafd28465c4276af66df3b9ecd2037bf252" } ,
{ file = "SQLAlchemy-2.0.28-cp310-cp310-macosx_11_0_arm64.whl" , hash = "sha256:bbda76961eb8f27e6ad3c84d1dc56d5bc61ba8f02bd20fcf3450bd421c2fcc9c" } ,
{ file = "SQLAlchemy-2.0.28-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:feea693c452d85ea0015ebe3bb9cd15b6f49acc1a31c28b3c50f4db0f8fb1e71" } ,
{ file = "SQLAlchemy-2.0.28-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:5da98815f82dce0cb31fd1e873a0cb30934971d15b74e0d78cf21f9e1b05953f" } ,
{ file = "SQLAlchemy-2.0.28-cp310-cp310-musllinux_1_1_aarch64.whl" , hash = "sha256:4a5adf383c73f2d49ad15ff363a8748319ff84c371eed59ffd0127355d6ea1da" } ,
{ file = "SQLAlchemy-2.0.28-cp310-cp310-musllinux_1_1_x86_64.whl" , hash = "sha256:56856b871146bfead25fbcaed098269d90b744eea5cb32a952df00d542cdd368" } ,
{ file = "SQLAlchemy-2.0.28-cp310-cp310-win32.whl" , hash = "sha256:943aa74a11f5806ab68278284a4ddd282d3fb348a0e96db9b42cb81bf731acdc" } ,
{ file = "SQLAlchemy-2.0.28-cp310-cp310-win_amd64.whl" , hash = "sha256:c6c4da4843e0dabde41b8f2e8147438330924114f541949e6318358a56d1875a" } ,
{ file = "SQLAlchemy-2.0.28-cp311-cp311-macosx_10_9_x86_64.whl" , hash = "sha256:46a3d4e7a472bfff2d28db838669fc437964e8af8df8ee1e4548e92710929adc" } ,
{ file = "SQLAlchemy-2.0.28-cp311-cp311-macosx_11_0_arm64.whl" , hash = "sha256:0d3dd67b5d69794cfe82862c002512683b3db038b99002171f624712fa71aeaa" } ,
{ file = "SQLAlchemy-2.0.28-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:c61e2e41656a673b777e2f0cbbe545323dbe0d32312f590b1bc09da1de6c2a02" } ,
{ file = "SQLAlchemy-2.0.28-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:0315d9125a38026227f559488fe7f7cee1bd2fbc19f9fd637739dc50bb6380b2" } ,
{ file = "SQLAlchemy-2.0.28-cp311-cp311-musllinux_1_1_aarch64.whl" , hash = "sha256:af8ce2d31679006e7b747d30a89cd3ac1ec304c3d4c20973f0f4ad58e2d1c4c9" } ,
{ file = "SQLAlchemy-2.0.28-cp311-cp311-musllinux_1_1_x86_64.whl" , hash = "sha256:81ba314a08c7ab701e621b7ad079c0c933c58cdef88593c59b90b996e8b58fa5" } ,
{ file = "SQLAlchemy-2.0.28-cp311-cp311-win32.whl" , hash = "sha256:1ee8bd6d68578e517943f5ebff3afbd93fc65f7ef8f23becab9fa8fb315afb1d" } ,
{ file = "SQLAlchemy-2.0.28-cp311-cp311-win_amd64.whl" , hash = "sha256:ad7acbe95bac70e4e687a4dc9ae3f7a2f467aa6597049eeb6d4a662ecd990bb6" } ,
{ file = "SQLAlchemy-2.0.28-cp312-cp312-macosx_10_9_x86_64.whl" , hash = "sha256:d3499008ddec83127ab286c6f6ec82a34f39c9817f020f75eca96155f9765097" } ,
{ file = "SQLAlchemy-2.0.28-cp312-cp312-macosx_11_0_arm64.whl" , hash = "sha256:9b66fcd38659cab5d29e8de5409cdf91e9986817703e1078b2fdaad731ea66f5" } ,
{ file = "SQLAlchemy-2.0.28-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:bea30da1e76cb1acc5b72e204a920a3a7678d9d52f688f087dc08e54e2754c67" } ,
{ file = "SQLAlchemy-2.0.28-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:124202b4e0edea7f08a4db8c81cc7859012f90a0d14ba2bf07c099aff6e96462" } ,
{ file = "SQLAlchemy-2.0.28-cp312-cp312-musllinux_1_1_aarch64.whl" , hash = "sha256:e23b88c69497a6322b5796c0781400692eca1ae5532821b39ce81a48c395aae9" } ,
{ file = "SQLAlchemy-2.0.28-cp312-cp312-musllinux_1_1_x86_64.whl" , hash = "sha256:4b6303bfd78fb3221847723104d152e5972c22367ff66edf09120fcde5ddc2e2" } ,
{ file = "SQLAlchemy-2.0.28-cp312-cp312-win32.whl" , hash = "sha256:a921002be69ac3ab2cf0c3017c4e6a3377f800f1fca7f254c13b5f1a2f10022c" } ,
{ file = "SQLAlchemy-2.0.28-cp312-cp312-win_amd64.whl" , hash = "sha256:b4a2cf92995635b64876dc141af0ef089c6eea7e05898d8d8865e71a326c0385" } ,
{ file = "SQLAlchemy-2.0.28-cp37-cp37m-macosx_10_9_x86_64.whl" , hash = "sha256:8e91b5e341f8c7f1e5020db8e5602f3ed045a29f8e27f7f565e0bdee3338f2c7" } ,
{ file = "SQLAlchemy-2.0.28-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:45c7b78dfc7278329f27be02c44abc0d69fe235495bb8e16ec7ef1b1a17952db" } ,
{ file = "SQLAlchemy-2.0.28-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:3eba73ef2c30695cb7eabcdb33bb3d0b878595737479e152468f3ba97a9c22a4" } ,
{ file = "SQLAlchemy-2.0.28-cp37-cp37m-musllinux_1_1_aarch64.whl" , hash = "sha256:5df5d1dafb8eee89384fb7a1f79128118bc0ba50ce0db27a40750f6f91aa99d5" } ,
{ file = "SQLAlchemy-2.0.28-cp37-cp37m-musllinux_1_1_x86_64.whl" , hash = "sha256:2858bbab1681ee5406650202950dc8f00e83b06a198741b7c656e63818633526" } ,
{ file = "SQLAlchemy-2.0.28-cp37-cp37m-win32.whl" , hash = "sha256:9461802f2e965de5cff80c5a13bc945abea7edaa1d29360b485c3d2b56cdb075" } ,
{ file = "SQLAlchemy-2.0.28-cp37-cp37m-win_amd64.whl" , hash = "sha256:a6bec1c010a6d65b3ed88c863d56b9ea5eeefdf62b5e39cafd08c65f5ce5198b" } ,
{ file = "SQLAlchemy-2.0.28-cp38-cp38-macosx_10_9_x86_64.whl" , hash = "sha256:843a882cadebecc655a68bd9a5b8aa39b3c52f4a9a5572a3036fb1bb2ccdc197" } ,
{ file = "SQLAlchemy-2.0.28-cp38-cp38-macosx_11_0_arm64.whl" , hash = "sha256:dbb990612c36163c6072723523d2be7c3eb1517bbdd63fe50449f56afafd1133" } ,
{ file = "SQLAlchemy-2.0.28-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:bd7e4baf9161d076b9a7e432fce06217b9bd90cfb8f1d543d6e8c4595627edb9" } ,
{ file = "SQLAlchemy-2.0.28-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:e0a5354cb4de9b64bccb6ea33162cb83e03dbefa0d892db88a672f5aad638a75" } ,
{ file = "SQLAlchemy-2.0.28-cp38-cp38-musllinux_1_1_aarch64.whl" , hash = "sha256:fffcc8edc508801ed2e6a4e7b0d150a62196fd28b4e16ab9f65192e8186102b6" } ,
{ file = "SQLAlchemy-2.0.28-cp38-cp38-musllinux_1_1_x86_64.whl" , hash = "sha256:aca7b6d99a4541b2ebab4494f6c8c2f947e0df4ac859ced575238e1d6ca5716b" } ,
{ file = "SQLAlchemy-2.0.28-cp38-cp38-win32.whl" , hash = "sha256:8c7f10720fc34d14abad5b647bc8202202f4948498927d9f1b4df0fb1cf391b7" } ,
{ file = "SQLAlchemy-2.0.28-cp38-cp38-win_amd64.whl" , hash = "sha256:243feb6882b06a2af68ecf4bec8813d99452a1b62ba2be917ce6283852cf701b" } ,
{ file = "SQLAlchemy-2.0.28-cp39-cp39-macosx_10_9_x86_64.whl" , hash = "sha256:fc4974d3684f28b61b9a90fcb4c41fb340fd4b6a50c04365704a4da5a9603b05" } ,
{ file = "SQLAlchemy-2.0.28-cp39-cp39-macosx_11_0_arm64.whl" , hash = "sha256:87724e7ed2a936fdda2c05dbd99d395c91ea3c96f029a033a4a20e008dd876bf" } ,
{ file = "SQLAlchemy-2.0.28-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:68722e6a550f5de2e3cfe9da6afb9a7dd15ef7032afa5651b0f0c6b3adb8815d" } ,
{ file = "SQLAlchemy-2.0.28-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:328529f7c7f90adcd65aed06a161851f83f475c2f664a898af574893f55d9e53" } ,
{ file = "SQLAlchemy-2.0.28-cp39-cp39-musllinux_1_1_aarch64.whl" , hash = "sha256:df40c16a7e8be7413b885c9bf900d402918cc848be08a59b022478804ea076b8" } ,
{ file = "SQLAlchemy-2.0.28-cp39-cp39-musllinux_1_1_x86_64.whl" , hash = "sha256:426f2fa71331a64f5132369ede5171c52fd1df1bd9727ce621f38b5b24f48750" } ,
{ file = "SQLAlchemy-2.0.28-cp39-cp39-win32.whl" , hash = "sha256:33157920b233bc542ce497a81a2e1452e685a11834c5763933b440fedd1d8e2d" } ,
{ file = "SQLAlchemy-2.0.28-cp39-cp39-win_amd64.whl" , hash = "sha256:2f60843068e432311c886c5f03c4664acaef507cf716f6c60d5fde7265be9d7b" } ,
{ file = "SQLAlchemy-2.0.28-py3-none-any.whl" , hash = "sha256:78bb7e8da0183a8301352d569900d9d3594c48ac21dc1c2ec6b3121ed8b6c986" } ,
{ file = "SQLAlchemy-2.0.28.tar.gz" , hash = "sha256:dd53b6c4e6d960600fd6532b79ee28e2da489322fcf6648738134587faf767b6" } ,
2023-12-11 21:53:30 +00:00
]
[ package . dependencies ]
greenlet = { version = "!=0.4.17" , markers = "platform_machine == \"aarch64\" or platform_machine == \"ppc64le\" or platform_machine == \"x86_64\" or platform_machine == \"amd64\" or platform_machine == \"AMD64\" or platform_machine == \"win32\" or platform_machine == \"WIN32\"" }
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
typing-extensions = ">=4.6.0"
2023-12-11 21:53:30 +00:00
[ package . extras ]
aiomysql = [ "aiomysql (>=0.2.0)" , "greenlet (!=0.4.17)" ]
aioodbc = [ "aioodbc" , "greenlet (!=0.4.17)" ]
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
aiosqlite = [ "aiosqlite" , "greenlet (!=0.4.17)" , "typing_extensions (!=3.10.0.1)" ]
2023-12-11 21:53:30 +00:00
asyncio = [ "greenlet (!=0.4.17)" ]
asyncmy = [ "asyncmy (>=0.2.3,!=0.2.4,!=0.2.6)" , "greenlet (!=0.4.17)" ]
mariadb-connector = [ "mariadb (>=1.0.1,!=1.1.2,!=1.1.5)" ]
mssql = [ "pyodbc" ]
mssql-pymssql = [ "pymssql" ]
mssql-pyodbc = [ "pyodbc" ]
mypy = [ "mypy (>=0.910)" ]
mysql = [ "mysqlclient (>=1.4.0)" ]
mysql-connector = [ "mysql-connector-python" ]
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
oracle = [ "cx_oracle (>=8)" ]
2023-12-11 21:53:30 +00:00
oracle-oracledb = [ "oracledb (>=1.0.1)" ]
postgresql = [ "psycopg2 (>=2.7)" ]
postgresql-asyncpg = [ "asyncpg" , "greenlet (!=0.4.17)" ]
postgresql-pg8000 = [ "pg8000 (>=1.29.1)" ]
postgresql-psycopg = [ "psycopg (>=3.0.7)" ]
postgresql-psycopg2binary = [ "psycopg2-binary" ]
postgresql-psycopg2cffi = [ "psycopg2cffi" ]
postgresql-psycopgbinary = [ "psycopg[binary] (>=3.0.7)" ]
pymysql = [ "pymysql" ]
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
sqlcipher = [ "sqlcipher3_binary" ]
2023-12-11 21:53:30 +00:00
2024-03-15 17:10:47 +00:00
[ [ package ] ]
name = "sqlite-vss"
version = "0.1.2"
description = ""
optional = true
python-versions = ">=3.7"
files = [
{ file = "sqlite_vss-0.1.2-py3-none-macosx_10_6_x86_64.whl" , hash = "sha256:9eefa4207f8b522e32b2747fce44422c773e36710bf807613795218c7ba125f0" } ,
{ file = "sqlite_vss-0.1.2-py3-none-macosx_11_0_arm64.whl" , hash = "sha256:84994eaf7fe700218b258422358c4536a6aca39b96026c308b28630967f954c4" } ,
{ file = "sqlite_vss-0.1.2-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux1_x86_64.whl" , hash = "sha256:e44f03bc4cb214bb77b206519abfb623e3e4795967a569218e288927a7715806" } ,
]
[ package . extras ]
test = [ "pytest" ]
[ [ package ] ]
name = "sqlparse"
version = "0.4.4"
description = "A non-validating SQL parser."
optional = true
python-versions = ">=3.5"
files = [
{ file = "sqlparse-0.4.4-py3-none-any.whl" , hash = "sha256:5430a4fe2ac7d0f93e66f1efc6e1338a41884b7ddf2a350cedd20ccc4d9d28f3" } ,
{ file = "sqlparse-0.4.4.tar.gz" , hash = "sha256:d446183e84b8349fa3061f0fe7f06ca94ba65b426946ffebe6e3e8295332420c" } ,
]
[ package . extras ]
dev = [ "build" , "flake8" ]
doc = [ "sphinx" ]
test = [ "pytest" , "pytest-cov" ]
2023-12-11 21:53:30 +00:00
[ [ package ] ]
name = "stack-data"
version = "0.6.3"
description = "Extract data from python stack frames and tracebacks for informative displays"
optional = false
python-versions = "*"
files = [
{ file = "stack_data-0.6.3-py3-none-any.whl" , hash = "sha256:d5558e0c25a4cb0853cddad3d77da9891a08cb85dd9f9f91b9f8cd66e511e695" } ,
{ file = "stack_data-0.6.3.tar.gz" , hash = "sha256:836a778de4fec4dcd1dcd89ed8abff8a221f58308462e1c4aa2a3cf30148f0b9" } ,
]
[ package . dependencies ]
asttokens = ">=2.1.0"
executing = ">=1.2.0"
pure-eval = "*"
[ package . extras ]
tests = [ "cython" , "littleutils" , "pygments" , "pytest" , "typeguard" ]
2024-03-15 17:10:47 +00:00
[ [ package ] ]
name = "starlette"
version = "0.27.0"
description = "The little ASGI library that shines."
optional = true
python-versions = ">=3.7"
files = [
{ file = "starlette-0.27.0-py3-none-any.whl" , hash = "sha256:918416370e846586541235ccd38a474c08b80443ed31c578a418e2209b3eef91" } ,
{ file = "starlette-0.27.0.tar.gz" , hash = "sha256:6a6b0d042acb8d469a01eba54e9cda6cbd24ac602c4cd016723117d6a7e73b75" } ,
]
[ package . dependencies ]
anyio = ">=3.4.0,<5"
typing-extensions = { version = ">=3.10.0" , markers = "python_version < \"3.10\"" }
[ package . extras ]
full = [ "httpx (>=0.22.0)" , "itsdangerous" , "jinja2" , "python-multipart" , "pyyaml" ]
[ [ package ] ]
name = "streamlit"
version = "1.32.1"
description = "A faster way to build and share data apps"
optional = true
python-versions = ">=3.8, !=3.9.7"
files = [
{ file = "streamlit-1.32.1-py2.py3-none-any.whl" , hash = "sha256:fe30ce26f08a5b50b3cb2b349c49c0ad9d3bba6c5ed2f19aac05e39026a30fcc" } ,
{ file = "streamlit-1.32.1.tar.gz" , hash = "sha256:ec6400496f678852143cbc23c4c43889f78b6c93c2e2756fd8e060cccde4b8fd" } ,
]
[ package . dependencies ]
altair = ">=4.0,<6"
blinker = ">=1.0.0,<2"
cachetools = ">=4.0,<6"
click = ">=7.0,<9"
gitpython = ">=3.0.7,<3.1.19 || >3.1.19,<4"
numpy = ">=1.19.3,<2"
packaging = ">=16.8,<24"
pandas = ">=1.3.0,<3"
pillow = ">=7.1.0,<11"
protobuf = ">=3.20,<5"
pyarrow = ">=7.0"
pydeck = ">=0.8.0b4,<1"
requests = ">=2.27,<3"
rich = ">=10.14.0,<14"
tenacity = ">=8.1.0,<9"
toml = ">=0.10.1,<2"
tornado = ">=6.0.3,<7"
typing-extensions = ">=4.3.0,<5"
watchdog = { version = ">=2.1.5" , markers = "platform_system != \"Darwin\"" }
[ package . extras ]
snowflake = [ "snowflake-connector-python (>=2.8.0)" , "snowflake-snowpark-python (>=0.9.0)" ]
[ [ package ] ]
name = "sympy"
version = "1.12"
description = "Computer algebra system (CAS) in Python"
optional = true
python-versions = ">=3.8"
files = [
{ file = "sympy-1.12-py3-none-any.whl" , hash = "sha256:c3588cd4295d0c0f603d0f2ae780587e64e2efeedb3521e46b9bb1d08d184fa5" } ,
{ file = "sympy-1.12.tar.gz" , hash = "sha256:ebf595c8dac3e0fdc4152c51878b498396ec7f30e7a914d6071e674d49420fb8" } ,
]
[ package . dependencies ]
mpmath = ">=0.19"
2023-12-11 21:53:30 +00:00
[ [ package ] ]
name = "syrupy"
2024-02-07 23:37:01 +00:00
version = "4.6.1"
2023-12-11 21:53:30 +00:00
description = "Pytest Snapshot Test Utility"
optional = false
python-versions = ">=3.8.1,<4"
files = [
2024-02-07 23:37:01 +00:00
{ file = "syrupy-4.6.1-py3-none-any.whl" , hash = "sha256:203e52f9cb9fa749cf683f29bd68f02c16c3bc7e7e5fe8f2fc59bdfe488ce133" } ,
{ file = "syrupy-4.6.1.tar.gz" , hash = "sha256:37a835c9ce7857eeef86d62145885e10b3cb9615bc6abeb4ce404b3f18e1bb36" } ,
2023-12-11 21:53:30 +00:00
]
[ package . dependencies ]
2024-02-07 23:37:01 +00:00
pytest = ">=7.0.0,<9.0.0"
2023-12-11 21:53:30 +00:00
2024-03-15 17:10:47 +00:00
[ [ package ] ]
name = "tabulate"
version = "0.9.0"
description = "Pretty-print tabular data"
optional = true
python-versions = ">=3.7"
files = [
{ file = "tabulate-0.9.0-py3-none-any.whl" , hash = "sha256:024ca478df22e9340661486f85298cff5f6dcdba14f3813e8830015b9ed1948f" } ,
{ file = "tabulate-0.9.0.tar.gz" , hash = "sha256:0095b12bf5966de529c0feb1fa08671671b3368eec77d7ef7ab114be2c068b3c" } ,
]
[ package . extras ]
widechars = [ "wcwidth" ]
[ [ package ] ]
name = "telethon"
version = "1.34.0"
description = "Full-featured Telegram client library for Python 3"
optional = true
python-versions = ">=3.5"
files = [
{ file = "Telethon-1.34.0.tar.gz" , hash = "sha256:55290809a30081fa0bb5052abb7547cbb25d7fbca94f32f13c147504d521804f" } ,
]
[ package . dependencies ]
pyaes = "*"
rsa = "*"
[ package . extras ]
cryptg = [ "cryptg" ]
2023-12-11 21:53:30 +00:00
[ [ package ] ]
name = "tenacity"
version = "8.2.3"
description = "Retry code until it succeeds"
optional = false
python-versions = ">=3.7"
files = [
{ file = "tenacity-8.2.3-py3-none-any.whl" , hash = "sha256:ce510e327a630c9e1beaf17d42e6ffacc88185044ad85cf74c0a8887c6a0f88c" } ,
{ file = "tenacity-8.2.3.tar.gz" , hash = "sha256:5398ef0d78e63f40007c1fb4c0bff96e1911394d2fa8d194f77619c05ff6cc8a" } ,
]
[ package . extras ]
doc = [ "reno" , "sphinx" , "tornado (>=4.5)" ]
[ [ package ] ]
name = "terminado"
2024-03-12 21:55:29 +00:00
version = "0.18.1"
2023-12-11 21:53:30 +00:00
description = "Tornado websocket backend for the Xterm.js Javascript terminal emulator library."
optional = false
python-versions = ">=3.8"
files = [
2024-03-12 21:55:29 +00:00
{ file = "terminado-0.18.1-py3-none-any.whl" , hash = "sha256:a4468e1b37bb318f8a86514f65814e1afc977cf29b3992a4500d9dd305dcceb0" } ,
{ file = "terminado-0.18.1.tar.gz" , hash = "sha256:de09f2c4b85de4765f7714688fff57d3e75bad1f909b589fde880460c753fd2e" } ,
2023-12-11 21:53:30 +00:00
]
[ package . dependencies ]
ptyprocess = { version = "*" , markers = "os_name != \"nt\"" }
pywinpty = { version = ">=1.1.0" , markers = "os_name == \"nt\"" }
tornado = ">=6.1.0"
[ package . extras ]
docs = [ "myst-parser" , "pydata-sphinx-theme" , "sphinx" ]
test = [ "pre-commit" , "pytest (>=7.0)" , "pytest-timeout" ]
typing = [ "mypy (>=1.6,<2.0)" , "traitlets (>=5.11.1)" ]
2024-03-15 17:10:47 +00:00
[ [ package ] ]
name = "threadpoolctl"
version = "3.3.0"
description = "threadpoolctl"
optional = true
python-versions = ">=3.8"
files = [
{ file = "threadpoolctl-3.3.0-py3-none-any.whl" , hash = "sha256:6155be1f4a39f31a18ea70f94a77e0ccd57dced08122ea61109e7da89883781e" } ,
{ file = "threadpoolctl-3.3.0.tar.gz" , hash = "sha256:5dac632b4fa2d43f42130267929af3ba01399ef4bd1882918e92dbc30365d30c" } ,
]
[ [ package ] ]
name = "tidb-vector"
version = "0.0.4"
description = ""
optional = true
python-versions = ">=3.8.1,<4.0"
files = [
{ file = "tidb_vector-0.0.4-py3-none-any.whl" , hash = "sha256:8e10d3f06da3beb5d676b3a6d817df1defb5d35a91945778a072c2452e777a3a" } ,
{ file = "tidb_vector-0.0.4.tar.gz" , hash = "sha256:b2dcd3c437e6e073724f7e0093bb4e48484d41d8f7c8087329335dd3e44403ef" } ,
]
[ package . dependencies ]
numpy = ">=1,<2"
SQLAlchemy = ">=1.4,<3"
2023-12-11 21:53:30 +00:00
[ [ package ] ]
name = "tiktoken"
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
version = "0.5.2"
2023-12-11 21:53:30 +00:00
description = "tiktoken is a fast BPE tokeniser for use with OpenAI's models"
optional = false
python-versions = ">=3.8"
files = [
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
{ file = "tiktoken-0.5.2-cp310-cp310-macosx_10_9_x86_64.whl" , hash = "sha256:8c4e654282ef05ec1bd06ead22141a9a1687991cef2c6a81bdd1284301abc71d" } ,
{ file = "tiktoken-0.5.2-cp310-cp310-macosx_11_0_arm64.whl" , hash = "sha256:7b3134aa24319f42c27718c6967f3c1916a38a715a0fa73d33717ba121231307" } ,
{ file = "tiktoken-0.5.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:6092e6e77730929c8c6a51bb0d7cfdf1b72b63c4d033d6258d1f2ee81052e9e5" } ,
{ file = "tiktoken-0.5.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:72ad8ae2a747622efae75837abba59be6c15a8f31b4ac3c6156bc56ec7a8e631" } ,
{ file = "tiktoken-0.5.2-cp310-cp310-musllinux_1_1_aarch64.whl" , hash = "sha256:51cba7c8711afa0b885445f0637f0fcc366740798c40b981f08c5f984e02c9d1" } ,
{ file = "tiktoken-0.5.2-cp310-cp310-musllinux_1_1_x86_64.whl" , hash = "sha256:3d8c7d2c9313f8e92e987d585ee2ba0f7c40a0de84f4805b093b634f792124f5" } ,
{ file = "tiktoken-0.5.2-cp310-cp310-win_amd64.whl" , hash = "sha256:692eca18c5fd8d1e0dde767f895c17686faaa102f37640e884eecb6854e7cca7" } ,
{ file = "tiktoken-0.5.2-cp311-cp311-macosx_10_9_x86_64.whl" , hash = "sha256:138d173abbf1ec75863ad68ca289d4da30caa3245f3c8d4bfb274c4d629a2f77" } ,
{ file = "tiktoken-0.5.2-cp311-cp311-macosx_11_0_arm64.whl" , hash = "sha256:7388fdd684690973fdc450b47dfd24d7f0cbe658f58a576169baef5ae4658607" } ,
{ file = "tiktoken-0.5.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:a114391790113bcff670c70c24e166a841f7ea8f47ee2fe0e71e08b49d0bf2d4" } ,
{ file = "tiktoken-0.5.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:ca96f001e69f6859dd52926d950cfcc610480e920e576183497ab954e645e6ac" } ,
{ file = "tiktoken-0.5.2-cp311-cp311-musllinux_1_1_aarch64.whl" , hash = "sha256:15fed1dd88e30dfadcdd8e53a8927f04e1f6f81ad08a5ca824858a593ab476c7" } ,
{ file = "tiktoken-0.5.2-cp311-cp311-musllinux_1_1_x86_64.whl" , hash = "sha256:93f8e692db5756f7ea8cb0cfca34638316dcf0841fb8469de8ed7f6a015ba0b0" } ,
{ file = "tiktoken-0.5.2-cp311-cp311-win_amd64.whl" , hash = "sha256:bcae1c4c92df2ffc4fe9f475bf8148dbb0ee2404743168bbeb9dcc4b79dc1fdd" } ,
{ file = "tiktoken-0.5.2-cp312-cp312-macosx_10_9_x86_64.whl" , hash = "sha256:b76a1e17d4eb4357d00f0622d9a48ffbb23401dcf36f9716d9bd9c8e79d421aa" } ,
{ file = "tiktoken-0.5.2-cp312-cp312-macosx_11_0_arm64.whl" , hash = "sha256:01d8b171bb5df4035580bc26d4f5339a6fd58d06f069091899d4a798ea279d3e" } ,
{ file = "tiktoken-0.5.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:42adf7d4fb1ed8de6e0ff2e794a6a15005f056a0d83d22d1d6755a39bffd9e7f" } ,
{ file = "tiktoken-0.5.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:4c3f894dbe0adb44609f3d532b8ea10820d61fdcb288b325a458dfc60fefb7db" } ,
{ file = "tiktoken-0.5.2-cp312-cp312-musllinux_1_1_aarch64.whl" , hash = "sha256:58ccfddb4e62f0df974e8f7e34a667981d9bb553a811256e617731bf1d007d19" } ,
{ file = "tiktoken-0.5.2-cp312-cp312-musllinux_1_1_x86_64.whl" , hash = "sha256:58902a8bad2de4268c2a701f1c844d22bfa3cbcc485b10e8e3e28a050179330b" } ,
{ file = "tiktoken-0.5.2-cp312-cp312-win_amd64.whl" , hash = "sha256:5e39257826d0647fcac403d8fa0a474b30d02ec8ffc012cfaf13083e9b5e82c5" } ,
{ file = "tiktoken-0.5.2-cp38-cp38-macosx_10_9_x86_64.whl" , hash = "sha256:8bde3b0fbf09a23072d39c1ede0e0821f759b4fa254a5f00078909158e90ae1f" } ,
{ file = "tiktoken-0.5.2-cp38-cp38-macosx_11_0_arm64.whl" , hash = "sha256:2ddee082dcf1231ccf3a591d234935e6acf3e82ee28521fe99af9630bc8d2a60" } ,
{ file = "tiktoken-0.5.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:35c057a6a4e777b5966a7540481a75a31429fc1cb4c9da87b71c8b75b5143037" } ,
{ file = "tiktoken-0.5.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:4c4a049b87e28f1dc60509f8eb7790bc8d11f9a70d99b9dd18dfdd81a084ffe6" } ,
{ file = "tiktoken-0.5.2-cp38-cp38-musllinux_1_1_aarch64.whl" , hash = "sha256:5bf5ce759089f4f6521ea6ed89d8f988f7b396e9f4afb503b945f5c949c6bec2" } ,
{ file = "tiktoken-0.5.2-cp38-cp38-musllinux_1_1_x86_64.whl" , hash = "sha256:0c964f554af1a96884e01188f480dad3fc224c4bbcf7af75d4b74c4b74ae0125" } ,
{ file = "tiktoken-0.5.2-cp38-cp38-win_amd64.whl" , hash = "sha256:368dd5726d2e8788e47ea04f32e20f72a2012a8a67af5b0b003d1e059f1d30a3" } ,
{ file = "tiktoken-0.5.2-cp39-cp39-macosx_10_9_x86_64.whl" , hash = "sha256:a2deef9115b8cd55536c0a02c0203512f8deb2447f41585e6d929a0b878a0dd2" } ,
{ file = "tiktoken-0.5.2-cp39-cp39-macosx_11_0_arm64.whl" , hash = "sha256:2ed7d380195affbf886e2f8b92b14edfe13f4768ff5fc8de315adba5b773815e" } ,
{ file = "tiktoken-0.5.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:c76fce01309c8140ffe15eb34ded2bb94789614b7d1d09e206838fc173776a18" } ,
{ file = "tiktoken-0.5.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:60a5654d6a2e2d152637dd9a880b4482267dfc8a86ccf3ab1cec31a8c76bfae8" } ,
{ file = "tiktoken-0.5.2-cp39-cp39-musllinux_1_1_aarch64.whl" , hash = "sha256:41d4d3228e051b779245a8ddd21d4336f8975563e92375662f42d05a19bdff41" } ,
{ file = "tiktoken-0.5.2-cp39-cp39-musllinux_1_1_x86_64.whl" , hash = "sha256:a5c1cdec2c92fcde8c17a50814b525ae6a88e8e5b02030dc120b76e11db93f13" } ,
{ file = "tiktoken-0.5.2-cp39-cp39-win_amd64.whl" , hash = "sha256:84ddb36faedb448a50b246e13d1b6ee3437f60b7169b723a4b2abad75e914f3e" } ,
{ file = "tiktoken-0.5.2.tar.gz" , hash = "sha256:f54c581f134a8ea96ce2023ab221d4d4d81ab614efa0b2fbce926387deb56c80" } ,
2023-12-11 21:53:30 +00:00
]
[ package . dependencies ]
regex = ">=2022.1.18"
requests = ">=2.26.0"
[ package . extras ]
blobfile = [ "blobfile (>=2)" ]
2024-03-15 17:10:47 +00:00
[ [ package ] ]
name = "timescale-vector"
version = "0.0.1"
description = "Python library for storing vector data in Postgres"
optional = true
python-versions = ">=3.7"
files = [
{ file = "timescale-vector-0.0.1.tar.gz" , hash = "sha256:420d088b1d45e98f5b9770c76ddf826521aa6e813cb4997d24355eaeda1a7775" } ,
{ file = "timescale_vector-0.0.1-py3-none-any.whl" , hash = "sha256:81283e8f359387bacd2bd092431a288f34c211968c53b3fed7f3fed1979f39eb" } ,
]
[ package . dependencies ]
asyncpg = "*"
pgvector = "*"
psycopg2 = "*"
[ package . extras ]
dev = [ "python-dotenv" ]
2023-12-11 21:53:30 +00:00
[ [ package ] ]
name = "tinycss2"
version = "1.2.1"
description = "A tiny CSS parser"
optional = false
python-versions = ">=3.7"
files = [
{ file = "tinycss2-1.2.1-py3-none-any.whl" , hash = "sha256:2b80a96d41e7c3914b8cda8bc7f705a4d9c49275616e886103dd839dfc847847" } ,
{ file = "tinycss2-1.2.1.tar.gz" , hash = "sha256:8cff3a8f066c2ec677c06dbc7b45619804a6938478d9d73c284b29d14ecb0627" } ,
]
[ package . dependencies ]
webencodings = ">=0.4"
[ package . extras ]
doc = [ "sphinx" , "sphinx_rtd_theme" ]
test = [ "flake8" , "isort" , "pytest" ]
2024-03-15 17:10:47 +00:00
[ [ package ] ]
name = "tinysegmenter"
version = "0.3"
description = "Very compact Japanese tokenizer"
optional = true
python-versions = "*"
files = [
{ file = "tinysegmenter-0.3.tar.gz" , hash = "sha256:ed1f6d2e806a4758a73be589754384cbadadc7e1a414c81a166fc9adf2d40c6d" } ,
]
[ [ package ] ]
name = "tldextract"
version = "5.1.1"
description = "Accurately separates a URL's subdomain, domain, and public suffix, using the Public Suffix List (PSL). By default, this includes the public ICANN TLDs and their exceptions. You can optionally support the Public Suffix List's private domains as well."
optional = true
python-versions = ">=3.8"
files = [
{ file = "tldextract-5.1.1-py3-none-any.whl" , hash = "sha256:b9c4510a8766d377033b6bace7e9f1f17a891383ced3c5d50c150f181e9e1cc2" } ,
{ file = "tldextract-5.1.1.tar.gz" , hash = "sha256:9b6dbf803cb5636397f0203d48541c0da8ba53babaf0e8a6feda2d88746813d4" } ,
]
[ package . dependencies ]
filelock = ">=3.0.8"
idna = "*"
requests = ">=2.1.0"
requests-file = ">=1.4"
[ package . extras ]
testing = [ "black" , "mypy" , "pytest" , "pytest-gitignore" , "pytest-mock" , "responses" , "ruff" , "tox" , "types-filelock" , "types-requests" ]
2023-12-11 21:53:30 +00:00
[ [ package ] ]
name = "tokenizers"
2024-03-08 02:20:47 +00:00
version = "0.15.2"
2023-12-11 21:53:30 +00:00
description = ""
optional = false
python-versions = ">=3.7"
files = [
2024-03-08 02:20:47 +00:00
{ file = "tokenizers-0.15.2-cp310-cp310-macosx_10_12_x86_64.whl" , hash = "sha256:52f6130c9cbf70544287575a985bf44ae1bda2da7e8c24e97716080593638012" } ,
{ file = "tokenizers-0.15.2-cp310-cp310-macosx_11_0_arm64.whl" , hash = "sha256:054c1cc9c6d68f7ffa4e810b3d5131e0ba511b6e4be34157aa08ee54c2f8d9ee" } ,
{ file = "tokenizers-0.15.2-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl" , hash = "sha256:a9b9b070fdad06e347563b88c278995735292ded1132f8657084989a4c84a6d5" } ,
{ file = "tokenizers-0.15.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:ea621a7eef4b70e1f7a4e84dd989ae3f0eeb50fc8690254eacc08acb623e82f1" } ,
{ file = "tokenizers-0.15.2-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl" , hash = "sha256:cf7fd9a5141634fa3aa8d6b7be362e6ae1b4cda60da81388fa533e0b552c98fd" } ,
{ file = "tokenizers-0.15.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:44f2a832cd0825295f7179eaf173381dc45230f9227ec4b44378322d900447c9" } ,
{ file = "tokenizers-0.15.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:8b9ec69247a23747669ec4b0ca10f8e3dfb3545d550258129bd62291aabe8605" } ,
{ file = "tokenizers-0.15.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:40b6a4c78da863ff26dbd5ad9a8ecc33d8a8d97b535172601cf00aee9d7ce9ce" } ,
{ file = "tokenizers-0.15.2-cp310-cp310-musllinux_1_1_aarch64.whl" , hash = "sha256:5ab2a4d21dcf76af60e05af8063138849eb1d6553a0d059f6534357bce8ba364" } ,
{ file = "tokenizers-0.15.2-cp310-cp310-musllinux_1_1_x86_64.whl" , hash = "sha256:a47acfac7e511f6bbfcf2d3fb8c26979c780a91e06fb5b9a43831b2c0153d024" } ,
{ file = "tokenizers-0.15.2-cp310-none-win32.whl" , hash = "sha256:064ff87bb6acdbd693666de9a4b692add41308a2c0ec0770d6385737117215f2" } ,
{ file = "tokenizers-0.15.2-cp310-none-win_amd64.whl" , hash = "sha256:3b919afe4df7eb6ac7cafd2bd14fb507d3f408db7a68c43117f579c984a73843" } ,
{ file = "tokenizers-0.15.2-cp311-cp311-macosx_10_12_x86_64.whl" , hash = "sha256:89cd1cb93e4b12ff39bb2d626ad77e35209de9309a71e4d3d4672667b4b256e7" } ,
{ file = "tokenizers-0.15.2-cp311-cp311-macosx_11_0_arm64.whl" , hash = "sha256:cfed5c64e5be23d7ee0f0e98081a25c2a46b0b77ce99a4f0605b1ec43dd481fa" } ,
{ file = "tokenizers-0.15.2-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.whl" , hash = "sha256:a907d76dcfda37023ba203ab4ceeb21bc5683436ebefbd895a0841fd52f6f6f2" } ,
{ file = "tokenizers-0.15.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:20ea60479de6fc7b8ae756b4b097572372d7e4032e2521c1bbf3d90c90a99ff0" } ,
{ file = "tokenizers-0.15.2-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl" , hash = "sha256:48e2b9335be2bc0171df9281385c2ed06a15f5cf121c44094338306ab7b33f2c" } ,
{ file = "tokenizers-0.15.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:112a1dd436d2cc06e6ffdc0b06d55ac019a35a63afd26475205cb4b1bf0bfbff" } ,
{ file = "tokenizers-0.15.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:4620cca5c2817177ee8706f860364cc3a8845bc1e291aaf661fb899e5d1c45b0" } ,
{ file = "tokenizers-0.15.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:ccd73a82751c523b3fc31ff8194702e4af4db21dc20e55b30ecc2079c5d43cb7" } ,
{ file = "tokenizers-0.15.2-cp311-cp311-musllinux_1_1_aarch64.whl" , hash = "sha256:107089f135b4ae7817affe6264f8c7a5c5b4fd9a90f9439ed495f54fcea56fb4" } ,
{ file = "tokenizers-0.15.2-cp311-cp311-musllinux_1_1_x86_64.whl" , hash = "sha256:0ff110ecc57b7aa4a594396525a3451ad70988e517237fe91c540997c4e50e29" } ,
{ file = "tokenizers-0.15.2-cp311-none-win32.whl" , hash = "sha256:6d76f00f5c32da36c61f41c58346a4fa7f0a61be02f4301fd30ad59834977cc3" } ,
{ file = "tokenizers-0.15.2-cp311-none-win_amd64.whl" , hash = "sha256:cc90102ed17271cf0a1262babe5939e0134b3890345d11a19c3145184b706055" } ,
{ file = "tokenizers-0.15.2-cp312-cp312-macosx_10_12_x86_64.whl" , hash = "sha256:f86593c18d2e6248e72fb91c77d413a815153b8ea4e31f7cd443bdf28e467670" } ,
{ file = "tokenizers-0.15.2-cp312-cp312-macosx_11_0_arm64.whl" , hash = "sha256:0774bccc6608eca23eb9d620196687c8b2360624619623cf4ba9dc9bd53e8b51" } ,
{ file = "tokenizers-0.15.2-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.whl" , hash = "sha256:d0222c5b7c9b26c0b4822a82f6a7011de0a9d3060e1da176f66274b70f846b98" } ,
{ file = "tokenizers-0.15.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:3835738be1de66624fff2f4f6f6684775da4e9c00bde053be7564cbf3545cc66" } ,
{ file = "tokenizers-0.15.2-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl" , hash = "sha256:0143e7d9dcd811855c1ce1ab9bf5d96d29bf5e528fd6c7824d0465741e8c10fd" } ,
{ file = "tokenizers-0.15.2-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:db35825f6d54215f6b6009a7ff3eedee0848c99a6271c870d2826fbbedf31a38" } ,
{ file = "tokenizers-0.15.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:3f5e64b0389a2be47091d8cc53c87859783b837ea1a06edd9d8e04004df55a5c" } ,
{ file = "tokenizers-0.15.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:9e0480c452217edd35eca56fafe2029fb4d368b7c0475f8dfa3c5c9c400a7456" } ,
{ file = "tokenizers-0.15.2-cp312-cp312-musllinux_1_1_aarch64.whl" , hash = "sha256:a33ab881c8fe70474980577e033d0bc9a27b7ab8272896e500708b212995d834" } ,
{ file = "tokenizers-0.15.2-cp312-cp312-musllinux_1_1_x86_64.whl" , hash = "sha256:a308a607ca9de2c64c1b9ba79ec9a403969715a1b8ba5f998a676826f1a7039d" } ,
{ file = "tokenizers-0.15.2-cp312-none-win32.whl" , hash = "sha256:b8fcfa81bcb9447df582c5bc96a031e6df4da2a774b8080d4f02c0c16b42be0b" } ,
{ file = "tokenizers-0.15.2-cp312-none-win_amd64.whl" , hash = "sha256:38d7ab43c6825abfc0b661d95f39c7f8af2449364f01d331f3b51c94dcff7221" } ,
{ file = "tokenizers-0.15.2-cp313-cp313-macosx_10_12_x86_64.whl" , hash = "sha256:38bfb0204ff3246ca4d5e726e8cc8403bfc931090151e6eede54d0e0cf162ef0" } ,
{ file = "tokenizers-0.15.2-cp313-cp313-macosx_11_0_arm64.whl" , hash = "sha256:9c861d35e8286a53e06e9e28d030b5a05bcbf5ac9d7229e561e53c352a85b1fc" } ,
{ file = "tokenizers-0.15.2-cp313-cp313-manylinux_2_12_i686.manylinux2010_i686.whl" , hash = "sha256:936bf3842db5b2048eaa53dade907b1160f318e7c90c74bfab86f1e47720bdd6" } ,
{ file = "tokenizers-0.15.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:620beacc3373277700d0e27718aa8b25f7b383eb8001fba94ee00aeea1459d89" } ,
{ file = "tokenizers-0.15.2-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl" , hash = "sha256:2735ecbbf37e52db4ea970e539fd2d450d213517b77745114f92867f3fc246eb" } ,
{ file = "tokenizers-0.15.2-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:473c83c5e2359bb81b0b6fde870b41b2764fcdd36d997485e07e72cc3a62264a" } ,
{ file = "tokenizers-0.15.2-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:968fa1fb3c27398b28a4eca1cbd1e19355c4d3a6007f7398d48826bbe3a0f728" } ,
{ file = "tokenizers-0.15.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:865c60ae6eaebdde7da66191ee9b7db52e542ed8ee9d2c653b6d190a9351b980" } ,
{ file = "tokenizers-0.15.2-cp313-cp313-musllinux_1_1_aarch64.whl" , hash = "sha256:7c0d8b52664ab2d4a8d6686eb5effc68b78608a9008f086a122a7b2996befbab" } ,
{ file = "tokenizers-0.15.2-cp313-cp313-musllinux_1_1_x86_64.whl" , hash = "sha256:f33dfbdec3784093a9aebb3680d1f91336c56d86cc70ddf88708251da1fe9064" } ,
{ file = "tokenizers-0.15.2-cp37-cp37m-macosx_10_12_x86_64.whl" , hash = "sha256:d44ba80988ff9424e33e0a49445072ac7029d8c0e1601ad25a0ca5f41ed0c1d6" } ,
{ file = "tokenizers-0.15.2-cp37-cp37m-macosx_11_0_arm64.whl" , hash = "sha256:dce74266919b892f82b1b86025a613956ea0ea62a4843d4c4237be2c5498ed3a" } ,
{ file = "tokenizers-0.15.2-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl" , hash = "sha256:0ef06b9707baeb98b316577acb04f4852239d856b93e9ec3a299622f6084e4be" } ,
{ file = "tokenizers-0.15.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:c73e2e74bbb07910da0d37c326869f34113137b23eadad3fc00856e6b3d9930c" } ,
{ file = "tokenizers-0.15.2-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl" , hash = "sha256:4eeb12daf02a59e29f578a865f55d87cd103ce62bd8a3a5874f8fdeaa82e336b" } ,
{ file = "tokenizers-0.15.2-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:9ba9f6895af58487ca4f54e8a664a322f16c26bbb442effd01087eba391a719e" } ,
{ file = "tokenizers-0.15.2-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:ccec77aa7150e38eec6878a493bf8c263ff1fa8a62404e16c6203c64c1f16a26" } ,
{ file = "tokenizers-0.15.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:f3f40604f5042ff210ba82743dda2b6aa3e55aa12df4e9f2378ee01a17e2855e" } ,
{ file = "tokenizers-0.15.2-cp37-cp37m-musllinux_1_1_aarch64.whl" , hash = "sha256:5645938a42d78c4885086767c70923abad047163d809c16da75d6b290cb30bbe" } ,
{ file = "tokenizers-0.15.2-cp37-cp37m-musllinux_1_1_x86_64.whl" , hash = "sha256:05a77cbfebe28a61ab5c3891f9939cc24798b63fa236d84e5f29f3a85a200c00" } ,
{ file = "tokenizers-0.15.2-cp37-none-win32.whl" , hash = "sha256:361abdc068e8afe9c5b818769a48624687fb6aaed49636ee39bec4e95e1a215b" } ,
{ file = "tokenizers-0.15.2-cp37-none-win_amd64.whl" , hash = "sha256:7ef789f83eb0f9baeb4d09a86cd639c0a5518528f9992f38b28e819df397eb06" } ,
{ file = "tokenizers-0.15.2-cp38-cp38-macosx_10_12_x86_64.whl" , hash = "sha256:4fe1f74a902bee74a3b25aff180fbfbf4f8b444ab37c4d496af7afd13a784ed2" } ,
{ file = "tokenizers-0.15.2-cp38-cp38-macosx_11_0_arm64.whl" , hash = "sha256:4c4b89038a684f40a6b15d6b09f49650ac64d951ad0f2a3ea9169687bbf2a8ba" } ,
{ file = "tokenizers-0.15.2-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl" , hash = "sha256:d05a1b06f986d41aed5f2de464c003004b2df8aaf66f2b7628254bcbfb72a438" } ,
{ file = "tokenizers-0.15.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:508711a108684111ec8af89d3a9e9e08755247eda27d0ba5e3c50e9da1600f6d" } ,
{ file = "tokenizers-0.15.2-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl" , hash = "sha256:daa348f02d15160cb35439098ac96e3a53bacf35885072611cd9e5be7d333daa" } ,
{ file = "tokenizers-0.15.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:494fdbe5932d3416de2a85fc2470b797e6f3226c12845cadf054dd906afd0442" } ,
{ file = "tokenizers-0.15.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:c2d60f5246f4da9373f75ff18d64c69cbf60c3bca597290cea01059c336d2470" } ,
{ file = "tokenizers-0.15.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:93268e788825f52de4c7bdcb6ebc1fcd4a5442c02e730faa9b6b08f23ead0e24" } ,
{ file = "tokenizers-0.15.2-cp38-cp38-musllinux_1_1_aarch64.whl" , hash = "sha256:6fc7083ab404019fc9acafe78662c192673c1e696bd598d16dc005bd663a5cf9" } ,
{ file = "tokenizers-0.15.2-cp38-cp38-musllinux_1_1_x86_64.whl" , hash = "sha256:41e39b41e5531d6b2122a77532dbea60e171ef87a3820b5a3888daa847df4153" } ,
{ file = "tokenizers-0.15.2-cp38-none-win32.whl" , hash = "sha256:06cd0487b1cbfabefb2cc52fbd6b1f8d4c37799bd6c6e1641281adaa6b2504a7" } ,
{ file = "tokenizers-0.15.2-cp38-none-win_amd64.whl" , hash = "sha256:5179c271aa5de9c71712e31cb5a79e436ecd0d7532a408fa42a8dbfa4bc23fd9" } ,
{ file = "tokenizers-0.15.2-cp39-cp39-macosx_10_12_x86_64.whl" , hash = "sha256:82f8652a74cc107052328b87ea8b34291c0f55b96d8fb261b3880216a9f9e48e" } ,
{ file = "tokenizers-0.15.2-cp39-cp39-macosx_11_0_arm64.whl" , hash = "sha256:02458bee6f5f3139f1ebbb6d042b283af712c0981f5bc50edf771d6b762d5e4f" } ,
{ file = "tokenizers-0.15.2-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl" , hash = "sha256:c9a09cd26cca2e1c349f91aa665309ddb48d71636370749414fbf67bc83c5343" } ,
{ file = "tokenizers-0.15.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:158be8ea8554e5ed69acc1ce3fbb23a06060bd4bbb09029431ad6b9a466a7121" } ,
{ file = "tokenizers-0.15.2-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl" , hash = "sha256:1ddba9a2b0c8c81633eca0bb2e1aa5b3a15362b1277f1ae64176d0f6eba78ab1" } ,
{ file = "tokenizers-0.15.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:3ef5dd1d39797044642dbe53eb2bc56435308432e9c7907728da74c69ee2adca" } ,
{ file = "tokenizers-0.15.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:454c203164e07a860dbeb3b1f4a733be52b0edbb4dd2e5bd75023ffa8b49403a" } ,
{ file = "tokenizers-0.15.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:0cf6b7f1d4dc59af960e6ffdc4faffe6460bbfa8dce27a58bf75755ffdb2526d" } ,
{ file = "tokenizers-0.15.2-cp39-cp39-musllinux_1_1_aarch64.whl" , hash = "sha256:2ef09bbc16519f6c25d0c7fc0c6a33a6f62923e263c9d7cca4e58b8c61572afb" } ,
{ file = "tokenizers-0.15.2-cp39-cp39-musllinux_1_1_x86_64.whl" , hash = "sha256:c9a2ebdd2ad4ec7a68e7615086e633857c85e2f18025bd05d2a4399e6c5f7169" } ,
{ file = "tokenizers-0.15.2-cp39-none-win32.whl" , hash = "sha256:918fbb0eab96fe08e72a8c2b5461e9cce95585d82a58688e7f01c2bd546c79d0" } ,
{ file = "tokenizers-0.15.2-cp39-none-win_amd64.whl" , hash = "sha256:524e60da0135e106b254bd71f0659be9f89d83f006ea9093ce4d1fab498c6d0d" } ,
{ file = "tokenizers-0.15.2-pp310-pypy310_pp73-macosx_10_12_x86_64.whl" , hash = "sha256:6a9b648a58281c4672212fab04e60648fde574877d0139cd4b4f93fe28ca8944" } ,
{ file = "tokenizers-0.15.2-pp310-pypy310_pp73-macosx_11_0_arm64.whl" , hash = "sha256:7c7d18b733be6bbca8a55084027f7be428c947ddf871c500ee603e375013ffba" } ,
{ file = "tokenizers-0.15.2-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.whl" , hash = "sha256:13ca3611de8d9ddfbc4dc39ef54ab1d2d4aaa114ac8727dfdc6a6ec4be017378" } ,
{ file = "tokenizers-0.15.2-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:237d1bf3361cf2e6463e6c140628e6406766e8b27274f5fcc62c747ae3c6f094" } ,
{ file = "tokenizers-0.15.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:67a0fe1e49e60c664915e9fb6b0cb19bac082ab1f309188230e4b2920230edb3" } ,
{ file = "tokenizers-0.15.2-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl" , hash = "sha256:4e022fe65e99230b8fd89ebdfea138c24421f91c1a4f4781a8f5016fd5cdfb4d" } ,
{ file = "tokenizers-0.15.2-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl" , hash = "sha256:d857be2df69763362ac699f8b251a8cd3fac9d21893de129bc788f8baaef2693" } ,
{ file = "tokenizers-0.15.2-pp37-pypy37_pp73-macosx_10_12_x86_64.whl" , hash = "sha256:708bb3e4283177236309e698da5fcd0879ce8fd37457d7c266d16b550bcbbd18" } ,
{ file = "tokenizers-0.15.2-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl" , hash = "sha256:64c35e09e9899b72a76e762f9854e8750213f67567787d45f37ce06daf57ca78" } ,
{ file = "tokenizers-0.15.2-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:c1257f4394be0d3b00de8c9e840ca5601d0a4a8438361ce9c2b05c7d25f6057b" } ,
{ file = "tokenizers-0.15.2-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:02272fe48280e0293a04245ca5d919b2c94a48b408b55e858feae9618138aeda" } ,
{ file = "tokenizers-0.15.2-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl" , hash = "sha256:dc3ad9ebc76eabe8b1d7c04d38be884b8f9d60c0cdc09b0aa4e3bcf746de0388" } ,
{ file = "tokenizers-0.15.2-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl" , hash = "sha256:32e16bdeffa7c4f46bf2152172ca511808b952701d13e7c18833c0b73cb5c23f" } ,
{ file = "tokenizers-0.15.2-pp38-pypy38_pp73-macosx_10_12_x86_64.whl" , hash = "sha256:fb16ba563d59003028b678d2361a27f7e4ae0ab29c7a80690efa20d829c81fdb" } ,
{ file = "tokenizers-0.15.2-pp38-pypy38_pp73-macosx_11_0_arm64.whl" , hash = "sha256:2277c36d2d6cdb7876c274547921a42425b6810d38354327dd65a8009acf870c" } ,
{ file = "tokenizers-0.15.2-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl" , hash = "sha256:1cf75d32e8d250781940d07f7eece253f2fe9ecdb1dc7ba6e3833fa17b82fcbc" } ,
{ file = "tokenizers-0.15.2-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:f1b3b31884dc8e9b21508bb76da80ebf7308fdb947a17affce815665d5c4d028" } ,
{ file = "tokenizers-0.15.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:b10122d8d8e30afb43bb1fe21a3619f62c3e2574bff2699cf8af8b0b6c5dc4a3" } ,
{ file = "tokenizers-0.15.2-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl" , hash = "sha256:d88b96ff0fe8e91f6ef01ba50b0d71db5017fa4e3b1d99681cec89a85faf7bf7" } ,
{ file = "tokenizers-0.15.2-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl" , hash = "sha256:37aaec5a52e959892870a7c47cef80c53797c0db9149d458460f4f31e2fb250e" } ,
{ file = "tokenizers-0.15.2-pp39-pypy39_pp73-macosx_10_12_x86_64.whl" , hash = "sha256:e2ea752f2b0fe96eb6e2f3adbbf4d72aaa1272079b0dfa1145507bd6a5d537e6" } ,
{ file = "tokenizers-0.15.2-pp39-pypy39_pp73-macosx_11_0_arm64.whl" , hash = "sha256:4b19a808d8799fda23504a5cd31d2f58e6f52f140380082b352f877017d6342b" } ,
{ file = "tokenizers-0.15.2-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.whl" , hash = "sha256:64c86e5e068ac8b19204419ed8ca90f9d25db20578f5881e337d203b314f4104" } ,
{ file = "tokenizers-0.15.2-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:de19c4dc503c612847edf833c82e9f73cd79926a384af9d801dcf93f110cea4e" } ,
{ file = "tokenizers-0.15.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:ea09acd2fe3324174063d61ad620dec3bcf042b495515f27f638270a7d466e8b" } ,
{ file = "tokenizers-0.15.2-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl" , hash = "sha256:cf27fd43472e07b57cf420eee1e814549203d56de00b5af8659cb99885472f1f" } ,
{ file = "tokenizers-0.15.2-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl" , hash = "sha256:7ca22bd897537a0080521445d91a58886c8c04084a6a19e6c78c586e0cfa92a5" } ,
{ file = "tokenizers-0.15.2.tar.gz" , hash = "sha256:e6e9c6e019dd5484be5beafc775ae6c925f4c69a3487040ed09b45e13df2cb91" } ,
2023-12-11 21:53:30 +00:00
]
[ package . dependencies ]
huggingface_hub = ">=0.16.4,<1.0"
[ package . extras ]
dev = [ "tokenizers[testing]" ]
docs = [ "setuptools_rust" , "sphinx" , "sphinx_rtd_theme" ]
testing = [ "black (==22.3)" , "datasets" , "numpy" , "pytest" , "requests" ]
[ [ package ] ]
name = "toml"
version = "0.10.2"
description = "Python Library for Tom's Obvious, Minimal Language"
optional = false
python-versions = ">=2.6, !=3.0.*, !=3.1.*, !=3.2.*"
files = [
{ file = "toml-0.10.2-py2.py3-none-any.whl" , hash = "sha256:806143ae5bfb6a3c6e736a764057db0e6a0e05e338b5630894a5f779cabb4f9b" } ,
{ file = "toml-0.10.2.tar.gz" , hash = "sha256:b3bda1d108d5dd99f4a20d24d9c348e91c4db7ab1b749200bded2f839ccbe68f" } ,
]
[ [ package ] ]
name = "tomli"
version = "2.0.1"
description = "A lil' TOML parser"
optional = false
python-versions = ">=3.7"
files = [
{ file = "tomli-2.0.1-py3-none-any.whl" , hash = "sha256:939de3e7a6161af0c887ef91b7d41a53e7c5a1ca976325f429cb46ea9bc30ecc" } ,
{ file = "tomli-2.0.1.tar.gz" , hash = "sha256:de526c12914f0c550d15924c62d72abc48d6fe7364aa87328337a31007fe8a4f" } ,
]
2024-03-15 17:10:47 +00:00
[ [ package ] ]
name = "toolz"
version = "0.12.1"
description = "List processing tools and functional utilities"
optional = true
python-versions = ">=3.7"
files = [
{ file = "toolz-0.12.1-py3-none-any.whl" , hash = "sha256:d22731364c07d72eea0a0ad45bafb2c2937ab6fd38a3507bf55eae8744aa7d85" } ,
{ file = "toolz-0.12.1.tar.gz" , hash = "sha256:ecca342664893f177a13dac0e6b41cbd8ac25a358e5f215316d43e2100224f4d" } ,
]
2023-12-11 21:53:30 +00:00
[ [ package ] ]
name = "tornado"
version = "6.4"
description = "Tornado is a Python web framework and asynchronous networking library, originally developed at FriendFeed."
optional = false
python-versions = ">= 3.8"
files = [
{ file = "tornado-6.4-cp38-abi3-macosx_10_9_universal2.whl" , hash = "sha256:02ccefc7d8211e5a7f9e8bc3f9e5b0ad6262ba2fbb683a6443ecc804e5224ce0" } ,
{ file = "tornado-6.4-cp38-abi3-macosx_10_9_x86_64.whl" , hash = "sha256:27787de946a9cffd63ce5814c33f734c627a87072ec7eed71f7fc4417bb16263" } ,
{ file = "tornado-6.4-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:f7894c581ecdcf91666a0912f18ce5e757213999e183ebfc2c3fdbf4d5bd764e" } ,
{ file = "tornado-6.4-cp38-abi3-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:e43bc2e5370a6a8e413e1e1cd0c91bedc5bd62a74a532371042a18ef19e10579" } ,
{ file = "tornado-6.4-cp38-abi3-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:f0251554cdd50b4b44362f73ad5ba7126fc5b2c2895cc62b14a1c2d7ea32f212" } ,
{ file = "tornado-6.4-cp38-abi3-musllinux_1_1_aarch64.whl" , hash = "sha256:fd03192e287fbd0899dd8f81c6fb9cbbc69194d2074b38f384cb6fa72b80e9c2" } ,
{ file = "tornado-6.4-cp38-abi3-musllinux_1_1_i686.whl" , hash = "sha256:88b84956273fbd73420e6d4b8d5ccbe913c65d31351b4c004ae362eba06e1f78" } ,
{ file = "tornado-6.4-cp38-abi3-musllinux_1_1_x86_64.whl" , hash = "sha256:71ddfc23a0e03ef2df1c1397d859868d158c8276a0603b96cf86892bff58149f" } ,
{ file = "tornado-6.4-cp38-abi3-win32.whl" , hash = "sha256:6f8a6c77900f5ae93d8b4ae1196472d0ccc2775cc1dfdc9e7727889145c45052" } ,
{ file = "tornado-6.4-cp38-abi3-win_amd64.whl" , hash = "sha256:10aeaa8006333433da48dec9fe417877f8bcc21f48dda8d661ae79da357b2a63" } ,
{ file = "tornado-6.4.tar.gz" , hash = "sha256:72291fa6e6bc84e626589f1c29d90a5a6d593ef5ae68052ee2ef000dfd273dee" } ,
]
[ [ package ] ]
name = "tqdm"
2024-03-08 02:20:47 +00:00
version = "4.66.2"
2023-12-11 21:53:30 +00:00
description = "Fast, Extensible Progress Meter"
optional = false
python-versions = ">=3.7"
files = [
2024-03-08 02:20:47 +00:00
{ file = "tqdm-4.66.2-py3-none-any.whl" , hash = "sha256:1ee4f8a893eb9bef51c6e35730cebf234d5d0b6bd112b0271e10ed7c24a02bd9" } ,
{ file = "tqdm-4.66.2.tar.gz" , hash = "sha256:6cd52cdf0fef0e0f543299cfc96fec90d7b8a7e88745f411ec33eb44d5ed3531" } ,
2023-12-11 21:53:30 +00:00
]
[ package . dependencies ]
colorama = { version = "*" , markers = "platform_system == \"Windows\"" }
[ package . extras ]
dev = [ "pytest (>=6)" , "pytest-cov" , "pytest-timeout" , "pytest-xdist" ]
notebook = [ "ipywidgets (>=6)" ]
slack = [ "slack-sdk" ]
telegram = [ "requests" ]
[ [ package ] ]
name = "traitlets"
2024-03-12 21:55:29 +00:00
version = "5.14.2"
2023-12-11 21:53:30 +00:00
description = "Traitlets Python configuration system"
optional = false
python-versions = ">=3.8"
files = [
2024-03-12 21:55:29 +00:00
{ file = "traitlets-5.14.2-py3-none-any.whl" , hash = "sha256:fcdf85684a772ddeba87db2f398ce00b40ff550d1528c03c14dbf6a02003cd80" } ,
{ file = "traitlets-5.14.2.tar.gz" , hash = "sha256:8cdd83c040dab7d1dee822678e5f5d100b514f7b72b01615b26fc5718916fdf9" } ,
2023-12-11 21:53:30 +00:00
]
[ package . extras ]
docs = [ "myst-parser" , "pydata-sphinx-theme" , "sphinx" ]
2024-03-12 21:55:29 +00:00
test = [ "argcomplete (>=3.0.3)" , "mypy (>=1.7.0)" , "pre-commit" , "pytest (>=7.0,<8.1)" , "pytest-mock" , "pytest-mypy-testing" ]
2023-12-11 21:53:30 +00:00
2024-03-15 17:10:47 +00:00
[ [ package ] ]
name = "tree-sitter"
version = "0.20.4"
description = "Python bindings for the Tree-Sitter parsing library"
optional = true
python-versions = ">=3.3"
files = [
{ file = "tree_sitter-0.20.4-cp310-cp310-macosx_10_9_universal2.whl" , hash = "sha256:c259b9bcb596e54f54713eb3951226fc834d65289940f4bfdcdf519f08e8e876" } ,
{ file = "tree_sitter-0.20.4-cp310-cp310-macosx_10_9_x86_64.whl" , hash = "sha256:88da7e2e4c69881cd63916cc24ae0b809f96aae331da45b418ae6b2d1ed2ca19" } ,
{ file = "tree_sitter-0.20.4-cp310-cp310-macosx_11_0_arm64.whl" , hash = "sha256:66a68b156ba131e9d8dff4a1f72037f4b368cc50c58f18905a91743ae1d1c795" } ,
{ file = "tree_sitter-0.20.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:ae28e25d551f406807011487bdfb9728041e656b30b554fa7f3391ab64ed69f9" } ,
{ file = "tree_sitter-0.20.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:36b10c9c69e825ba65cf9b0f77668bf33e70d2a5764b64ad6f133f8cc9220f09" } ,
{ file = "tree_sitter-0.20.4-cp310-cp310-musllinux_1_1_aarch64.whl" , hash = "sha256:7c18c64ddd44b75b7e1660b9793753eda427e4b145b6216d4b2d2e9b200c74f2" } ,
{ file = "tree_sitter-0.20.4-cp310-cp310-musllinux_1_1_x86_64.whl" , hash = "sha256:e9e9e594bbefb76ad9ea256f5c87eba7591b4758854d3df83ce4df415933a006" } ,
{ file = "tree_sitter-0.20.4-cp310-cp310-win32.whl" , hash = "sha256:b4755229dc18644fe48bcab974bde09b171fcb6ef625d3cb5ece5c6198f4223e" } ,
{ file = "tree_sitter-0.20.4-cp310-cp310-win_amd64.whl" , hash = "sha256:f792684cee8a46d9194d9f4223810e54ccc704470c5777538d59fbde0a4c91bf" } ,
{ file = "tree_sitter-0.20.4-cp311-cp311-macosx_10_9_universal2.whl" , hash = "sha256:9d22ee75f45836554ee6a11e50dd8f9827941e67c49fce9a0790245b899811a9" } ,
{ file = "tree_sitter-0.20.4-cp311-cp311-macosx_10_9_x86_64.whl" , hash = "sha256:2a0ffd76dd991ba745bb5d0ba1d583bec85726d3ddef8c9685dc8636a619adde" } ,
{ file = "tree_sitter-0.20.4-cp311-cp311-macosx_11_0_arm64.whl" , hash = "sha256:060d4e5b803be0975f1ac46e54a292eab0701296ccd912f6cdac3f7331e29143" } ,
{ file = "tree_sitter-0.20.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:822e02366dbf223697b2b56b8f91aa5b60571f9fe7c998988a381db1c69604e9" } ,
{ file = "tree_sitter-0.20.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:527ca72c6a8f60fa719af37fa86f58b7ad0e07b8f74d1c1c7e926c5c888a7e6b" } ,
{ file = "tree_sitter-0.20.4-cp311-cp311-musllinux_1_1_aarch64.whl" , hash = "sha256:a418ca71309ea7052e076f08d623f33f58eae01a8e8cdc1e6d3a01b5b8ddebfe" } ,
{ file = "tree_sitter-0.20.4-cp311-cp311-musllinux_1_1_x86_64.whl" , hash = "sha256:08c3ba2561b61a83c28ca06a0bce2a5ffcfb6b39f9d27a45e5ebd9cad2bedb7f" } ,
{ file = "tree_sitter-0.20.4-cp311-cp311-win32.whl" , hash = "sha256:8d04c75a389b2de94952d602264852acff8cd3ed1ccf8a2492a080973d5ddd58" } ,
{ file = "tree_sitter-0.20.4-cp311-cp311-win_amd64.whl" , hash = "sha256:ba9215c0e7529d9eb370528e5d99b7389d14a7eae94f07d14fa9dab18f267c62" } ,
{ file = "tree_sitter-0.20.4-cp312-cp312-macosx_10_9_universal2.whl" , hash = "sha256:c4c1af5ed4306071d30970c83ec882520a7bf5d8053996dbc4aa5c59238d4990" } ,
{ file = "tree_sitter-0.20.4-cp312-cp312-macosx_10_9_x86_64.whl" , hash = "sha256:9d70bfa550cf22c9cea9b3c0d18b889fc4f2a7e9dcf1d6cc93f49fa9d4a94954" } ,
{ file = "tree_sitter-0.20.4-cp312-cp312-macosx_11_0_arm64.whl" , hash = "sha256:6de537bca0641775d8d175d37303d54998980fc0d997dd9aa89e16b415bf0cc3" } ,
{ file = "tree_sitter-0.20.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:9b1c0f8c0e3e50267566f5116cdceedf4e23e8c08b55ef3becbe954a11b16e84" } ,
{ file = "tree_sitter-0.20.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:20ef2ee6d9bb8e21713949e5ff769ed670fe1217f95b7eeb6c675788438c1e6e" } ,
{ file = "tree_sitter-0.20.4-cp312-cp312-musllinux_1_1_aarch64.whl" , hash = "sha256:b6fd1c881ab0de5faa67168db2d001eee32be5482cb4e0b21b217689a05b6fe4" } ,
{ file = "tree_sitter-0.20.4-cp312-cp312-musllinux_1_1_x86_64.whl" , hash = "sha256:bf47047420021d50aec529cb66387c90562350b499ddf56ecef1fc8255439e30" } ,
{ file = "tree_sitter-0.20.4-cp312-cp312-win32.whl" , hash = "sha256:c16b48378041fc9702b6aa3480f2ffa49ca8ea58141a862acd569e5a0679655f" } ,
{ file = "tree_sitter-0.20.4-cp312-cp312-win_amd64.whl" , hash = "sha256:973e871167079a1b1d7304d361449253efbe2a6974728ad563cf407bd02ddccb" } ,
{ file = "tree_sitter-0.20.4-cp36-cp36m-macosx_10_9_x86_64.whl" , hash = "sha256:9d33a55598dd18a4d8b869a3417de82a4812c3a7dc7e61cb025ece3e9c3e4e96" } ,
{ file = "tree_sitter-0.20.4-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:7cee6955c2c97fc5927a41c7a8b06647c4b4d9b99b8a1581bf1183435c8cec3e" } ,
{ file = "tree_sitter-0.20.4-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:5022bea67e479ad212be7c05b983a72e297a013efb4e8ea5b5b4d7da79a9fdef" } ,
{ file = "tree_sitter-0.20.4-cp36-cp36m-musllinux_1_1_aarch64.whl" , hash = "sha256:640f60a5b966f0990338f1bf559455c3dcb822bc4329d82b3d42f32a48374dfe" } ,
{ file = "tree_sitter-0.20.4-cp36-cp36m-musllinux_1_1_x86_64.whl" , hash = "sha256:0e83f641fe6f27d91bd4d259fff5d35de1567d3f581b9efe9bbd5be50fe4ddc7" } ,
{ file = "tree_sitter-0.20.4-cp36-cp36m-win32.whl" , hash = "sha256:ce6a85027c66fa3f09d482cc6d41927ea40955f7f33b86aedd26dd932709a2c9" } ,
{ file = "tree_sitter-0.20.4-cp36-cp36m-win_amd64.whl" , hash = "sha256:fe10779347a6c067af29cb37fd4b75fa96c5cb68f587cc9530b70fe3f2a51a55" } ,
{ file = "tree_sitter-0.20.4-cp37-cp37m-macosx_10_9_x86_64.whl" , hash = "sha256:28d5f84e34e276887e3a240b60906ca7e2b51e975f3145c3149ceed977a69508" } ,
{ file = "tree_sitter-0.20.4-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:6c913b65cbe10996116988ac436748f24883b5097e58274223e89bb2c5d1bb1a" } ,
{ file = "tree_sitter-0.20.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:ecaed46241e071752195a628bb97d2b740f2fde9e34f8a74456a4ea8bb26df88" } ,
{ file = "tree_sitter-0.20.4-cp37-cp37m-musllinux_1_1_aarch64.whl" , hash = "sha256:b641e88a97eab002a1736d93ef5a4beac90ea4fd6e25affd1831319b99f456c9" } ,
{ file = "tree_sitter-0.20.4-cp37-cp37m-musllinux_1_1_x86_64.whl" , hash = "sha256:327c40f439c6155e4eee54c4657e4701a04f5f4816d9defdcb836bf65bf83d21" } ,
{ file = "tree_sitter-0.20.4-cp37-cp37m-win32.whl" , hash = "sha256:1b7c1d95f006b3de42fbf4045bd00c273d113e372fcb6a5378e74ed120c12032" } ,
{ file = "tree_sitter-0.20.4-cp37-cp37m-win_amd64.whl" , hash = "sha256:6140d037239a41046f5d34fba5e0374ee697adb4b48b90579c618b5402781c11" } ,
{ file = "tree_sitter-0.20.4-cp38-cp38-macosx_10_9_universal2.whl" , hash = "sha256:f42fd1104efaad8151370f1936e2a488b7337a5d24544a9ab59ba4c4010b1272" } ,
{ file = "tree_sitter-0.20.4-cp38-cp38-macosx_10_9_x86_64.whl" , hash = "sha256:7859717c5d62ee386b3d036cab8ed0f88f8c027b6b4ae476a55a8c5fb8aab713" } ,
{ file = "tree_sitter-0.20.4-cp38-cp38-macosx_11_0_arm64.whl" , hash = "sha256:fdd361fe1cc68db68b4d85165641275e34b86cc26b2bab932790204fa14824dc" } ,
{ file = "tree_sitter-0.20.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:9b8d7539075606027b67764543463ff2bc4e52f4158ef6dc419c9f5625aa5383" } ,
{ file = "tree_sitter-0.20.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:78e76307f05aca6cde72f3307b4d53701f34ae45f2248ceb83d1626051e201fd" } ,
{ file = "tree_sitter-0.20.4-cp38-cp38-musllinux_1_1_aarch64.whl" , hash = "sha256:dd8c352f4577f61098d06cf3feb7fd214259f41b5036b81003860ed54d16b448" } ,
{ file = "tree_sitter-0.20.4-cp38-cp38-musllinux_1_1_x86_64.whl" , hash = "sha256:281f3e5382d1bd7fccc88d1afe68c915565bc24f8b8dd4844079d46c7815b8a7" } ,
{ file = "tree_sitter-0.20.4-cp38-cp38-win32.whl" , hash = "sha256:6a77ac3cdcddd80cdd1fd394318bff99f94f37e08d235aaefccb87e1224946e5" } ,
{ file = "tree_sitter-0.20.4-cp38-cp38-win_amd64.whl" , hash = "sha256:8eee8adf54033dc48eab84b040f4d7b32355a964c4ae0aae5dfbdc4dbc3364ca" } ,
{ file = "tree_sitter-0.20.4-cp39-cp39-macosx_10_9_universal2.whl" , hash = "sha256:e89f6508e30fce05e2c724725d022db30d877817b9d64f933506ffb3a3f4a2c2" } ,
{ file = "tree_sitter-0.20.4-cp39-cp39-macosx_10_9_x86_64.whl" , hash = "sha256:7fb6286bb1fae663c45ff0700ec88fb9b50a81eed2bae8a291f95fcf8cc19547" } ,
{ file = "tree_sitter-0.20.4-cp39-cp39-macosx_11_0_arm64.whl" , hash = "sha256:11e93f8b4bbae04070416a82257a7ab2eb0afb76e093ae3ea73bd63b792f6846" } ,
{ file = "tree_sitter-0.20.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:8250725c5f78929aeb2c71db5dca76f1ef448389ca16f9439161f90978bb8478" } ,
{ file = "tree_sitter-0.20.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:d404a8ca9de9b0843844f0cd4d423f46bc46375ab8afb63b1d8ec01201457ac8" } ,
{ file = "tree_sitter-0.20.4-cp39-cp39-musllinux_1_1_aarch64.whl" , hash = "sha256:0f2422c9ee70ba972dfc3943746e6cf7fc03725a866908950245bda9ccfc7301" } ,
{ file = "tree_sitter-0.20.4-cp39-cp39-musllinux_1_1_x86_64.whl" , hash = "sha256:21a937942e4729abbe778a609d2c218574436cb351c36fba89ef3c8c6066ec78" } ,
{ file = "tree_sitter-0.20.4-cp39-cp39-win32.whl" , hash = "sha256:427a9a39360cc1816e28f8182550e478e4ba983595a2565ab9dfe32ea1b03fd7" } ,
{ file = "tree_sitter-0.20.4-cp39-cp39-win_amd64.whl" , hash = "sha256:7095bb9aff297fa9c6026bf8914fd295997d714d1a6ee9a1edf7282c772f9f64" } ,
{ file = "tree_sitter-0.20.4-pp310-pypy310_pp73-macosx_10_9_x86_64.whl" , hash = "sha256:859260b90f0e3867ae840e39f54e830f607b3bc531bc21deeeeaa8a30cbb89ad" } ,
{ file = "tree_sitter-0.20.4-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:0dfc14be73cf46126660a3aecdd0396e69562ad1a902245225ca7bd29649594e" } ,
{ file = "tree_sitter-0.20.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:5ec46355bf3ff23f54d5e365871ffd3e05cfbc65d1b36a8be7c0bcbda30a1d43" } ,
{ file = "tree_sitter-0.20.4-pp310-pypy310_pp73-win_amd64.whl" , hash = "sha256:d933a942fde39876b99c36f12aa3764e4a555ae9366c10ce6cca8c16341c1bbf" } ,
{ file = "tree_sitter-0.20.4-pp37-pypy37_pp73-macosx_10_9_x86_64.whl" , hash = "sha256:a7eec3b55135fe851a38fa248c9fd75fc3d58ceb6e1865b795e416e4d598c2a1" } ,
{ file = "tree_sitter-0.20.4-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:dfc76225529ee14a53e84413480ce81ec3c44eaa0455c140e961c90ac3118ead" } ,
{ file = "tree_sitter-0.20.4-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:ccf0396e47efffc0b528959a8f2e2346a98297579f867e9e1834c2aad4be829c" } ,
{ file = "tree_sitter-0.20.4-pp37-pypy37_pp73-win_amd64.whl" , hash = "sha256:a15fbabd3bc8e29c48289c156d743e69f5ec72bb125cf44f7adbdaa1937c3da6" } ,
{ file = "tree_sitter-0.20.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl" , hash = "sha256:36f8adf2126f496cf376b6e4b707cba061c25beb17841727eef6f0e083e53e1f" } ,
{ file = "tree_sitter-0.20.4-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:841efb40c116ab0a066924925409a8a4dcffeb39a151c0b2a1c2abe56ad4fb42" } ,
{ file = "tree_sitter-0.20.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:2051e8a70fd8426f27a43dad71d11929a62ce30a9b1eb65bba0ed79e82481592" } ,
{ file = "tree_sitter-0.20.4-pp38-pypy38_pp73-win_amd64.whl" , hash = "sha256:99a3c2824d4cfcffd9f961176891426bde2cb36ece5280c61480be93319c23c4" } ,
{ file = "tree_sitter-0.20.4-pp39-pypy39_pp73-macosx_10_9_x86_64.whl" , hash = "sha256:72830dc85a10430eca3d56739b7efcd7a05459c8d425f08c1aee6179ab7f13a9" } ,
{ file = "tree_sitter-0.20.4-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:4992dd226055b6cd0a4f5661c66b799a73d3eff716302e0f7ab06594ee12d49f" } ,
{ file = "tree_sitter-0.20.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:a66d95bbf92175cdc295d6d77f330942811f02e3aaf3fc64431cb749683b2f7d" } ,
{ file = "tree_sitter-0.20.4-pp39-pypy39_pp73-win_amd64.whl" , hash = "sha256:a25b1087e4f7825b2458dacf5f4b0be2938f78e850e822edca1ff4994b56081a" } ,
{ file = "tree_sitter-0.20.4.tar.gz" , hash = "sha256:6adb123e2f3e56399bbf2359924633c882cc40ee8344885200bca0922f713be5" } ,
]
[ package . dependencies ]
setuptools = { version = ">=60.0.0" , markers = "python_version >= \"3.12\"" }
[ [ package ] ]
name = "tree-sitter-languages"
version = "1.10.2"
description = "Binary Python wheels for all tree sitter languages."
optional = true
python-versions = "*"
files = [
{ file = "tree_sitter_languages-1.10.2-cp310-cp310-macosx_10_9_x86_64.whl" , hash = "sha256:5580348f0b20233b1d5431fa178ccd3d07423ca4a3275df02a44608fd72344b9" } ,
{ file = "tree_sitter_languages-1.10.2-cp310-cp310-macosx_11_0_arm64.whl" , hash = "sha256:103c7466644486b1e9e03850df46fc6aa12f13ca636c74f173270276220ac80b" } ,
{ file = "tree_sitter_languages-1.10.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:d13db84511c6f1a7dc40383b66deafa74dabd8b877e3d65ab253f3719eccafd6" } ,
{ file = "tree_sitter_languages-1.10.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:57adfa32be7e465b54aa72f915f6c78a2b66b227df4f656b5d4fbd1ca7a92b3f" } ,
{ file = "tree_sitter_languages-1.10.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:1c6385e033e460ceb8f33f3f940335f422ef2b763700a04f0089391a68b56153" } ,
{ file = "tree_sitter_languages-1.10.2-cp310-cp310-musllinux_1_1_aarch64.whl" , hash = "sha256:dfa3f38cc5381c5aba01dd7494f59b8a9050e82ff6e06e1233e3a0cbae297e3c" } ,
{ file = "tree_sitter_languages-1.10.2-cp310-cp310-musllinux_1_1_i686.whl" , hash = "sha256:9f195155acf47f8bc5de7cee46ecd07b2f5697f007ba89435b51ef4c0b953ea5" } ,
{ file = "tree_sitter_languages-1.10.2-cp310-cp310-musllinux_1_1_x86_64.whl" , hash = "sha256:2de330e2ac6d7426ca025a3ec0f10d5640c3682c1d0c7702e812dcfb44b58120" } ,
{ file = "tree_sitter_languages-1.10.2-cp310-cp310-win32.whl" , hash = "sha256:c9731cf745f135d9770eeba9bb4e2ff4dabc107b5ae9b8211e919f6b9100ea6d" } ,
{ file = "tree_sitter_languages-1.10.2-cp310-cp310-win_amd64.whl" , hash = "sha256:6dd75851c41d0c3c4987a9b7692d90fa8848706c23115669d8224ffd6571e357" } ,
{ file = "tree_sitter_languages-1.10.2-cp311-cp311-macosx_10_9_x86_64.whl" , hash = "sha256:7eb7d7542b2091c875fe52719209631fca36f8c10fa66970d2c576ae6a1b8289" } ,
{ file = "tree_sitter_languages-1.10.2-cp311-cp311-macosx_11_0_arm64.whl" , hash = "sha256:6b41bcb00974b1c8a1800c7f1bb476a1d15a0463e760ee24872f2d53b08ee424" } ,
{ file = "tree_sitter_languages-1.10.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:6f370cd7845c6c81df05680d5bd96db8a99d32b56f4728c5d05978911130a853" } ,
{ file = "tree_sitter_languages-1.10.2-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:a1dc195c88ef4c72607e112a809a69190e096a2e5ebc6201548b3e05fdd169ad" } ,
{ file = "tree_sitter_languages-1.10.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:9ae34ac314a7170be24998a0f994c1ac80761d8d4bd126af27ee53a023d3b849" } ,
{ file = "tree_sitter_languages-1.10.2-cp311-cp311-musllinux_1_1_aarch64.whl" , hash = "sha256:01b5742d5f5bd675489486b582bd482215880b26dde042c067f8265a6e925d9c" } ,
{ file = "tree_sitter_languages-1.10.2-cp311-cp311-musllinux_1_1_i686.whl" , hash = "sha256:ab1cbc46244d34fd16f21edaa20231b2a57f09f092a06ee3d469f3117e6eb954" } ,
{ file = "tree_sitter_languages-1.10.2-cp311-cp311-musllinux_1_1_x86_64.whl" , hash = "sha256:0b1149e7467a4e92b8a70e6005fe762f880f493cf811fc003554b29f04f5e7c8" } ,
{ file = "tree_sitter_languages-1.10.2-cp311-cp311-win32.whl" , hash = "sha256:049276343962f4696390ee555acc2c1a65873270c66a6cbe5cb0bca83bcdf3c6" } ,
{ file = "tree_sitter_languages-1.10.2-cp311-cp311-win_amd64.whl" , hash = "sha256:7f3fdd468a577f04db3b63454d939e26e360229b53c80361920aa1ebf2cd7491" } ,
{ file = "tree_sitter_languages-1.10.2-cp312-cp312-macosx_10_9_x86_64.whl" , hash = "sha256:c0f4c8b2734c45859edc7fcaaeaab97a074114111b5ba51ab4ec7ed52104763c" } ,
{ file = "tree_sitter_languages-1.10.2-cp312-cp312-macosx_11_0_arm64.whl" , hash = "sha256:eecd3c1244ac3425b7a82ba9125b4ddb45d953bbe61de114c0334fd89b7fe782" } ,
{ file = "tree_sitter_languages-1.10.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:15db3c8510bc39a80147ee7421bf4782c15c09581c1dc2237ea89cefbd95b846" } ,
{ file = "tree_sitter_languages-1.10.2-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:92c6487a6feea683154d3e06e6db68c30e0ae749a7ce4ce90b9e4e46b78c85c7" } ,
{ file = "tree_sitter_languages-1.10.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:6d2f1cd1d1bdd65332f9c2b67d49dcf148cf1ded752851d159ac3e5ee4f4d260" } ,
{ file = "tree_sitter_languages-1.10.2-cp312-cp312-musllinux_1_1_aarch64.whl" , hash = "sha256:976c8039165b8e12f17a01ddee9f4e23ec6e352b165ad29b44d2bf04e2fbe77e" } ,
{ file = "tree_sitter_languages-1.10.2-cp312-cp312-musllinux_1_1_i686.whl" , hash = "sha256:dafbbdf16bf668a580902e1620f4baa1913e79438abcce721a50647564c687b9" } ,
{ file = "tree_sitter_languages-1.10.2-cp312-cp312-musllinux_1_1_x86_64.whl" , hash = "sha256:1aeabd3d60d6d276b73cd8f3739d595b1299d123cc079a317f1a5b3c5461e2ca" } ,
{ file = "tree_sitter_languages-1.10.2-cp312-cp312-win32.whl" , hash = "sha256:fab8ee641914098e8933b87ea3d657bea4dd00723c1ee7038b847b12eeeef4f5" } ,
{ file = "tree_sitter_languages-1.10.2-cp312-cp312-win_amd64.whl" , hash = "sha256:5e606430d736367e5787fa5a7a0c5a1ec9b85eded0b3596bbc0d83532a40810b" } ,
{ file = "tree_sitter_languages-1.10.2-cp37-cp37m-macosx_10_9_x86_64.whl" , hash = "sha256:838d5b48a7ed7a17658721952c77fda4570d2a069f933502653b17e15a9c39c9" } ,
{ file = "tree_sitter_languages-1.10.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:987b3c71b1d278c2889e018ee77b8ee05c384e2e3334dec798f8b611c4ab2d1e" } ,
{ file = "tree_sitter_languages-1.10.2-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:faa00abcb2c819027df58472da055d22fa7dfcb77c77413d8500c32ebe24d38b" } ,
{ file = "tree_sitter_languages-1.10.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:0e102fbbf02322d9201a86a814e79a9734ac80679fdb9682144479044f401a73" } ,
{ file = "tree_sitter_languages-1.10.2-cp37-cp37m-musllinux_1_1_aarch64.whl" , hash = "sha256:8f0b87cf1a7b03174ba18dfd81582be82bfed26803aebfe222bd20e444aba003" } ,
{ file = "tree_sitter_languages-1.10.2-cp37-cp37m-musllinux_1_1_i686.whl" , hash = "sha256:c0f1b9af9cb67f0b942b020da9fdd000aad5e92f2383ae0ba7a330b318d31912" } ,
{ file = "tree_sitter_languages-1.10.2-cp37-cp37m-musllinux_1_1_x86_64.whl" , hash = "sha256:5a4076c921f7a4d31e643843de7dfe040b65b63a238a5aa8d31d93aabe6572aa" } ,
{ file = "tree_sitter_languages-1.10.2-cp37-cp37m-win32.whl" , hash = "sha256:fa6391a3a5d83d32db80815161237b67d70576f090ce5f38339206e917a6f8bd" } ,
{ file = "tree_sitter_languages-1.10.2-cp37-cp37m-win_amd64.whl" , hash = "sha256:55649d3f254585a064121513627cf9788c1cfdadbc5f097f33d5ba750685a4c0" } ,
{ file = "tree_sitter_languages-1.10.2-cp38-cp38-macosx_10_9_x86_64.whl" , hash = "sha256:6f85d1edaa2d22d80d4ea5b6d12b95cf3644017b6c227d0d42854439e02e8893" } ,
{ file = "tree_sitter_languages-1.10.2-cp38-cp38-macosx_11_0_arm64.whl" , hash = "sha256:d78feed4a764ef3141cb54bf00fe94d514d8b6e26e09423e23b4c616fcb7938c" } ,
{ file = "tree_sitter_languages-1.10.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:da1aca27531f9dd5308637d76643372856f0f65d0d28677d1bcf4211e8ed1ad0" } ,
{ file = "tree_sitter_languages-1.10.2-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:1031ea440dafb72237437d754eff8940153a3b051e3d18932ac25e75ce060a15" } ,
{ file = "tree_sitter_languages-1.10.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:99d3249beaef2c9fe558ecc9a97853c260433a849dcc68266d9770d196c2e102" } ,
{ file = "tree_sitter_languages-1.10.2-cp38-cp38-musllinux_1_1_aarch64.whl" , hash = "sha256:59a4450f262a55148fb7e68681522f0c2a2f6b7d89666312a2b32708d8f416e1" } ,
{ file = "tree_sitter_languages-1.10.2-cp38-cp38-musllinux_1_1_i686.whl" , hash = "sha256:ce74eab0e430370d5e15a96b6c6205f93405c177a8b2e71e1526643b2fb9bab1" } ,
{ file = "tree_sitter_languages-1.10.2-cp38-cp38-musllinux_1_1_x86_64.whl" , hash = "sha256:9b4dd2b6b3d24c85dffe33d6c343448869eaf4f41c19ddba662eb5d65d8808f4" } ,
{ file = "tree_sitter_languages-1.10.2-cp38-cp38-win32.whl" , hash = "sha256:92d734fb968fe3927a7596d9f0459f81a8fa7b07e16569476b28e27d0d753348" } ,
{ file = "tree_sitter_languages-1.10.2-cp38-cp38-win_amd64.whl" , hash = "sha256:46a13f7d38f2eeb75f7cf127d1201346093748c270d686131f0cbc50e42870a1" } ,
{ file = "tree_sitter_languages-1.10.2-cp39-cp39-macosx_10_9_x86_64.whl" , hash = "sha256:f8c6a936ae99fdd8857e91f86c11c2f5e507ff30631d141d98132bb7ab2c8638" } ,
{ file = "tree_sitter_languages-1.10.2-cp39-cp39-macosx_11_0_arm64.whl" , hash = "sha256:c283a61423f49cdfa7b5a5dfbb39221e3bd126fca33479cd80749d4d7a6b7349" } ,
{ file = "tree_sitter_languages-1.10.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:76e60be6bdcff923386a54a5edcb6ff33fc38ab0118636a762024fa2bc98de55" } ,
{ file = "tree_sitter_languages-1.10.2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:c00069f9575bd831eabcce2cdfab158dde1ed151e7e5614c2d985ff7d78a7de1" } ,
{ file = "tree_sitter_languages-1.10.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:475ff53203d8a43ccb19bb322fa2fb200d764001cc037793f1fadd714bb343da" } ,
{ file = "tree_sitter_languages-1.10.2-cp39-cp39-musllinux_1_1_aarch64.whl" , hash = "sha256:26fe7c9c412e4141dea87ea4b3592fd12e385465b5bdab106b0d5125754d4f60" } ,
{ file = "tree_sitter_languages-1.10.2-cp39-cp39-musllinux_1_1_i686.whl" , hash = "sha256:8fed27319957458340f24fe14daad467cd45021da034eef583519f83113a8c5e" } ,
{ file = "tree_sitter_languages-1.10.2-cp39-cp39-musllinux_1_1_x86_64.whl" , hash = "sha256:3657a491a7f96cc75a3568ddd062d25f3be82b6a942c68801a7b226ff7130181" } ,
{ file = "tree_sitter_languages-1.10.2-cp39-cp39-win32.whl" , hash = "sha256:33f7d584d01a7a3c893072f34cfc64ec031f3cfe57eebc32da2f8ac046e101a7" } ,
{ file = "tree_sitter_languages-1.10.2-cp39-cp39-win_amd64.whl" , hash = "sha256:1b944af3ee729fa70fc8ae82224a9ff597cdb63addea084e0ea2fa2b0ec39bb7" } ,
]
[ package . dependencies ]
tree-sitter = "*"
2023-12-11 21:53:30 +00:00
[ [ package ] ]
name = "typer"
version = "0.9.0"
description = "Typer, build great CLIs. Easy to code. Based on Python type hints."
optional = true
python-versions = ">=3.6"
files = [
{ file = "typer-0.9.0-py3-none-any.whl" , hash = "sha256:5d96d986a21493606a358cae4461bd8cdf83cbf33a5aa950ae629ca3b51467ee" } ,
{ file = "typer-0.9.0.tar.gz" , hash = "sha256:50922fd79aea2f4751a8e0408ff10d2662bd0c8bbfa84755a699f3bada2978b2" } ,
]
[ package . dependencies ]
click = ">=7.1.1,<9.0.0"
typing-extensions = ">=3.7.4.3"
[ package . extras ]
all = [ "colorama (>=0.4.3,<0.5.0)" , "rich (>=10.11.0,<14.0.0)" , "shellingham (>=1.3.0,<2.0.0)" ]
dev = [ "autoflake (>=1.3.1,<2.0.0)" , "flake8 (>=3.8.3,<4.0.0)" , "pre-commit (>=2.17.0,<3.0.0)" ]
doc = [ "cairosvg (>=2.5.2,<3.0.0)" , "mdx-include (>=1.4.1,<2.0.0)" , "mkdocs (>=1.1.2,<2.0.0)" , "mkdocs-material (>=8.1.4,<9.0.0)" , "pillow (>=9.3.0,<10.0.0)" ]
test = [ "black (>=22.3.0,<23.0.0)" , "coverage (>=6.2,<7.0)" , "isort (>=5.0.6,<6.0.0)" , "mypy (==0.910)" , "pytest (>=4.4.0,<8.0.0)" , "pytest-cov (>=2.10.0,<5.0.0)" , "pytest-sugar (>=0.9.4,<0.10.0)" , "pytest-xdist (>=1.32.0,<4.0.0)" , "rich (>=10.11.0,<14.0.0)" , "shellingham (>=1.3.0,<2.0.0)" ]
2024-03-15 17:10:47 +00:00
[ [ package ] ]
name = "types-awscrt"
version = "0.20.5"
description = "Type annotations and code completion for awscrt"
optional = true
python-versions = ">=3.7,<4.0"
files = [
{ file = "types_awscrt-0.20.5-py3-none-any.whl" , hash = "sha256:79d5bfb01f64701b6cf442e89a37d9c4dc6dbb79a46f2f611739b2418d30ecfd" } ,
{ file = "types_awscrt-0.20.5.tar.gz" , hash = "sha256:61811bbf4de95248939f9276a434be93d2b95f6ccfe8aa94e56999e9778cfcc2" } ,
]
2023-12-11 21:53:30 +00:00
[ [ package ] ]
name = "types-chardet"
version = "5.0.4.6"
description = "Typing stubs for chardet"
optional = false
python-versions = "*"
files = [
{ file = "types-chardet-5.0.4.6.tar.gz" , hash = "sha256:caf4c74cd13ccfd8b3313c314aba943b159de562a2573ed03137402b2bb37818" } ,
{ file = "types_chardet-5.0.4.6-py3-none-any.whl" , hash = "sha256:ea832d87e798abf1e4dfc73767807c2b7fee35d0003ae90348aea4ae00fb004d" } ,
]
[ [ package ] ]
name = "types-protobuf"
2024-03-12 21:55:29 +00:00
version = "4.24.0.20240311"
2023-12-11 21:53:30 +00:00
description = "Typing stubs for protobuf"
optional = false
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
python-versions = ">=3.8"
2023-12-11 21:53:30 +00:00
files = [
2024-03-12 21:55:29 +00:00
{ file = "types-protobuf-4.24.0.20240311.tar.gz" , hash = "sha256:c80426f9fb9b21aee514691e96ab32a5cd694a82e2ac07964b352c3e7e0182bc" } ,
{ file = "types_protobuf-4.24.0.20240311-py3-none-any.whl" , hash = "sha256:8e039486df058141cb221ab99f88c5878c08cca4376db1d84f63279860aa09cd" } ,
2023-12-11 21:53:30 +00:00
]
[ [ package ] ]
name = "types-pyopenssl"
2024-03-12 21:55:29 +00:00
version = "24.0.0.20240311"
2023-12-11 21:53:30 +00:00
description = "Typing stubs for pyOpenSSL"
optional = false
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
python-versions = ">=3.8"
2023-12-11 21:53:30 +00:00
files = [
2024-03-12 21:55:29 +00:00
{ file = "types-pyOpenSSL-24.0.0.20240311.tar.gz" , hash = "sha256:7bca00cfc4e7ef9c5d2663c6a1c068c35798e59670595439f6296e7ba3d58083" } ,
{ file = "types_pyOpenSSL-24.0.0.20240311-py3-none-any.whl" , hash = "sha256:6e8e8bfad34924067333232c93f7fc4b369856d8bea0d5c9d1808cb290ab1972" } ,
2023-12-11 21:53:30 +00:00
]
[ package . dependencies ]
cryptography = ">=35.0.0"
[ [ package ] ]
name = "types-python-dateutil"
2024-03-12 21:55:29 +00:00
version = "2.8.19.20240311"
2023-12-11 21:53:30 +00:00
description = "Typing stubs for python-dateutil"
optional = false
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
python-versions = ">=3.8"
2023-12-11 21:53:30 +00:00
files = [
2024-03-12 21:55:29 +00:00
{ file = "types-python-dateutil-2.8.19.20240311.tar.gz" , hash = "sha256:51178227bbd4cbec35dc9adffbf59d832f20e09842d7dcb8c73b169b8780b7cb" } ,
{ file = "types_python_dateutil-2.8.19.20240311-py3-none-any.whl" , hash = "sha256:ef813da0809aca76472ca88807addbeea98b19339aebe56159ae2f4b4f70857a" } ,
2023-12-11 21:53:30 +00:00
]
[ [ package ] ]
name = "types-pytz"
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
version = "2023.4.0.20240130"
2023-12-11 21:53:30 +00:00
description = "Typing stubs for pytz"
optional = false
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
python-versions = ">=3.8"
2023-12-11 21:53:30 +00:00
files = [
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
{ file = "types-pytz-2023.4.0.20240130.tar.gz" , hash = "sha256:33676a90bf04b19f92c33eec8581136bea2f35ddd12759e579a624a006fd387a" } ,
{ file = "types_pytz-2023.4.0.20240130-py3-none-any.whl" , hash = "sha256:6ce76a9f8fd22bd39b01a59c35bfa2db39b60d11a2f77145e97b730de7e64fe0" } ,
2023-12-11 21:53:30 +00:00
]
[ [ package ] ]
name = "types-pyyaml"
2024-03-12 21:55:29 +00:00
version = "6.0.12.20240311"
2023-12-11 21:53:30 +00:00
description = "Typing stubs for PyYAML"
optional = false
2024-03-12 21:55:29 +00:00
python-versions = ">=3.8"
2023-12-11 21:53:30 +00:00
files = [
2024-03-12 21:55:29 +00:00
{ file = "types-PyYAML-6.0.12.20240311.tar.gz" , hash = "sha256:a9e0f0f88dc835739b0c1ca51ee90d04ca2a897a71af79de9aec5f38cb0a5342" } ,
{ file = "types_PyYAML-6.0.12.20240311-py3-none-any.whl" , hash = "sha256:b845b06a1c7e54b8e5b4c683043de0d9caf205e7434b3edc678ff2411979b8f6" } ,
2023-12-11 21:53:30 +00:00
]
[ [ package ] ]
name = "types-redis"
2024-03-12 21:55:29 +00:00
version = "4.6.0.20240311"
2023-12-11 21:53:30 +00:00
description = "Typing stubs for redis"
optional = false
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
python-versions = ">=3.8"
2023-12-11 21:53:30 +00:00
files = [
2024-03-12 21:55:29 +00:00
{ file = "types-redis-4.6.0.20240311.tar.gz" , hash = "sha256:e049bbdff0e0a1f8e701b64636811291d21bff79bf1e7850850a44055224a85f" } ,
{ file = "types_redis-4.6.0.20240311-py3-none-any.whl" , hash = "sha256:6b9d68a29aba1ee400c823d8e5fe88675282eb69d7211e72fe65dbe54b33daca" } ,
2023-12-11 21:53:30 +00:00
]
[ package . dependencies ]
cryptography = ">=35.0.0"
types-pyOpenSSL = "*"
2024-03-15 17:10:47 +00:00
[ [ package ] ]
name = "types-requests"
version = "2.31.0.6"
description = "Typing stubs for requests"
optional = false
python-versions = ">=3.7"
files = [
{ file = "types-requests-2.31.0.6.tar.gz" , hash = "sha256:cd74ce3b53c461f1228a9b783929ac73a666658f223e28ed29753771477b3bd0" } ,
{ file = "types_requests-2.31.0.6-py3-none-any.whl" , hash = "sha256:a2db9cb228a81da8348b49ad6db3f5519452dd20a9c1e1a868c83c5fe88fd1a9" } ,
]
[ package . dependencies ]
types-urllib3 = "*"
2024-03-08 02:20:47 +00:00
[ [ package ] ]
name = "types-requests"
2024-03-12 21:55:29 +00:00
version = "2.31.0.20240311"
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
description = "Typing stubs for requests"
optional = false
python-versions = ">=3.8"
files = [
2024-03-12 21:55:29 +00:00
{ file = "types-requests-2.31.0.20240311.tar.gz" , hash = "sha256:b1c1b66abfb7fa79aae09097a811c4aa97130eb8831c60e47aee4ca344731ca5" } ,
{ file = "types_requests-2.31.0.20240311-py3-none-any.whl" , hash = "sha256:47872893d65a38e282ee9f277a4ee50d1b28bd592040df7d1fdaffdf3779937d" } ,
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
]
[ package . dependencies ]
urllib3 = ">=2"
2024-03-15 17:10:47 +00:00
[ [ package ] ]
name = "types-s3transfer"
version = "0.10.0"
description = "Type annotations and code completion for s3transfer"
optional = true
python-versions = ">=3.7,<4.0"
files = [
{ file = "types_s3transfer-0.10.0-py3-none-any.whl" , hash = "sha256:44fcdf0097b924a9aab1ee4baa1179081a9559ca62a88c807e2b256893ce688f" } ,
{ file = "types_s3transfer-0.10.0.tar.gz" , hash = "sha256:35e4998c25df7f8985ad69dedc8e4860e8af3b43b7615e940d53c00d413bdc69" } ,
]
2023-12-11 21:53:30 +00:00
[ [ package ] ]
name = "types-toml"
2024-03-12 21:55:29 +00:00
version = "0.10.8.20240310"
2023-12-11 21:53:30 +00:00
description = "Typing stubs for toml"
optional = false
2024-03-12 21:55:29 +00:00
python-versions = ">=3.8"
2023-12-11 21:53:30 +00:00
files = [
2024-03-12 21:55:29 +00:00
{ file = "types-toml-0.10.8.20240310.tar.gz" , hash = "sha256:3d41501302972436a6b8b239c850b26689657e25281b48ff0ec06345b8830331" } ,
{ file = "types_toml-0.10.8.20240310-py3-none-any.whl" , hash = "sha256:627b47775d25fa29977d9c70dc0cbab3f314f32c8d8d0c012f2ef5de7aaec05d" } ,
2023-12-11 21:53:30 +00:00
]
2024-03-15 17:10:47 +00:00
[ [ package ] ]
name = "types-urllib3"
version = "1.26.25.14"
description = "Typing stubs for urllib3"
optional = false
python-versions = "*"
files = [
{ file = "types-urllib3-1.26.25.14.tar.gz" , hash = "sha256:229b7f577c951b8c1b92c1bc2b2fdb0b49847bd2af6d1cc2a2e3dd340f3bda8f" } ,
{ file = "types_urllib3-1.26.25.14-py3-none-any.whl" , hash = "sha256:9683bbb7fb72e32bfe9d2be6e04875fbe1b3eeec3cbb4ea231435aa7fd6b4f0e" } ,
]
[ [ package ] ]
name = "typing"
version = "3.7.4.3"
description = "Type Hints for Python"
optional = true
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*"
files = [
{ file = "typing-3.7.4.3-py2-none-any.whl" , hash = "sha256:283d868f5071ab9ad873e5e52268d611e851c870a2ba354193026f2dfb29d8b5" } ,
{ file = "typing-3.7.4.3.tar.gz" , hash = "sha256:1187fb9c82fd670d10aa07bbb6cfcfe4bdda42d6fab8d5134f04e8c4d0b71cc9" } ,
]
2023-12-11 21:53:30 +00:00
[ [ package ] ]
name = "typing-extensions"
2024-03-08 02:20:47 +00:00
version = "4.10.0"
2023-12-11 21:53:30 +00:00
description = "Backported and Experimental Type Hints for Python 3.8+"
optional = false
python-versions = ">=3.8"
files = [
2024-03-08 02:20:47 +00:00
{ file = "typing_extensions-4.10.0-py3-none-any.whl" , hash = "sha256:69b1a937c3a517342112fb4c6df7e72fc39a38e7891a5730ed4985b5214b5475" } ,
{ file = "typing_extensions-4.10.0.tar.gz" , hash = "sha256:b0abd7c89e8fb96f98db18d86106ff1d90ab692004eb746cf6eda2682f91b3cb" } ,
2023-12-11 21:53:30 +00:00
]
[ [ package ] ]
name = "typing-inspect"
version = "0.9.0"
description = "Runtime inspection utilities for typing module."
optional = false
python-versions = "*"
files = [
{ file = "typing_inspect-0.9.0-py3-none-any.whl" , hash = "sha256:9ee6fc59062311ef8547596ab6b955e1b8aa46242d854bfc78f4f6b0eff35f9f" } ,
{ file = "typing_inspect-0.9.0.tar.gz" , hash = "sha256:b23fc42ff6f6ef6954e4852c1fb512cdd18dbea03134f91f856a95ccc9461f78" } ,
]
[ package . dependencies ]
mypy-extensions = ">=0.3.0"
typing-extensions = ">=3.7.4"
[ [ package ] ]
name = "tzdata"
2024-03-08 02:20:47 +00:00
version = "2024.1"
2023-12-11 21:53:30 +00:00
description = "Provider of IANA time zone data"
optional = false
python-versions = ">=2"
files = [
2024-03-08 02:20:47 +00:00
{ file = "tzdata-2024.1-py2.py3-none-any.whl" , hash = "sha256:9068bc196136463f5245e51efda838afa15aaeca9903f49050dfa2679db4d252" } ,
{ file = "tzdata-2024.1.tar.gz" , hash = "sha256:2674120f8d891909751c38abcdfd386ac0a5a1127954fbc332af6b5ceae07efd" } ,
2023-12-11 21:53:30 +00:00
]
2024-03-15 17:10:47 +00:00
[ [ package ] ]
name = "update-checker"
version = "0.18.0"
description = "A python module that will check for package updates."
optional = true
python-versions = "*"
files = [
{ file = "update_checker-0.18.0-py3-none-any.whl" , hash = "sha256:cbba64760a36fe2640d80d85306e8fe82b6816659190993b7bdabadee4d4bbfd" } ,
{ file = "update_checker-0.18.0.tar.gz" , hash = "sha256:6a2d45bb4ac585884a6b03f9eade9161cedd9e8111545141e9aa9058932acb13" } ,
]
[ package . dependencies ]
requests = ">=2.3.0"
[ package . extras ]
dev = [ "black" , "flake8" , "pytest (>=2.7.3)" ]
lint = [ "black" , "flake8" ]
test = [ "pytest (>=2.7.3)" ]
[ [ package ] ]
name = "upstash-redis"
version = "0.15.0"
description = "Serverless Redis SDK from Upstash"
optional = true
python-versions = ">=3.8,<4.0"
files = [
{ file = "upstash_redis-0.15.0-py3-none-any.whl" , hash = "sha256:4a89913cb2bb2422610bc2a9c8d6b9a9d75d0674c22c5ea8037d35d343ee5846" } ,
{ file = "upstash_redis-0.15.0.tar.gz" , hash = "sha256:910f6a567142167b742c38efecfabf23f47e24fcbddb00a6b5845cb11064c3af" } ,
]
[ package . dependencies ]
aiohttp = ">=3.8.4,<4.0.0"
requests = ">=2.31.0,<3.0.0"
2023-12-11 21:53:30 +00:00
[ [ package ] ]
name = "uri-template"
version = "1.3.0"
description = "RFC 6570 URI Template Processor"
optional = false
python-versions = ">=3.7"
files = [
{ file = "uri-template-1.3.0.tar.gz" , hash = "sha256:0e00f8eb65e18c7de20d595a14336e9f337ead580c70934141624b6d1ffdacc7" } ,
{ file = "uri_template-1.3.0-py3-none-any.whl" , hash = "sha256:a44a133ea12d44a0c0f06d7d42a52d71282e77e2f937d8abd5655b8d56fc1363" } ,
]
[ package . extras ]
dev = [ "flake8" , "flake8-annotations" , "flake8-bandit" , "flake8-bugbear" , "flake8-commas" , "flake8-comprehensions" , "flake8-continuation" , "flake8-datetimez" , "flake8-docstrings" , "flake8-import-order" , "flake8-literal" , "flake8-modern-annotations" , "flake8-noqa" , "flake8-pyproject" , "flake8-requirements" , "flake8-typechecking-import" , "flake8-use-fstring" , "mypy" , "pep8-naming" , "types-PyYAML" ]
2024-03-08 02:20:47 +00:00
[ [ package ] ]
name = "urllib3"
2024-03-15 17:10:47 +00:00
version = "1.26.18"
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
description = "HTTP library with thread-safe connection pooling, file post, and more."
optional = false
2024-03-15 17:10:47 +00:00
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*, !=3.5.*"
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
files = [
2024-03-15 17:10:47 +00:00
{ file = "urllib3-1.26.18-py2.py3-none-any.whl" , hash = "sha256:34b97092d7e0a3a8cf7cd10e386f401b3737364026c45e622aa02903dffe0f07" } ,
{ file = "urllib3-1.26.18.tar.gz" , hash = "sha256:f8ecc1bba5667413457c529ab955bf8c67b45db799d159066261719e328580a0" } ,
]
[ package . extras ]
brotli = [ "brotli (==1.0.9)" , "brotli (>=1.0.9)" , "brotlicffi (>=0.8.0)" , "brotlipy (>=0.6.0)" ]
secure = [ "certifi" , "cryptography (>=1.3.4)" , "idna (>=2.0.0)" , "ipaddress" , "pyOpenSSL (>=0.14)" , "urllib3-secure-extra" ]
socks = [ "PySocks (>=1.5.6,!=1.5.7,<2.0)" ]
[ [ package ] ]
name = "urllib3"
version = "2.0.7"
description = "HTTP library with thread-safe connection pooling, file post, and more."
optional = false
python-versions = ">=3.7"
files = [
{ file = "urllib3-2.0.7-py3-none-any.whl" , hash = "sha256:fdb6d215c776278489906c2f8916e6e7d4f5a9b602ccbcfdf7f016fc8da0596e" } ,
{ file = "urllib3-2.0.7.tar.gz" , hash = "sha256:c97dfde1f7bd43a71c8d2a58e369e9b2bf692d1334ea9f9cae55add7d0dd0f84" } ,
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
]
[ package . extras ]
brotli = [ "brotli (>=1.0.9)" , "brotlicffi (>=0.8.0)" ]
2024-03-15 17:10:47 +00:00
secure = [ "certifi" , "cryptography (>=1.9)" , "idna (>=2.0.0)" , "pyopenssl (>=17.1.0)" , "urllib3-secure-extra" ]
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
socks = [ "pysocks (>=1.5.6,!=1.5.7,<2.0)" ]
zstd = [ "zstandard (>=0.18.0)" ]
2023-12-11 21:53:30 +00:00
[ [ package ] ]
2024-03-15 17:10:47 +00:00
name = "uuid"
version = "1.30"
description = "UUID object and generation functions (Python 2.3 or higher)"
optional = true
python-versions = "*"
files = [
{ file = "uuid-1.30.tar.gz" , hash = "sha256:1f87cc004ac5120466f36c5beae48b4c48cc411968eed0eaecd3da82aa96193f" } ,
]
[ [ package ] ]
name = "uvicorn"
version = "0.23.2"
description = "The lightning-fast ASGI server."
optional = true
python-versions = ">=3.8"
2023-12-11 21:53:30 +00:00
files = [
2024-03-15 17:10:47 +00:00
{ file = "uvicorn-0.23.2-py3-none-any.whl" , hash = "sha256:1f9be6558f01239d4fdf22ef8126c39cb1ad0addf76c40e760549d2c2f43ab53" } ,
{ file = "uvicorn-0.23.2.tar.gz" , hash = "sha256:4d3cc12d7727ba72b64d12d3cc7743124074c0a69f7b201512fc50c3e3f1569a" } ,
2024-02-08 23:28:22 +00:00
]
[ package . dependencies ]
2024-03-15 17:10:47 +00:00
click = ">=7.0"
h11 = ">=0.8"
typing-extensions = { version = ">=4.0" , markers = "python_version < \"3.11\"" }
[ package . extras ]
standard = [ "colorama (>=0.4)" , "httptools (>=0.5.0)" , "python-dotenv (>=0.13)" , "pyyaml (>=5.1)" , "uvloop (>=0.14.0,!=0.15.0,!=0.15.1)" , "watchfiles (>=0.13)" , "websockets (>=10.4)" ]
2024-02-08 23:28:22 +00:00
2023-12-11 21:53:30 +00:00
[ [ package ] ]
name = "vcrpy"
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
version = "6.0.1"
2023-12-11 21:53:30 +00:00
description = "Automatically mock your HTTP interactions to simplify and speed up testing"
optional = false
python-versions = ">=3.8"
files = [
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
{ file = "vcrpy-6.0.1.tar.gz" , hash = "sha256:9e023fee7f892baa0bbda2f7da7c8ac51165c1c6e38ff8688683a12a4bde9278" } ,
2023-12-11 21:53:30 +00:00
]
[ package . dependencies ]
PyYAML = "*"
2024-03-15 17:10:47 +00:00
urllib3 = { version = "<2" , markers = "platform_python_implementation == \"PyPy\" or python_version < \"3.10\"" }
2023-12-11 21:53:30 +00:00
wrapt = "*"
yarl = "*"
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
[ package . extras ]
tests = [ "Werkzeug (==2.0.3)" , "aiohttp" , "boto3" , "httplib2" , "httpx" , "pytest" , "pytest-aiohttp" , "pytest-asyncio" , "pytest-cov" , "pytest-httpbin" , "requests (>=2.22.0)" , "tornado" , "urllib3" ]
2023-12-11 21:53:30 +00:00
[ [ package ] ]
name = "watchdog"
2024-02-07 23:37:01 +00:00
version = "4.0.0"
2023-12-11 21:53:30 +00:00
description = "Filesystem events monitoring"
optional = false
2024-02-07 23:37:01 +00:00
python-versions = ">=3.8"
2023-12-11 21:53:30 +00:00
files = [
2024-02-07 23:37:01 +00:00
{ file = "watchdog-4.0.0-cp310-cp310-macosx_10_9_universal2.whl" , hash = "sha256:39cb34b1f1afbf23e9562501673e7146777efe95da24fab5707b88f7fb11649b" } ,
{ file = "watchdog-4.0.0-cp310-cp310-macosx_10_9_x86_64.whl" , hash = "sha256:c522392acc5e962bcac3b22b9592493ffd06d1fc5d755954e6be9f4990de932b" } ,
{ file = "watchdog-4.0.0-cp310-cp310-macosx_11_0_arm64.whl" , hash = "sha256:6c47bdd680009b11c9ac382163e05ca43baf4127954c5f6d0250e7d772d2b80c" } ,
{ file = "watchdog-4.0.0-cp311-cp311-macosx_10_9_universal2.whl" , hash = "sha256:8350d4055505412a426b6ad8c521bc7d367d1637a762c70fdd93a3a0d595990b" } ,
{ file = "watchdog-4.0.0-cp311-cp311-macosx_10_9_x86_64.whl" , hash = "sha256:c17d98799f32e3f55f181f19dd2021d762eb38fdd381b4a748b9f5a36738e935" } ,
{ file = "watchdog-4.0.0-cp311-cp311-macosx_11_0_arm64.whl" , hash = "sha256:4986db5e8880b0e6b7cd52ba36255d4793bf5cdc95bd6264806c233173b1ec0b" } ,
{ file = "watchdog-4.0.0-cp312-cp312-macosx_10_9_universal2.whl" , hash = "sha256:11e12fafb13372e18ca1bbf12d50f593e7280646687463dd47730fd4f4d5d257" } ,
{ file = "watchdog-4.0.0-cp312-cp312-macosx_10_9_x86_64.whl" , hash = "sha256:5369136a6474678e02426bd984466343924d1df8e2fd94a9b443cb7e3aa20d19" } ,
{ file = "watchdog-4.0.0-cp312-cp312-macosx_11_0_arm64.whl" , hash = "sha256:76ad8484379695f3fe46228962017a7e1337e9acadafed67eb20aabb175df98b" } ,
{ file = "watchdog-4.0.0-cp38-cp38-macosx_10_9_universal2.whl" , hash = "sha256:45cc09cc4c3b43fb10b59ef4d07318d9a3ecdbff03abd2e36e77b6dd9f9a5c85" } ,
{ file = "watchdog-4.0.0-cp38-cp38-macosx_10_9_x86_64.whl" , hash = "sha256:eed82cdf79cd7f0232e2fdc1ad05b06a5e102a43e331f7d041e5f0e0a34a51c4" } ,
{ file = "watchdog-4.0.0-cp38-cp38-macosx_11_0_arm64.whl" , hash = "sha256:ba30a896166f0fee83183cec913298151b73164160d965af2e93a20bbd2ab605" } ,
{ file = "watchdog-4.0.0-cp39-cp39-macosx_10_9_universal2.whl" , hash = "sha256:d18d7f18a47de6863cd480734613502904611730f8def45fc52a5d97503e5101" } ,
{ file = "watchdog-4.0.0-cp39-cp39-macosx_10_9_x86_64.whl" , hash = "sha256:2895bf0518361a9728773083908801a376743bcc37dfa252b801af8fd281b1ca" } ,
{ file = "watchdog-4.0.0-cp39-cp39-macosx_11_0_arm64.whl" , hash = "sha256:87e9df830022488e235dd601478c15ad73a0389628588ba0b028cb74eb72fed8" } ,
{ file = "watchdog-4.0.0-pp310-pypy310_pp73-macosx_10_9_x86_64.whl" , hash = "sha256:6e949a8a94186bced05b6508faa61b7adacc911115664ccb1923b9ad1f1ccf7b" } ,
{ file = "watchdog-4.0.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl" , hash = "sha256:6a4db54edea37d1058b08947c789a2354ee02972ed5d1e0dca9b0b820f4c7f92" } ,
{ file = "watchdog-4.0.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl" , hash = "sha256:d31481ccf4694a8416b681544c23bd271f5a123162ab603c7d7d2dd7dd901a07" } ,
{ file = "watchdog-4.0.0-py3-none-manylinux2014_aarch64.whl" , hash = "sha256:8fec441f5adcf81dd240a5fe78e3d83767999771630b5ddfc5867827a34fa3d3" } ,
{ file = "watchdog-4.0.0-py3-none-manylinux2014_armv7l.whl" , hash = "sha256:6a9c71a0b02985b4b0b6d14b875a6c86ddea2fdbebd0c9a720a806a8bbffc69f" } ,
{ file = "watchdog-4.0.0-py3-none-manylinux2014_i686.whl" , hash = "sha256:557ba04c816d23ce98a06e70af6abaa0485f6d94994ec78a42b05d1c03dcbd50" } ,
{ file = "watchdog-4.0.0-py3-none-manylinux2014_ppc64.whl" , hash = "sha256:d0f9bd1fd919134d459d8abf954f63886745f4660ef66480b9d753a7c9d40927" } ,
{ file = "watchdog-4.0.0-py3-none-manylinux2014_ppc64le.whl" , hash = "sha256:f9b2fdca47dc855516b2d66eef3c39f2672cbf7e7a42e7e67ad2cbfcd6ba107d" } ,
{ file = "watchdog-4.0.0-py3-none-manylinux2014_s390x.whl" , hash = "sha256:73c7a935e62033bd5e8f0da33a4dcb763da2361921a69a5a95aaf6c93aa03a87" } ,
{ file = "watchdog-4.0.0-py3-none-manylinux2014_x86_64.whl" , hash = "sha256:6a80d5cae8c265842c7419c560b9961561556c4361b297b4c431903f8c33b269" } ,
{ file = "watchdog-4.0.0-py3-none-win32.whl" , hash = "sha256:8f9a542c979df62098ae9c58b19e03ad3df1c9d8c6895d96c0d51da17b243b1c" } ,
{ file = "watchdog-4.0.0-py3-none-win_amd64.whl" , hash = "sha256:f970663fa4f7e80401a7b0cbeec00fa801bf0287d93d48368fc3e6fa32716245" } ,
{ file = "watchdog-4.0.0-py3-none-win_ia64.whl" , hash = "sha256:9a03e16e55465177d416699331b0f3564138f1807ecc5f2de9d55d8f188d08c7" } ,
{ file = "watchdog-4.0.0.tar.gz" , hash = "sha256:e3e7065cbdabe6183ab82199d7a4f6b3ba0a438c5a512a68559846ccb76a78ec" } ,
2023-12-11 21:53:30 +00:00
]
[ package . extras ]
watchmedo = [ "PyYAML (>=3.10)" ]
[ [ package ] ]
name = "wcwidth"
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
version = "0.2.13"
2023-12-11 21:53:30 +00:00
description = "Measures the displayed width of unicode strings in a terminal"
optional = false
python-versions = "*"
files = [
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
{ file = "wcwidth-0.2.13-py2.py3-none-any.whl" , hash = "sha256:3da69048e4540d84af32131829ff948f1e022c1c6bdb8d6102117aac784f6859" } ,
{ file = "wcwidth-0.2.13.tar.gz" , hash = "sha256:72ea0c06399eb286d978fdedb6923a9eb47e1c486ce63e9b4e64fc18303972b5" } ,
2023-12-11 21:53:30 +00:00
]
[ [ package ] ]
name = "webcolors"
version = "1.13"
description = "A library for working with the color formats defined by HTML and CSS."
optional = false
python-versions = ">=3.7"
files = [
{ file = "webcolors-1.13-py3-none-any.whl" , hash = "sha256:29bc7e8752c0a1bd4a1f03c14d6e6a72e93d82193738fa860cbff59d0fcc11bf" } ,
{ file = "webcolors-1.13.tar.gz" , hash = "sha256:c225b674c83fa923be93d235330ce0300373d02885cef23238813b0d5668304a" } ,
]
[ package . extras ]
docs = [ "furo" , "sphinx" , "sphinx-copybutton" , "sphinx-inline-tabs" , "sphinx-notfound-page" , "sphinxext-opengraph" ]
tests = [ "pytest" , "pytest-cov" ]
[ [ package ] ]
name = "webencodings"
version = "0.5.1"
description = "Character encoding aliases for legacy web content"
optional = false
python-versions = "*"
files = [
{ file = "webencodings-0.5.1-py2.py3-none-any.whl" , hash = "sha256:a0af1213f3c2226497a97e2b3aa01a7e4bee4f403f95be16fc9acd2947514a78" } ,
{ file = "webencodings-0.5.1.tar.gz" , hash = "sha256:b36a1c245f2d304965eb4e0a82848379241dc04b865afcc4aab16748587e1923" } ,
]
[ [ package ] ]
name = "websocket-client"
version = "1.7.0"
description = "WebSocket client for Python with low level API options"
optional = false
python-versions = ">=3.8"
files = [
{ file = "websocket-client-1.7.0.tar.gz" , hash = "sha256:10e511ea3a8c744631d3bd77e61eb17ed09304c413ad42cf6ddfa4c7787e8fe6" } ,
{ file = "websocket_client-1.7.0-py3-none-any.whl" , hash = "sha256:f4c3d22fec12a2461427a29957ff07d35098ee2d976d3ba244e688b8b4057588" } ,
]
[ package . extras ]
docs = [ "Sphinx (>=6.0)" , "sphinx-rtd-theme (>=1.1.0)" ]
optional = [ "python-socks" , "wsaccel" ]
test = [ "websockets" ]
2024-03-15 17:10:47 +00:00
[ [ package ] ]
name = "websockets"
version = "12.0"
description = "An implementation of the WebSocket Protocol (RFC 6455 & 7692)"
optional = true
python-versions = ">=3.8"
files = [
{ file = "websockets-12.0-cp310-cp310-macosx_10_9_universal2.whl" , hash = "sha256:d554236b2a2006e0ce16315c16eaa0d628dab009c33b63ea03f41c6107958374" } ,
{ file = "websockets-12.0-cp310-cp310-macosx_10_9_x86_64.whl" , hash = "sha256:2d225bb6886591b1746b17c0573e29804619c8f755b5598d875bb4235ea639be" } ,
{ file = "websockets-12.0-cp310-cp310-macosx_11_0_arm64.whl" , hash = "sha256:eb809e816916a3b210bed3c82fb88eaf16e8afcf9c115ebb2bacede1797d2547" } ,
{ file = "websockets-12.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:c588f6abc13f78a67044c6b1273a99e1cf31038ad51815b3b016ce699f0d75c2" } ,
{ file = "websockets-12.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:5aa9348186d79a5f232115ed3fa9020eab66d6c3437d72f9d2c8ac0c6858c558" } ,
{ file = "websockets-12.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:6350b14a40c95ddd53e775dbdbbbc59b124a5c8ecd6fbb09c2e52029f7a9f480" } ,
{ file = "websockets-12.0-cp310-cp310-musllinux_1_1_aarch64.whl" , hash = "sha256:70ec754cc2a769bcd218ed8d7209055667b30860ffecb8633a834dde27d6307c" } ,
{ file = "websockets-12.0-cp310-cp310-musllinux_1_1_i686.whl" , hash = "sha256:6e96f5ed1b83a8ddb07909b45bd94833b0710f738115751cdaa9da1fb0cb66e8" } ,
{ file = "websockets-12.0-cp310-cp310-musllinux_1_1_x86_64.whl" , hash = "sha256:4d87be612cbef86f994178d5186add3d94e9f31cc3cb499a0482b866ec477603" } ,
{ file = "websockets-12.0-cp310-cp310-win32.whl" , hash = "sha256:befe90632d66caaf72e8b2ed4d7f02b348913813c8b0a32fae1cc5fe3730902f" } ,
{ file = "websockets-12.0-cp310-cp310-win_amd64.whl" , hash = "sha256:363f57ca8bc8576195d0540c648aa58ac18cf85b76ad5202b9f976918f4219cf" } ,
{ file = "websockets-12.0-cp311-cp311-macosx_10_9_universal2.whl" , hash = "sha256:5d873c7de42dea355d73f170be0f23788cf3fa9f7bed718fd2830eefedce01b4" } ,
{ file = "websockets-12.0-cp311-cp311-macosx_10_9_x86_64.whl" , hash = "sha256:3f61726cae9f65b872502ff3c1496abc93ffbe31b278455c418492016e2afc8f" } ,
{ file = "websockets-12.0-cp311-cp311-macosx_11_0_arm64.whl" , hash = "sha256:ed2fcf7a07334c77fc8a230755c2209223a7cc44fc27597729b8ef5425aa61a3" } ,
{ file = "websockets-12.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:8e332c210b14b57904869ca9f9bf4ca32f5427a03eeb625da9b616c85a3a506c" } ,
{ file = "websockets-12.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:5693ef74233122f8ebab026817b1b37fe25c411ecfca084b29bc7d6efc548f45" } ,
{ file = "websockets-12.0-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:6e9e7db18b4539a29cc5ad8c8b252738a30e2b13f033c2d6e9d0549b45841c04" } ,
{ file = "websockets-12.0-cp311-cp311-musllinux_1_1_aarch64.whl" , hash = "sha256:6e2df67b8014767d0f785baa98393725739287684b9f8d8a1001eb2839031447" } ,
{ file = "websockets-12.0-cp311-cp311-musllinux_1_1_i686.whl" , hash = "sha256:bea88d71630c5900690fcb03161ab18f8f244805c59e2e0dc4ffadae0a7ee0ca" } ,
{ file = "websockets-12.0-cp311-cp311-musllinux_1_1_x86_64.whl" , hash = "sha256:dff6cdf35e31d1315790149fee351f9e52978130cef6c87c4b6c9b3baf78bc53" } ,
{ file = "websockets-12.0-cp311-cp311-win32.whl" , hash = "sha256:3e3aa8c468af01d70332a382350ee95f6986db479ce7af14d5e81ec52aa2b402" } ,
{ file = "websockets-12.0-cp311-cp311-win_amd64.whl" , hash = "sha256:25eb766c8ad27da0f79420b2af4b85d29914ba0edf69f547cc4f06ca6f1d403b" } ,
{ file = "websockets-12.0-cp312-cp312-macosx_10_9_universal2.whl" , hash = "sha256:0e6e2711d5a8e6e482cacb927a49a3d432345dfe7dea8ace7b5790df5932e4df" } ,
{ file = "websockets-12.0-cp312-cp312-macosx_10_9_x86_64.whl" , hash = "sha256:dbcf72a37f0b3316e993e13ecf32f10c0e1259c28ffd0a85cee26e8549595fbc" } ,
{ file = "websockets-12.0-cp312-cp312-macosx_11_0_arm64.whl" , hash = "sha256:12743ab88ab2af1d17dd4acb4645677cb7063ef4db93abffbf164218a5d54c6b" } ,
{ file = "websockets-12.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:7b645f491f3c48d3f8a00d1fce07445fab7347fec54a3e65f0725d730d5b99cb" } ,
{ file = "websockets-12.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:9893d1aa45a7f8b3bc4510f6ccf8db8c3b62120917af15e3de247f0780294b92" } ,
{ file = "websockets-12.0-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:1f38a7b376117ef7aff996e737583172bdf535932c9ca021746573bce40165ed" } ,
{ file = "websockets-12.0-cp312-cp312-musllinux_1_1_aarch64.whl" , hash = "sha256:f764ba54e33daf20e167915edc443b6f88956f37fb606449b4a5b10ba42235a5" } ,
{ file = "websockets-12.0-cp312-cp312-musllinux_1_1_i686.whl" , hash = "sha256:1e4b3f8ea6a9cfa8be8484c9221ec0257508e3a1ec43c36acdefb2a9c3b00aa2" } ,
{ file = "websockets-12.0-cp312-cp312-musllinux_1_1_x86_64.whl" , hash = "sha256:9fdf06fd06c32205a07e47328ab49c40fc1407cdec801d698a7c41167ea45113" } ,
{ file = "websockets-12.0-cp312-cp312-win32.whl" , hash = "sha256:baa386875b70cbd81798fa9f71be689c1bf484f65fd6fb08d051a0ee4e79924d" } ,
{ file = "websockets-12.0-cp312-cp312-win_amd64.whl" , hash = "sha256:ae0a5da8f35a5be197f328d4727dbcfafa53d1824fac3d96cdd3a642fe09394f" } ,
{ file = "websockets-12.0-cp38-cp38-macosx_10_9_universal2.whl" , hash = "sha256:5f6ffe2c6598f7f7207eef9a1228b6f5c818f9f4d53ee920aacd35cec8110438" } ,
{ file = "websockets-12.0-cp38-cp38-macosx_10_9_x86_64.whl" , hash = "sha256:9edf3fc590cc2ec20dc9d7a45108b5bbaf21c0d89f9fd3fd1685e223771dc0b2" } ,
{ file = "websockets-12.0-cp38-cp38-macosx_11_0_arm64.whl" , hash = "sha256:8572132c7be52632201a35f5e08348137f658e5ffd21f51f94572ca6c05ea81d" } ,
{ file = "websockets-12.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:604428d1b87edbf02b233e2c207d7d528460fa978f9e391bd8aaf9c8311de137" } ,
{ file = "websockets-12.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:1a9d160fd080c6285e202327aba140fc9a0d910b09e423afff4ae5cbbf1c7205" } ,
{ file = "websockets-12.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:87b4aafed34653e465eb77b7c93ef058516cb5acf3eb21e42f33928616172def" } ,
{ file = "websockets-12.0-cp38-cp38-musllinux_1_1_aarch64.whl" , hash = "sha256:b2ee7288b85959797970114deae81ab41b731f19ebcd3bd499ae9ca0e3f1d2c8" } ,
{ file = "websockets-12.0-cp38-cp38-musllinux_1_1_i686.whl" , hash = "sha256:7fa3d25e81bfe6a89718e9791128398a50dec6d57faf23770787ff441d851967" } ,
{ file = "websockets-12.0-cp38-cp38-musllinux_1_1_x86_64.whl" , hash = "sha256:a571f035a47212288e3b3519944f6bf4ac7bc7553243e41eac50dd48552b6df7" } ,
{ file = "websockets-12.0-cp38-cp38-win32.whl" , hash = "sha256:3c6cc1360c10c17463aadd29dd3af332d4a1adaa8796f6b0e9f9df1fdb0bad62" } ,
{ file = "websockets-12.0-cp38-cp38-win_amd64.whl" , hash = "sha256:1bf386089178ea69d720f8db6199a0504a406209a0fc23e603b27b300fdd6892" } ,
{ file = "websockets-12.0-cp39-cp39-macosx_10_9_universal2.whl" , hash = "sha256:ab3d732ad50a4fbd04a4490ef08acd0517b6ae6b77eb967251f4c263011a990d" } ,
{ file = "websockets-12.0-cp39-cp39-macosx_10_9_x86_64.whl" , hash = "sha256:a1d9697f3337a89691e3bd8dc56dea45a6f6d975f92e7d5f773bc715c15dde28" } ,
{ file = "websockets-12.0-cp39-cp39-macosx_11_0_arm64.whl" , hash = "sha256:1df2fbd2c8a98d38a66f5238484405b8d1d16f929bb7a33ed73e4801222a6f53" } ,
{ file = "websockets-12.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:23509452b3bc38e3a057382c2e941d5ac2e01e251acce7adc74011d7d8de434c" } ,
{ file = "websockets-12.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:2e5fc14ec6ea568200ea4ef46545073da81900a2b67b3e666f04adf53ad452ec" } ,
{ file = "websockets-12.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:46e71dbbd12850224243f5d2aeec90f0aaa0f2dde5aeeb8fc8df21e04d99eff9" } ,
{ file = "websockets-12.0-cp39-cp39-musllinux_1_1_aarch64.whl" , hash = "sha256:b81f90dcc6c85a9b7f29873beb56c94c85d6f0dac2ea8b60d995bd18bf3e2aae" } ,
{ file = "websockets-12.0-cp39-cp39-musllinux_1_1_i686.whl" , hash = "sha256:a02413bc474feda2849c59ed2dfb2cddb4cd3d2f03a2fedec51d6e959d9b608b" } ,
{ file = "websockets-12.0-cp39-cp39-musllinux_1_1_x86_64.whl" , hash = "sha256:bbe6013f9f791944ed31ca08b077e26249309639313fff132bfbf3ba105673b9" } ,
{ file = "websockets-12.0-cp39-cp39-win32.whl" , hash = "sha256:cbe83a6bbdf207ff0541de01e11904827540aa069293696dd528a6640bd6a5f6" } ,
{ file = "websockets-12.0-cp39-cp39-win_amd64.whl" , hash = "sha256:fc4e7fa5414512b481a2483775a8e8be7803a35b30ca805afa4998a84f9fd9e8" } ,
{ file = "websockets-12.0-pp310-pypy310_pp73-macosx_10_9_x86_64.whl" , hash = "sha256:248d8e2446e13c1d4326e0a6a4e9629cb13a11195051a73acf414812700badbd" } ,
{ file = "websockets-12.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:f44069528d45a933997a6fef143030d8ca8042f0dfaad753e2906398290e2870" } ,
{ file = "websockets-12.0-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:c4e37d36f0d19f0a4413d3e18c0d03d0c268ada2061868c1e6f5ab1a6d575077" } ,
{ file = "websockets-12.0-pp310-pypy310_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:3d829f975fc2e527a3ef2f9c8f25e553eb7bc779c6665e8e1d52aa22800bb38b" } ,
{ file = "websockets-12.0-pp310-pypy310_pp73-win_amd64.whl" , hash = "sha256:2c71bd45a777433dd9113847af751aae36e448bc6b8c361a566cb043eda6ec30" } ,
{ file = "websockets-12.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl" , hash = "sha256:0bee75f400895aef54157b36ed6d3b308fcab62e5260703add87f44cee9c82a6" } ,
{ file = "websockets-12.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:423fc1ed29f7512fceb727e2d2aecb952c46aa34895e9ed96071821309951123" } ,
{ file = "websockets-12.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:27a5e9964ef509016759f2ef3f2c1e13f403725a5e6a1775555994966a66e931" } ,
{ file = "websockets-12.0-pp38-pypy38_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:c3181df4583c4d3994d31fb235dc681d2aaad744fbdbf94c4802485ececdecf2" } ,
{ file = "websockets-12.0-pp38-pypy38_pp73-win_amd64.whl" , hash = "sha256:b067cb952ce8bf40115f6c19f478dc71c5e719b7fbaa511359795dfd9d1a6468" } ,
{ file = "websockets-12.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl" , hash = "sha256:00700340c6c7ab788f176d118775202aadea7602c5cc6be6ae127761c16d6b0b" } ,
{ file = "websockets-12.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:e469d01137942849cff40517c97a30a93ae79917752b34029f0ec72df6b46399" } ,
{ file = "websockets-12.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:ffefa1374cd508d633646d51a8e9277763a9b78ae71324183693959cf94635a7" } ,
{ file = "websockets-12.0-pp39-pypy39_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:ba0cab91b3956dfa9f512147860783a1829a8d905ee218a9837c18f683239611" } ,
{ file = "websockets-12.0-pp39-pypy39_pp73-win_amd64.whl" , hash = "sha256:2cb388a5bfb56df4d9a406783b7f9dbefb888c09b71629351cc6b036e9259370" } ,
{ file = "websockets-12.0-py3-none-any.whl" , hash = "sha256:dc284bbc8d7c78a6c69e0c7325ab46ee5e40bb4d50e494d8131a07ef47500e9e" } ,
{ file = "websockets-12.0.tar.gz" , hash = "sha256:81df9cbcbb6c260de1e007e58c011bfebe2dafc8435107b0537f393dd38c8b1b" } ,
]
2023-12-11 21:53:30 +00:00
[ [ package ] ]
name = "widgetsnbextension"
2024-03-08 02:20:47 +00:00
version = "4.0.10"
2023-12-11 21:53:30 +00:00
description = "Jupyter interactive widgets for Jupyter Notebook"
optional = false
python-versions = ">=3.7"
files = [
2024-03-08 02:20:47 +00:00
{ file = "widgetsnbextension-4.0.10-py3-none-any.whl" , hash = "sha256:d37c3724ec32d8c48400a435ecfa7d3e259995201fbefa37163124a9fcb393cc" } ,
{ file = "widgetsnbextension-4.0.10.tar.gz" , hash = "sha256:64196c5ff3b9a9183a8e699a4227fb0b7002f252c814098e66c4d1cd0644688f" } ,
2023-12-11 21:53:30 +00:00
]
[ [ package ] ]
name = "wrapt"
version = "1.16.0"
description = "Module for decorators, wrappers and monkey patching."
optional = false
python-versions = ">=3.6"
files = [
{ file = "wrapt-1.16.0-cp310-cp310-macosx_10_9_x86_64.whl" , hash = "sha256:ffa565331890b90056c01db69c0fe634a776f8019c143a5ae265f9c6bc4bd6d4" } ,
{ file = "wrapt-1.16.0-cp310-cp310-macosx_11_0_arm64.whl" , hash = "sha256:e4fdb9275308292e880dcbeb12546df7f3e0f96c6b41197e0cf37d2826359020" } ,
{ file = "wrapt-1.16.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:bb2dee3874a500de01c93d5c71415fcaef1d858370d405824783e7a8ef5db440" } ,
{ file = "wrapt-1.16.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:2a88e6010048489cda82b1326889ec075a8c856c2e6a256072b28eaee3ccf487" } ,
{ file = "wrapt-1.16.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:ac83a914ebaf589b69f7d0a1277602ff494e21f4c2f743313414378f8f50a4cf" } ,
{ file = "wrapt-1.16.0-cp310-cp310-musllinux_1_1_aarch64.whl" , hash = "sha256:73aa7d98215d39b8455f103de64391cb79dfcad601701a3aa0dddacf74911d72" } ,
{ file = "wrapt-1.16.0-cp310-cp310-musllinux_1_1_i686.whl" , hash = "sha256:807cc8543a477ab7422f1120a217054f958a66ef7314f76dd9e77d3f02cdccd0" } ,
{ file = "wrapt-1.16.0-cp310-cp310-musllinux_1_1_x86_64.whl" , hash = "sha256:bf5703fdeb350e36885f2875d853ce13172ae281c56e509f4e6eca049bdfb136" } ,
{ file = "wrapt-1.16.0-cp310-cp310-win32.whl" , hash = "sha256:f6b2d0c6703c988d334f297aa5df18c45e97b0af3679bb75059e0e0bd8b1069d" } ,
{ file = "wrapt-1.16.0-cp310-cp310-win_amd64.whl" , hash = "sha256:decbfa2f618fa8ed81c95ee18a387ff973143c656ef800c9f24fb7e9c16054e2" } ,
{ file = "wrapt-1.16.0-cp311-cp311-macosx_10_9_x86_64.whl" , hash = "sha256:1a5db485fe2de4403f13fafdc231b0dbae5eca4359232d2efc79025527375b09" } ,
{ file = "wrapt-1.16.0-cp311-cp311-macosx_11_0_arm64.whl" , hash = "sha256:75ea7d0ee2a15733684badb16de6794894ed9c55aa5e9903260922f0482e687d" } ,
{ file = "wrapt-1.16.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:a452f9ca3e3267cd4d0fcf2edd0d035b1934ac2bd7e0e57ac91ad6b95c0c6389" } ,
{ file = "wrapt-1.16.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:43aa59eadec7890d9958748db829df269f0368521ba6dc68cc172d5d03ed8060" } ,
{ file = "wrapt-1.16.0-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:72554a23c78a8e7aa02abbd699d129eead8b147a23c56e08d08dfc29cfdddca1" } ,
{ file = "wrapt-1.16.0-cp311-cp311-musllinux_1_1_aarch64.whl" , hash = "sha256:d2efee35b4b0a347e0d99d28e884dfd82797852d62fcd7ebdeee26f3ceb72cf3" } ,
{ file = "wrapt-1.16.0-cp311-cp311-musllinux_1_1_i686.whl" , hash = "sha256:6dcfcffe73710be01d90cae08c3e548d90932d37b39ef83969ae135d36ef3956" } ,
{ file = "wrapt-1.16.0-cp311-cp311-musllinux_1_1_x86_64.whl" , hash = "sha256:eb6e651000a19c96f452c85132811d25e9264d836951022d6e81df2fff38337d" } ,
{ file = "wrapt-1.16.0-cp311-cp311-win32.whl" , hash = "sha256:66027d667efe95cc4fa945af59f92c5a02c6f5bb6012bff9e60542c74c75c362" } ,
{ file = "wrapt-1.16.0-cp311-cp311-win_amd64.whl" , hash = "sha256:aefbc4cb0a54f91af643660a0a150ce2c090d3652cf4052a5397fb2de549cd89" } ,
{ file = "wrapt-1.16.0-cp312-cp312-macosx_10_9_x86_64.whl" , hash = "sha256:5eb404d89131ec9b4f748fa5cfb5346802e5ee8836f57d516576e61f304f3b7b" } ,
{ file = "wrapt-1.16.0-cp312-cp312-macosx_11_0_arm64.whl" , hash = "sha256:9090c9e676d5236a6948330e83cb89969f433b1943a558968f659ead07cb3b36" } ,
{ file = "wrapt-1.16.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:94265b00870aa407bd0cbcfd536f17ecde43b94fb8d228560a1e9d3041462d73" } ,
{ file = "wrapt-1.16.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:f2058f813d4f2b5e3a9eb2eb3faf8f1d99b81c3e51aeda4b168406443e8ba809" } ,
{ file = "wrapt-1.16.0-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:98b5e1f498a8ca1858a1cdbffb023bfd954da4e3fa2c0cb5853d40014557248b" } ,
{ file = "wrapt-1.16.0-cp312-cp312-musllinux_1_1_aarch64.whl" , hash = "sha256:14d7dc606219cdd7405133c713f2c218d4252f2a469003f8c46bb92d5d095d81" } ,
{ file = "wrapt-1.16.0-cp312-cp312-musllinux_1_1_i686.whl" , hash = "sha256:49aac49dc4782cb04f58986e81ea0b4768e4ff197b57324dcbd7699c5dfb40b9" } ,
{ file = "wrapt-1.16.0-cp312-cp312-musllinux_1_1_x86_64.whl" , hash = "sha256:418abb18146475c310d7a6dc71143d6f7adec5b004ac9ce08dc7a34e2babdc5c" } ,
{ file = "wrapt-1.16.0-cp312-cp312-win32.whl" , hash = "sha256:685f568fa5e627e93f3b52fda002c7ed2fa1800b50ce51f6ed1d572d8ab3e7fc" } ,
{ file = "wrapt-1.16.0-cp312-cp312-win_amd64.whl" , hash = "sha256:dcdba5c86e368442528f7060039eda390cc4091bfd1dca41e8046af7c910dda8" } ,
{ file = "wrapt-1.16.0-cp36-cp36m-macosx_10_9_x86_64.whl" , hash = "sha256:d462f28826f4657968ae51d2181a074dfe03c200d6131690b7d65d55b0f360f8" } ,
{ file = "wrapt-1.16.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:a33a747400b94b6d6b8a165e4480264a64a78c8a4c734b62136062e9a248dd39" } ,
{ file = "wrapt-1.16.0-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:b3646eefa23daeba62643a58aac816945cadc0afaf21800a1421eeba5f6cfb9c" } ,
{ file = "wrapt-1.16.0-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:3ebf019be5c09d400cf7b024aa52b1f3aeebeff51550d007e92c3c1c4afc2a40" } ,
{ file = "wrapt-1.16.0-cp36-cp36m-musllinux_1_1_aarch64.whl" , hash = "sha256:0d2691979e93d06a95a26257adb7bfd0c93818e89b1406f5a28f36e0d8c1e1fc" } ,
{ file = "wrapt-1.16.0-cp36-cp36m-musllinux_1_1_i686.whl" , hash = "sha256:1acd723ee2a8826f3d53910255643e33673e1d11db84ce5880675954183ec47e" } ,
{ file = "wrapt-1.16.0-cp36-cp36m-musllinux_1_1_x86_64.whl" , hash = "sha256:bc57efac2da352a51cc4658878a68d2b1b67dbe9d33c36cb826ca449d80a8465" } ,
{ file = "wrapt-1.16.0-cp36-cp36m-win32.whl" , hash = "sha256:da4813f751142436b075ed7aa012a8778aa43a99f7b36afe9b742d3ed8bdc95e" } ,
{ file = "wrapt-1.16.0-cp36-cp36m-win_amd64.whl" , hash = "sha256:6f6eac2360f2d543cc875a0e5efd413b6cbd483cb3ad7ebf888884a6e0d2e966" } ,
{ file = "wrapt-1.16.0-cp37-cp37m-macosx_10_9_x86_64.whl" , hash = "sha256:a0ea261ce52b5952bf669684a251a66df239ec6d441ccb59ec7afa882265d593" } ,
{ file = "wrapt-1.16.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:7bd2d7ff69a2cac767fbf7a2b206add2e9a210e57947dd7ce03e25d03d2de292" } ,
{ file = "wrapt-1.16.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:9159485323798c8dc530a224bd3ffcf76659319ccc7bbd52e01e73bd0241a0c5" } ,
{ file = "wrapt-1.16.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:a86373cf37cd7764f2201b76496aba58a52e76dedfaa698ef9e9688bfd9e41cf" } ,
{ file = "wrapt-1.16.0-cp37-cp37m-musllinux_1_1_aarch64.whl" , hash = "sha256:73870c364c11f03ed072dda68ff7aea6d2a3a5c3fe250d917a429c7432e15228" } ,
{ file = "wrapt-1.16.0-cp37-cp37m-musllinux_1_1_i686.whl" , hash = "sha256:b935ae30c6e7400022b50f8d359c03ed233d45b725cfdd299462f41ee5ffba6f" } ,
{ file = "wrapt-1.16.0-cp37-cp37m-musllinux_1_1_x86_64.whl" , hash = "sha256:db98ad84a55eb09b3c32a96c576476777e87c520a34e2519d3e59c44710c002c" } ,
{ file = "wrapt-1.16.0-cp37-cp37m-win32.whl" , hash = "sha256:9153ed35fc5e4fa3b2fe97bddaa7cbec0ed22412b85bcdaf54aeba92ea37428c" } ,
{ file = "wrapt-1.16.0-cp37-cp37m-win_amd64.whl" , hash = "sha256:66dfbaa7cfa3eb707bbfcd46dab2bc6207b005cbc9caa2199bcbc81d95071a00" } ,
{ file = "wrapt-1.16.0-cp38-cp38-macosx_10_9_x86_64.whl" , hash = "sha256:1dd50a2696ff89f57bd8847647a1c363b687d3d796dc30d4dd4a9d1689a706f0" } ,
{ file = "wrapt-1.16.0-cp38-cp38-macosx_11_0_arm64.whl" , hash = "sha256:44a2754372e32ab315734c6c73b24351d06e77ffff6ae27d2ecf14cf3d229202" } ,
{ file = "wrapt-1.16.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:8e9723528b9f787dc59168369e42ae1c3b0d3fadb2f1a71de14531d321ee05b0" } ,
{ file = "wrapt-1.16.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:dbed418ba5c3dce92619656802cc5355cb679e58d0d89b50f116e4a9d5a9603e" } ,
{ file = "wrapt-1.16.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:941988b89b4fd6b41c3f0bfb20e92bd23746579736b7343283297c4c8cbae68f" } ,
{ file = "wrapt-1.16.0-cp38-cp38-musllinux_1_1_aarch64.whl" , hash = "sha256:6a42cd0cfa8ffc1915aef79cb4284f6383d8a3e9dcca70c445dcfdd639d51267" } ,
{ file = "wrapt-1.16.0-cp38-cp38-musllinux_1_1_i686.whl" , hash = "sha256:1ca9b6085e4f866bd584fb135a041bfc32cab916e69f714a7d1d397f8c4891ca" } ,
{ file = "wrapt-1.16.0-cp38-cp38-musllinux_1_1_x86_64.whl" , hash = "sha256:d5e49454f19ef621089e204f862388d29e6e8d8b162efce05208913dde5b9ad6" } ,
{ file = "wrapt-1.16.0-cp38-cp38-win32.whl" , hash = "sha256:c31f72b1b6624c9d863fc095da460802f43a7c6868c5dda140f51da24fd47d7b" } ,
{ file = "wrapt-1.16.0-cp38-cp38-win_amd64.whl" , hash = "sha256:490b0ee15c1a55be9c1bd8609b8cecd60e325f0575fc98f50058eae366e01f41" } ,
{ file = "wrapt-1.16.0-cp39-cp39-macosx_10_9_x86_64.whl" , hash = "sha256:9b201ae332c3637a42f02d1045e1d0cccfdc41f1f2f801dafbaa7e9b4797bfc2" } ,
{ file = "wrapt-1.16.0-cp39-cp39-macosx_11_0_arm64.whl" , hash = "sha256:2076fad65c6736184e77d7d4729b63a6d1ae0b70da4868adeec40989858eb3fb" } ,
{ file = "wrapt-1.16.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:c5cd603b575ebceca7da5a3a251e69561bec509e0b46e4993e1cac402b7247b8" } ,
{ file = "wrapt-1.16.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:b47cfad9e9bbbed2339081f4e346c93ecd7ab504299403320bf85f7f85c7d46c" } ,
{ file = "wrapt-1.16.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:f8212564d49c50eb4565e502814f694e240c55551a5f1bc841d4fcaabb0a9b8a" } ,
{ file = "wrapt-1.16.0-cp39-cp39-musllinux_1_1_aarch64.whl" , hash = "sha256:5f15814a33e42b04e3de432e573aa557f9f0f56458745c2074952f564c50e664" } ,
{ file = "wrapt-1.16.0-cp39-cp39-musllinux_1_1_i686.whl" , hash = "sha256:db2e408d983b0e61e238cf579c09ef7020560441906ca990fe8412153e3b291f" } ,
{ file = "wrapt-1.16.0-cp39-cp39-musllinux_1_1_x86_64.whl" , hash = "sha256:edfad1d29c73f9b863ebe7082ae9321374ccb10879eeabc84ba3b69f2579d537" } ,
{ file = "wrapt-1.16.0-cp39-cp39-win32.whl" , hash = "sha256:ed867c42c268f876097248e05b6117a65bcd1e63b779e916fe2e33cd6fd0d3c3" } ,
{ file = "wrapt-1.16.0-cp39-cp39-win_amd64.whl" , hash = "sha256:eb1b046be06b0fce7249f1d025cd359b4b80fc1c3e24ad9eca33e0dcdb2e4a35" } ,
{ file = "wrapt-1.16.0-py3-none-any.whl" , hash = "sha256:6906c4100a8fcbf2fa735f6059214bb13b97f75b1a61777fcf6432121ef12ef1" } ,
{ file = "wrapt-1.16.0.tar.gz" , hash = "sha256:5f370f952971e7d17c7d1ead40e49f32345a7f7a5373571ef44d800d06b1899d" } ,
]
2024-03-15 17:10:47 +00:00
[ [ package ] ]
name = "xata"
version = "1.3.1"
description = "Python SDK for Xata.io"
optional = true
python-versions = ">=3.8,<4.0"
files = [
{ file = "xata-1.3.1-py3-none-any.whl" , hash = "sha256:a52877fb2e9704113bc0a6b2107496d9724dd349f6ec64963a0bdde24bca0fd5" } ,
{ file = "xata-1.3.1.tar.gz" , hash = "sha256:72b9fdb7ac4f8ca4df0688d5e4a598d32d421d3e7a030ce44421d7248328d8b5" } ,
]
[ package . dependencies ]
deprecation = ">=2.1.0,<3.0.0"
orjson = ">=3.8.1,<4.0.0"
python-dotenv = ">=0.21,<2.0"
requests = ">=2.28.1,<3.0.0"
[ [ package ] ]
name = "xmltodict"
version = "0.13.0"
description = "Makes working with XML feel like you are working with JSON"
optional = true
python-versions = ">=3.4"
files = [
{ file = "xmltodict-0.13.0-py2.py3-none-any.whl" , hash = "sha256:aa89e8fd76320154a40d19a0df04a4695fb9dc5ba977cbb68ab3e4eb225e7852" } ,
{ file = "xmltodict-0.13.0.tar.gz" , hash = "sha256:341595a488e3e01a85a9d8911d8912fd922ede5fecc4dce437eb4b6c8d037e56" } ,
]
[ [ package ] ]
name = "xxhash"
version = "3.4.1"
description = "Python binding for xxHash"
optional = true
python-versions = ">=3.7"
files = [
{ file = "xxhash-3.4.1-cp310-cp310-macosx_10_9_x86_64.whl" , hash = "sha256:91dbfa55346ad3e18e738742236554531a621042e419b70ad8f3c1d9c7a16e7f" } ,
{ file = "xxhash-3.4.1-cp310-cp310-macosx_11_0_arm64.whl" , hash = "sha256:665a65c2a48a72068fcc4d21721510df5f51f1142541c890491afc80451636d2" } ,
{ file = "xxhash-3.4.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:bb11628470a6004dc71a09fe90c2f459ff03d611376c1debeec2d648f44cb693" } ,
{ file = "xxhash-3.4.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:5bef2a7dc7b4f4beb45a1edbba9b9194c60a43a89598a87f1a0226d183764189" } ,
{ file = "xxhash-3.4.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:9c0f7b2d547d72c7eda7aa817acf8791f0146b12b9eba1d4432c531fb0352228" } ,
{ file = "xxhash-3.4.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:00f2fdef6b41c9db3d2fc0e7f94cb3db86693e5c45d6de09625caad9a469635b" } ,
{ file = "xxhash-3.4.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:23cfd9ca09acaf07a43e5a695143d9a21bf00f5b49b15c07d5388cadf1f9ce11" } ,
{ file = "xxhash-3.4.1-cp310-cp310-musllinux_1_1_aarch64.whl" , hash = "sha256:6a9ff50a3cf88355ca4731682c168049af1ca222d1d2925ef7119c1a78e95b3b" } ,
{ file = "xxhash-3.4.1-cp310-cp310-musllinux_1_1_i686.whl" , hash = "sha256:f1d7c69a1e9ca5faa75546fdd267f214f63f52f12692f9b3a2f6467c9e67d5e7" } ,
{ file = "xxhash-3.4.1-cp310-cp310-musllinux_1_1_ppc64le.whl" , hash = "sha256:672b273040d5d5a6864a36287f3514efcd1d4b1b6a7480f294c4b1d1ee1b8de0" } ,
{ file = "xxhash-3.4.1-cp310-cp310-musllinux_1_1_s390x.whl" , hash = "sha256:4178f78d70e88f1c4a89ff1ffe9f43147185930bb962ee3979dba15f2b1cc799" } ,
{ file = "xxhash-3.4.1-cp310-cp310-musllinux_1_1_x86_64.whl" , hash = "sha256:9804b9eb254d4b8cc83ab5a2002128f7d631dd427aa873c8727dba7f1f0d1c2b" } ,
{ file = "xxhash-3.4.1-cp310-cp310-win32.whl" , hash = "sha256:c09c49473212d9c87261d22c74370457cfff5db2ddfc7fd1e35c80c31a8c14ce" } ,
{ file = "xxhash-3.4.1-cp310-cp310-win_amd64.whl" , hash = "sha256:ebbb1616435b4a194ce3466d7247df23499475c7ed4eb2681a1fa42ff766aff6" } ,
{ file = "xxhash-3.4.1-cp310-cp310-win_arm64.whl" , hash = "sha256:25dc66be3db54f8a2d136f695b00cfe88018e59ccff0f3b8f545869f376a8a46" } ,
{ file = "xxhash-3.4.1-cp311-cp311-macosx_10_9_x86_64.whl" , hash = "sha256:58c49083801885273e262c0f5bbeac23e520564b8357fbb18fb94ff09d3d3ea5" } ,
{ file = "xxhash-3.4.1-cp311-cp311-macosx_11_0_arm64.whl" , hash = "sha256:b526015a973bfbe81e804a586b703f163861da36d186627e27524f5427b0d520" } ,
{ file = "xxhash-3.4.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:36ad4457644c91a966f6fe137d7467636bdc51a6ce10a1d04f365c70d6a16d7e" } ,
{ file = "xxhash-3.4.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:248d3e83d119770f96003271fe41e049dd4ae52da2feb8f832b7a20e791d2920" } ,
{ file = "xxhash-3.4.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:2070b6d5bbef5ee031666cf21d4953c16e92c2f8a24a94b5c240f8995ba3b1d0" } ,
{ file = "xxhash-3.4.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:b2746035f518f0410915e247877f7df43ef3372bf36cfa52cc4bc33e85242641" } ,
{ file = "xxhash-3.4.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:2a8ba6181514681c2591840d5632fcf7356ab287d4aff1c8dea20f3c78097088" } ,
{ file = "xxhash-3.4.1-cp311-cp311-musllinux_1_1_aarch64.whl" , hash = "sha256:0aac5010869240e95f740de43cd6a05eae180c59edd182ad93bf12ee289484fa" } ,
{ file = "xxhash-3.4.1-cp311-cp311-musllinux_1_1_i686.whl" , hash = "sha256:4cb11d8debab1626181633d184b2372aaa09825bde709bf927704ed72765bed1" } ,
{ file = "xxhash-3.4.1-cp311-cp311-musllinux_1_1_ppc64le.whl" , hash = "sha256:b29728cff2c12f3d9f1d940528ee83918d803c0567866e062683f300d1d2eff3" } ,
{ file = "xxhash-3.4.1-cp311-cp311-musllinux_1_1_s390x.whl" , hash = "sha256:a15cbf3a9c40672523bdb6ea97ff74b443406ba0ab9bca10ceccd9546414bd84" } ,
{ file = "xxhash-3.4.1-cp311-cp311-musllinux_1_1_x86_64.whl" , hash = "sha256:6e66df260fed01ed8ea790c2913271641c58481e807790d9fca8bfd5a3c13844" } ,
{ file = "xxhash-3.4.1-cp311-cp311-win32.whl" , hash = "sha256:e867f68a8f381ea12858e6d67378c05359d3a53a888913b5f7d35fbf68939d5f" } ,
{ file = "xxhash-3.4.1-cp311-cp311-win_amd64.whl" , hash = "sha256:200a5a3ad9c7c0c02ed1484a1d838b63edcf92ff538770ea07456a3732c577f4" } ,
{ file = "xxhash-3.4.1-cp311-cp311-win_arm64.whl" , hash = "sha256:1d03f1c0d16d24ea032e99f61c552cb2b77d502e545187338bea461fde253583" } ,
{ file = "xxhash-3.4.1-cp312-cp312-macosx_10_9_x86_64.whl" , hash = "sha256:c4bbba9b182697a52bc0c9f8ec0ba1acb914b4937cd4a877ad78a3b3eeabefb3" } ,
{ file = "xxhash-3.4.1-cp312-cp312-macosx_11_0_arm64.whl" , hash = "sha256:9fd28a9da300e64e434cfc96567a8387d9a96e824a9be1452a1e7248b7763b78" } ,
{ file = "xxhash-3.4.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:6066d88c9329ab230e18998daec53d819daeee99d003955c8db6fc4971b45ca3" } ,
{ file = "xxhash-3.4.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:93805bc3233ad89abf51772f2ed3355097a5dc74e6080de19706fc447da99cd3" } ,
{ file = "xxhash-3.4.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:64da57d5ed586ebb2ecdde1e997fa37c27fe32fe61a656b77fabbc58e6fbff6e" } ,
{ file = "xxhash-3.4.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:7a97322e9a7440bf3c9805cbaac090358b43f650516486746f7fa482672593df" } ,
{ file = "xxhash-3.4.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:bbe750d512982ee7d831838a5dee9e9848f3fb440e4734cca3f298228cc957a6" } ,
{ file = "xxhash-3.4.1-cp312-cp312-musllinux_1_1_aarch64.whl" , hash = "sha256:fd79d4087727daf4d5b8afe594b37d611ab95dc8e29fe1a7517320794837eb7d" } ,
{ file = "xxhash-3.4.1-cp312-cp312-musllinux_1_1_i686.whl" , hash = "sha256:743612da4071ff9aa4d055f3f111ae5247342931dedb955268954ef7201a71ff" } ,
{ file = "xxhash-3.4.1-cp312-cp312-musllinux_1_1_ppc64le.whl" , hash = "sha256:b41edaf05734092f24f48c0958b3c6cbaaa5b7e024880692078c6b1f8247e2fc" } ,
{ file = "xxhash-3.4.1-cp312-cp312-musllinux_1_1_s390x.whl" , hash = "sha256:a90356ead70d715fe64c30cd0969072de1860e56b78adf7c69d954b43e29d9fa" } ,
{ file = "xxhash-3.4.1-cp312-cp312-musllinux_1_1_x86_64.whl" , hash = "sha256:ac56eebb364e44c85e1d9e9cc5f6031d78a34f0092fea7fc80478139369a8b4a" } ,
{ file = "xxhash-3.4.1-cp312-cp312-win32.whl" , hash = "sha256:911035345932a153c427107397c1518f8ce456f93c618dd1c5b54ebb22e73747" } ,
{ file = "xxhash-3.4.1-cp312-cp312-win_amd64.whl" , hash = "sha256:f31ce76489f8601cc7b8713201ce94b4bd7b7ce90ba3353dccce7e9e1fee71fa" } ,
{ file = "xxhash-3.4.1-cp312-cp312-win_arm64.whl" , hash = "sha256:b5beb1c6a72fdc7584102f42c4d9df232ee018ddf806e8c90906547dfb43b2da" } ,
{ file = "xxhash-3.4.1-cp37-cp37m-macosx_10_9_x86_64.whl" , hash = "sha256:6d42b24d1496deb05dee5a24ed510b16de1d6c866c626c2beb11aebf3be278b9" } ,
{ file = "xxhash-3.4.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:3b685fab18876b14a8f94813fa2ca80cfb5ab6a85d31d5539b7cd749ce9e3624" } ,
{ file = "xxhash-3.4.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:419ffe34c17ae2df019a4685e8d3934d46b2e0bbe46221ab40b7e04ed9f11137" } ,
{ file = "xxhash-3.4.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:0e041ce5714f95251a88670c114b748bca3bf80cc72400e9f23e6d0d59cf2681" } ,
{ file = "xxhash-3.4.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:fc860d887c5cb2f524899fb8338e1bb3d5789f75fac179101920d9afddef284b" } ,
{ file = "xxhash-3.4.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:312eba88ffe0a05e332e3a6f9788b73883752be63f8588a6dc1261a3eaaaf2b2" } ,
{ file = "xxhash-3.4.1-cp37-cp37m-musllinux_1_1_aarch64.whl" , hash = "sha256:e01226b6b6a1ffe4e6bd6d08cfcb3ca708b16f02eb06dd44f3c6e53285f03e4f" } ,
{ file = "xxhash-3.4.1-cp37-cp37m-musllinux_1_1_i686.whl" , hash = "sha256:9f3025a0d5d8cf406a9313cd0d5789c77433ba2004b1c75439b67678e5136537" } ,
{ file = "xxhash-3.4.1-cp37-cp37m-musllinux_1_1_ppc64le.whl" , hash = "sha256:6d3472fd4afef2a567d5f14411d94060099901cd8ce9788b22b8c6f13c606a93" } ,
{ file = "xxhash-3.4.1-cp37-cp37m-musllinux_1_1_s390x.whl" , hash = "sha256:43984c0a92f06cac434ad181f329a1445017c33807b7ae4f033878d860a4b0f2" } ,
{ file = "xxhash-3.4.1-cp37-cp37m-musllinux_1_1_x86_64.whl" , hash = "sha256:a55e0506fdb09640a82ec4f44171273eeabf6f371a4ec605633adb2837b5d9d5" } ,
{ file = "xxhash-3.4.1-cp37-cp37m-win32.whl" , hash = "sha256:faec30437919555b039a8bdbaba49c013043e8f76c999670aef146d33e05b3a0" } ,
{ file = "xxhash-3.4.1-cp37-cp37m-win_amd64.whl" , hash = "sha256:c9e1b646af61f1fc7083bb7b40536be944f1ac67ef5e360bca2d73430186971a" } ,
{ file = "xxhash-3.4.1-cp38-cp38-macosx_10_9_x86_64.whl" , hash = "sha256:961d948b7b1c1b6c08484bbce3d489cdf153e4122c3dfb07c2039621243d8795" } ,
{ file = "xxhash-3.4.1-cp38-cp38-macosx_11_0_arm64.whl" , hash = "sha256:719a378930504ab159f7b8e20fa2aa1896cde050011af838af7e7e3518dd82de" } ,
{ file = "xxhash-3.4.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:74fb5cb9406ccd7c4dd917f16630d2e5e8cbbb02fc2fca4e559b2a47a64f4940" } ,
{ file = "xxhash-3.4.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:5dab508ac39e0ab988039bc7f962c6ad021acd81fd29145962b068df4148c476" } ,
{ file = "xxhash-3.4.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:8c59f3e46e7daf4c589e8e853d700ef6607afa037bfad32c390175da28127e8c" } ,
{ file = "xxhash-3.4.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:8cc07256eff0795e0f642df74ad096f8c5d23fe66bc138b83970b50fc7f7f6c5" } ,
{ file = "xxhash-3.4.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:e9f749999ed80f3955a4af0eb18bb43993f04939350b07b8dd2f44edc98ffee9" } ,
{ file = "xxhash-3.4.1-cp38-cp38-musllinux_1_1_aarch64.whl" , hash = "sha256:7688d7c02149a90a3d46d55b341ab7ad1b4a3f767be2357e211b4e893efbaaf6" } ,
{ file = "xxhash-3.4.1-cp38-cp38-musllinux_1_1_i686.whl" , hash = "sha256:a8b4977963926f60b0d4f830941c864bed16aa151206c01ad5c531636da5708e" } ,
{ file = "xxhash-3.4.1-cp38-cp38-musllinux_1_1_ppc64le.whl" , hash = "sha256:8106d88da330f6535a58a8195aa463ef5281a9aa23b04af1848ff715c4398fb4" } ,
{ file = "xxhash-3.4.1-cp38-cp38-musllinux_1_1_s390x.whl" , hash = "sha256:4c76a77dbd169450b61c06fd2d5d436189fc8ab7c1571d39265d4822da16df22" } ,
{ file = "xxhash-3.4.1-cp38-cp38-musllinux_1_1_x86_64.whl" , hash = "sha256:11f11357c86d83e53719c592021fd524efa9cf024dc7cb1dfb57bbbd0d8713f2" } ,
{ file = "xxhash-3.4.1-cp38-cp38-win32.whl" , hash = "sha256:0c786a6cd74e8765c6809892a0d45886e7c3dc54de4985b4a5eb8b630f3b8e3b" } ,
{ file = "xxhash-3.4.1-cp38-cp38-win_amd64.whl" , hash = "sha256:aabf37fb8fa27430d50507deeab2ee7b1bcce89910dd10657c38e71fee835594" } ,
{ file = "xxhash-3.4.1-cp39-cp39-macosx_10_9_x86_64.whl" , hash = "sha256:6127813abc1477f3a83529b6bbcfeddc23162cece76fa69aee8f6a8a97720562" } ,
{ file = "xxhash-3.4.1-cp39-cp39-macosx_11_0_arm64.whl" , hash = "sha256:ef2e194262f5db16075caea7b3f7f49392242c688412f386d3c7b07c7733a70a" } ,
{ file = "xxhash-3.4.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:71be94265b6c6590f0018bbf73759d21a41c6bda20409782d8117e76cd0dfa8b" } ,
{ file = "xxhash-3.4.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:10e0a619cdd1c0980e25eb04e30fe96cf8f4324758fa497080af9c21a6de573f" } ,
{ file = "xxhash-3.4.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:fa122124d2e3bd36581dd78c0efa5f429f5220313479fb1072858188bc2d5ff1" } ,
{ file = "xxhash-3.4.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:e17032f5a4fea0a074717fe33477cb5ee723a5f428de7563e75af64bfc1b1e10" } ,
{ file = "xxhash-3.4.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:ca7783b20e3e4f3f52f093538895863f21d18598f9a48211ad757680c3bd006f" } ,
{ file = "xxhash-3.4.1-cp39-cp39-musllinux_1_1_aarch64.whl" , hash = "sha256:d77d09a1113899fad5f354a1eb4f0a9afcf58cefff51082c8ad643ff890e30cf" } ,
{ file = "xxhash-3.4.1-cp39-cp39-musllinux_1_1_i686.whl" , hash = "sha256:21287bcdd299fdc3328cc0fbbdeaa46838a1c05391264e51ddb38a3f5b09611f" } ,
{ file = "xxhash-3.4.1-cp39-cp39-musllinux_1_1_ppc64le.whl" , hash = "sha256:dfd7a6cc483e20b4ad90224aeb589e64ec0f31e5610ab9957ff4314270b2bf31" } ,
{ file = "xxhash-3.4.1-cp39-cp39-musllinux_1_1_s390x.whl" , hash = "sha256:543c7fcbc02bbb4840ea9915134e14dc3dc15cbd5a30873a7a5bf66039db97ec" } ,
{ file = "xxhash-3.4.1-cp39-cp39-musllinux_1_1_x86_64.whl" , hash = "sha256:fe0a98d990e433013f41827b62be9ab43e3cf18e08b1483fcc343bda0d691182" } ,
{ file = "xxhash-3.4.1-cp39-cp39-win32.whl" , hash = "sha256:b9097af00ebf429cc7c0e7d2fdf28384e4e2e91008130ccda8d5ae653db71e54" } ,
{ file = "xxhash-3.4.1-cp39-cp39-win_amd64.whl" , hash = "sha256:d699b921af0dcde50ab18be76c0d832f803034d80470703700cb7df0fbec2832" } ,
{ file = "xxhash-3.4.1-cp39-cp39-win_arm64.whl" , hash = "sha256:2be491723405e15cc099ade1280133ccfbf6322d2ef568494fb7d07d280e7eee" } ,
{ file = "xxhash-3.4.1-pp310-pypy310_pp73-macosx_10_9_x86_64.whl" , hash = "sha256:431625fad7ab5649368c4849d2b49a83dc711b1f20e1f7f04955aab86cd307bc" } ,
{ file = "xxhash-3.4.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:fc6dbd5fc3c9886a9e041848508b7fb65fd82f94cc793253990f81617b61fe49" } ,
{ file = "xxhash-3.4.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:f3ff8dbd0ec97aec842476cb8ccc3e17dd288cd6ce3c8ef38bff83d6eb927817" } ,
{ file = "xxhash-3.4.1-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:ef73a53fe90558a4096e3256752268a8bdc0322f4692ed928b6cd7ce06ad4fe3" } ,
{ file = "xxhash-3.4.1-pp310-pypy310_pp73-win_amd64.whl" , hash = "sha256:450401f42bbd274b519d3d8dcf3c57166913381a3d2664d6609004685039f9d3" } ,
{ file = "xxhash-3.4.1-pp37-pypy37_pp73-macosx_10_9_x86_64.whl" , hash = "sha256:a162840cf4de8a7cd8720ff3b4417fbc10001eefdd2d21541a8226bb5556e3bb" } ,
{ file = "xxhash-3.4.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:b736a2a2728ba45017cb67785e03125a79d246462dfa892d023b827007412c52" } ,
{ file = "xxhash-3.4.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:1d0ae4c2e7698adef58710d6e7a32ff518b66b98854b1c68e70eee504ad061d8" } ,
{ file = "xxhash-3.4.1-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:d6322c4291c3ff174dcd104fae41500e75dad12be6f3085d119c2c8a80956c51" } ,
{ file = "xxhash-3.4.1-pp37-pypy37_pp73-win_amd64.whl" , hash = "sha256:dd59ed668801c3fae282f8f4edadf6dc7784db6d18139b584b6d9677ddde1b6b" } ,
{ file = "xxhash-3.4.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl" , hash = "sha256:92693c487e39523a80474b0394645b393f0ae781d8db3474ccdcead0559ccf45" } ,
{ file = "xxhash-3.4.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:4603a0f642a1e8d7f3ba5c4c25509aca6a9c1cc16f85091004a7028607ead663" } ,
{ file = "xxhash-3.4.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:6fa45e8cbfbadb40a920fe9ca40c34b393e0b067082d94006f7f64e70c7490a6" } ,
{ file = "xxhash-3.4.1-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:595b252943b3552de491ff51e5bb79660f84f033977f88f6ca1605846637b7c6" } ,
{ file = "xxhash-3.4.1-pp38-pypy38_pp73-win_amd64.whl" , hash = "sha256:562d8b8f783c6af969806aaacf95b6c7b776929ae26c0cd941d54644ea7ef51e" } ,
{ file = "xxhash-3.4.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl" , hash = "sha256:41ddeae47cf2828335d8d991f2d2b03b0bdc89289dc64349d712ff8ce59d0647" } ,
{ file = "xxhash-3.4.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:c44d584afdf3c4dbb3277e32321d1a7b01d6071c1992524b6543025fb8f4206f" } ,
{ file = "xxhash-3.4.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:fd7bddb3a5b86213cc3f2c61500c16945a1b80ecd572f3078ddbbe68f9dabdfb" } ,
{ file = "xxhash-3.4.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:9ecb6c987b62437c2f99c01e97caf8d25660bf541fe79a481d05732e5236719c" } ,
{ file = "xxhash-3.4.1-pp39-pypy39_pp73-win_amd64.whl" , hash = "sha256:696b4e18b7023527d5c50ed0626ac0520edac45a50ec7cf3fc265cd08b1f4c03" } ,
{ file = "xxhash-3.4.1.tar.gz" , hash = "sha256:0379d6cf1ff987cd421609a264ce025e74f346e3e145dd106c0cc2e3ec3f99a9" } ,
]
2023-12-11 21:53:30 +00:00
[ [ package ] ]
name = "yarl"
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
version = "1.9.4"
2023-12-11 21:53:30 +00:00
description = "Yet another URL library"
optional = false
python-versions = ">=3.7"
files = [
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-06 03:50:50 +00:00
{ file = "yarl-1.9.4-cp310-cp310-macosx_10_9_universal2.whl" , hash = "sha256:a8c1df72eb746f4136fe9a2e72b0c9dc1da1cbd23b5372f94b5820ff8ae30e0e" } ,
{ file = "yarl-1.9.4-cp310-cp310-macosx_10_9_x86_64.whl" , hash = "sha256:a3a6ed1d525bfb91b3fc9b690c5a21bb52de28c018530ad85093cc488bee2dd2" } ,
{ file = "yarl-1.9.4-cp310-cp310-macosx_11_0_arm64.whl" , hash = "sha256:c38c9ddb6103ceae4e4498f9c08fac9b590c5c71b0370f98714768e22ac6fa66" } ,
{ file = "yarl-1.9.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:d9e09c9d74f4566e905a0b8fa668c58109f7624db96a2171f21747abc7524234" } ,
{ file = "yarl-1.9.4-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:b8477c1ee4bd47c57d49621a062121c3023609f7a13b8a46953eb6c9716ca392" } ,
{ file = "yarl-1.9.4-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:d5ff2c858f5f6a42c2a8e751100f237c5e869cbde669a724f2062d4c4ef93551" } ,
{ file = "yarl-1.9.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:357495293086c5b6d34ca9616a43d329317feab7917518bc97a08f9e55648455" } ,
{ file = "yarl-1.9.4-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:54525ae423d7b7a8ee81ba189f131054defdb122cde31ff17477951464c1691c" } ,
{ file = "yarl-1.9.4-cp310-cp310-musllinux_1_1_aarch64.whl" , hash = "sha256:801e9264d19643548651b9db361ce3287176671fb0117f96b5ac0ee1c3530d53" } ,
{ file = "yarl-1.9.4-cp310-cp310-musllinux_1_1_i686.whl" , hash = "sha256:e516dc8baf7b380e6c1c26792610230f37147bb754d6426462ab115a02944385" } ,
{ file = "yarl-1.9.4-cp310-cp310-musllinux_1_1_ppc64le.whl" , hash = "sha256:7d5aaac37d19b2904bb9dfe12cdb08c8443e7ba7d2852894ad448d4b8f442863" } ,
{ file = "yarl-1.9.4-cp310-cp310-musllinux_1_1_s390x.whl" , hash = "sha256:54beabb809ffcacbd9d28ac57b0db46e42a6e341a030293fb3185c409e626b8b" } ,
{ file = "yarl-1.9.4-cp310-cp310-musllinux_1_1_x86_64.whl" , hash = "sha256:bac8d525a8dbc2a1507ec731d2867025d11ceadcb4dd421423a5d42c56818541" } ,
{ file = "yarl-1.9.4-cp310-cp310-win32.whl" , hash = "sha256:7855426dfbddac81896b6e533ebefc0af2f132d4a47340cee6d22cac7190022d" } ,
{ file = "yarl-1.9.4-cp310-cp310-win_amd64.whl" , hash = "sha256:848cd2a1df56ddbffeb375535fb62c9d1645dde33ca4d51341378b3f5954429b" } ,
{ file = "yarl-1.9.4-cp311-cp311-macosx_10_9_universal2.whl" , hash = "sha256:35a2b9396879ce32754bd457d31a51ff0a9d426fd9e0e3c33394bf4b9036b099" } ,
{ file = "yarl-1.9.4-cp311-cp311-macosx_10_9_x86_64.whl" , hash = "sha256:4c7d56b293cc071e82532f70adcbd8b61909eec973ae9d2d1f9b233f3d943f2c" } ,
{ file = "yarl-1.9.4-cp311-cp311-macosx_11_0_arm64.whl" , hash = "sha256:d8a1c6c0be645c745a081c192e747c5de06e944a0d21245f4cf7c05e457c36e0" } ,
{ file = "yarl-1.9.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:4b3c1ffe10069f655ea2d731808e76e0f452fc6c749bea04781daf18e6039525" } ,
{ file = "yarl-1.9.4-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:549d19c84c55d11687ddbd47eeb348a89df9cb30e1993f1b128f4685cd0ebbf8" } ,
{ file = "yarl-1.9.4-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:a7409f968456111140c1c95301cadf071bd30a81cbd7ab829169fb9e3d72eae9" } ,
{ file = "yarl-1.9.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:e23a6d84d9d1738dbc6e38167776107e63307dfc8ad108e580548d1f2c587f42" } ,
{ file = "yarl-1.9.4-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:d8b889777de69897406c9fb0b76cdf2fd0f31267861ae7501d93003d55f54fbe" } ,
{ file = "yarl-1.9.4-cp311-cp311-musllinux_1_1_aarch64.whl" , hash = "sha256:03caa9507d3d3c83bca08650678e25364e1843b484f19986a527630ca376ecce" } ,
{ file = "yarl-1.9.4-cp311-cp311-musllinux_1_1_i686.whl" , hash = "sha256:4e9035df8d0880b2f1c7f5031f33f69e071dfe72ee9310cfc76f7b605958ceb9" } ,
{ file = "yarl-1.9.4-cp311-cp311-musllinux_1_1_ppc64le.whl" , hash = "sha256:c0ec0ed476f77db9fb29bca17f0a8fcc7bc97ad4c6c1d8959c507decb22e8572" } ,
{ file = "yarl-1.9.4-cp311-cp311-musllinux_1_1_s390x.whl" , hash = "sha256:ee04010f26d5102399bd17f8df8bc38dc7ccd7701dc77f4a68c5b8d733406958" } ,
{ file = "yarl-1.9.4-cp311-cp311-musllinux_1_1_x86_64.whl" , hash = "sha256:49a180c2e0743d5d6e0b4d1a9e5f633c62eca3f8a86ba5dd3c471060e352ca98" } ,
{ file = "yarl-1.9.4-cp311-cp311-win32.whl" , hash = "sha256:81eb57278deb6098a5b62e88ad8281b2ba09f2f1147c4767522353eaa6260b31" } ,
{ file = "yarl-1.9.4-cp311-cp311-win_amd64.whl" , hash = "sha256:d1d2532b340b692880261c15aee4dc94dd22ca5d61b9db9a8a361953d36410b1" } ,
{ file = "yarl-1.9.4-cp312-cp312-macosx_10_9_universal2.whl" , hash = "sha256:0d2454f0aef65ea81037759be5ca9947539667eecebca092733b2eb43c965a81" } ,
{ file = "yarl-1.9.4-cp312-cp312-macosx_10_9_x86_64.whl" , hash = "sha256:44d8ffbb9c06e5a7f529f38f53eda23e50d1ed33c6c869e01481d3fafa6b8142" } ,
{ file = "yarl-1.9.4-cp312-cp312-macosx_11_0_arm64.whl" , hash = "sha256:aaaea1e536f98754a6e5c56091baa1b6ce2f2700cc4a00b0d49eca8dea471074" } ,
{ file = "yarl-1.9.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:3777ce5536d17989c91696db1d459574e9a9bd37660ea7ee4d3344579bb6f129" } ,
{ file = "yarl-1.9.4-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:9fc5fc1eeb029757349ad26bbc5880557389a03fa6ada41703db5e068881e5f2" } ,
{ file = "yarl-1.9.4-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:ea65804b5dc88dacd4a40279af0cdadcfe74b3e5b4c897aa0d81cf86927fee78" } ,
{ file = "yarl-1.9.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:aa102d6d280a5455ad6a0f9e6d769989638718e938a6a0a2ff3f4a7ff8c62cc4" } ,
{ file = "yarl-1.9.4-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:09efe4615ada057ba2d30df871d2f668af661e971dfeedf0c159927d48bbeff0" } ,
{ file = "yarl-1.9.4-cp312-cp312-musllinux_1_1_aarch64.whl" , hash = "sha256:008d3e808d03ef28542372d01057fd09168419cdc8f848efe2804f894ae03e51" } ,
{ file = "yarl-1.9.4-cp312-cp312-musllinux_1_1_i686.whl" , hash = "sha256:6f5cb257bc2ec58f437da2b37a8cd48f666db96d47b8a3115c29f316313654ff" } ,
{ file = "yarl-1.9.4-cp312-cp312-musllinux_1_1_ppc64le.whl" , hash = "sha256:992f18e0ea248ee03b5a6e8b3b4738850ae7dbb172cc41c966462801cbf62cf7" } ,
{ file = "yarl-1.9.4-cp312-cp312-musllinux_1_1_s390x.whl" , hash = "sha256:0e9d124c191d5b881060a9e5060627694c3bdd1fe24c5eecc8d5d7d0eb6faabc" } ,
{ file = "yarl-1.9.4-cp312-cp312-musllinux_1_1_x86_64.whl" , hash = "sha256:3986b6f41ad22988e53d5778f91855dc0399b043fc8946d4f2e68af22ee9ff10" } ,
{ file = "yarl-1.9.4-cp312-cp312-win32.whl" , hash = "sha256:4b21516d181cd77ebd06ce160ef8cc2a5e9ad35fb1c5930882baff5ac865eee7" } ,
{ file = "yarl-1.9.4-cp312-cp312-win_amd64.whl" , hash = "sha256:a9bd00dc3bc395a662900f33f74feb3e757429e545d831eef5bb280252631984" } ,
{ file = "yarl-1.9.4-cp37-cp37m-macosx_10_9_x86_64.whl" , hash = "sha256:63b20738b5aac74e239622d2fe30df4fca4942a86e31bf47a81a0e94c14df94f" } ,
{ file = "yarl-1.9.4-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:d7d7f7de27b8944f1fee2c26a88b4dabc2409d2fea7a9ed3df79b67277644e17" } ,
{ file = "yarl-1.9.4-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:c74018551e31269d56fab81a728f683667e7c28c04e807ba08f8c9e3bba32f14" } ,
{ file = "yarl-1.9.4-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:ca06675212f94e7a610e85ca36948bb8fc023e458dd6c63ef71abfd482481aa5" } ,
{ file = "yarl-1.9.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:5aef935237d60a51a62b86249839b51345f47564208c6ee615ed2a40878dccdd" } ,
{ file = "yarl-1.9.4-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:2b134fd795e2322b7684155b7855cc99409d10b2e408056db2b93b51a52accc7" } ,
{ file = "yarl-1.9.4-cp37-cp37m-musllinux_1_1_aarch64.whl" , hash = "sha256:d25039a474c4c72a5ad4b52495056f843a7ff07b632c1b92ea9043a3d9950f6e" } ,
{ file = "yarl-1.9.4-cp37-cp37m-musllinux_1_1_i686.whl" , hash = "sha256:f7d6b36dd2e029b6bcb8a13cf19664c7b8e19ab3a58e0fefbb5b8461447ed5ec" } ,
{ file = "yarl-1.9.4-cp37-cp37m-musllinux_1_1_ppc64le.whl" , hash = "sha256:957b4774373cf6f709359e5c8c4a0af9f6d7875db657adb0feaf8d6cb3c3964c" } ,
{ file = "yarl-1.9.4-cp37-cp37m-musllinux_1_1_s390x.whl" , hash = "sha256:d7eeb6d22331e2fd42fce928a81c697c9ee2d51400bd1a28803965883e13cead" } ,
{ file = "yarl-1.9.4-cp37-cp37m-musllinux_1_1_x86_64.whl" , hash = "sha256:6a962e04b8f91f8c4e5917e518d17958e3bdee71fd1d8b88cdce74dd0ebbf434" } ,
{ file = "yarl-1.9.4-cp37-cp37m-win32.whl" , hash = "sha256:f3bc6af6e2b8f92eced34ef6a96ffb248e863af20ef4fde9448cc8c9b858b749" } ,
{ file = "yarl-1.9.4-cp37-cp37m-win_amd64.whl" , hash = "sha256:ad4d7a90a92e528aadf4965d685c17dacff3df282db1121136c382dc0b6014d2" } ,
{ file = "yarl-1.9.4-cp38-cp38-macosx_10_9_universal2.whl" , hash = "sha256:ec61d826d80fc293ed46c9dd26995921e3a82146feacd952ef0757236fc137be" } ,
{ file = "yarl-1.9.4-cp38-cp38-macosx_10_9_x86_64.whl" , hash = "sha256:8be9e837ea9113676e5754b43b940b50cce76d9ed7d2461df1af39a8ee674d9f" } ,
{ file = "yarl-1.9.4-cp38-cp38-macosx_11_0_arm64.whl" , hash = "sha256:bef596fdaa8f26e3d66af846bbe77057237cb6e8efff8cd7cc8dff9a62278bbf" } ,
{ file = "yarl-1.9.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:2d47552b6e52c3319fede1b60b3de120fe83bde9b7bddad11a69fb0af7db32f1" } ,
{ file = "yarl-1.9.4-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:84fc30f71689d7fc9168b92788abc977dc8cefa806909565fc2951d02f6b7d57" } ,
{ file = "yarl-1.9.4-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:4aa9741085f635934f3a2583e16fcf62ba835719a8b2b28fb2917bb0537c1dfa" } ,
{ file = "yarl-1.9.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:206a55215e6d05dbc6c98ce598a59e6fbd0c493e2de4ea6cc2f4934d5a18d130" } ,
{ file = "yarl-1.9.4-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:07574b007ee20e5c375a8fe4a0789fad26db905f9813be0f9fef5a68080de559" } ,
{ file = "yarl-1.9.4-cp38-cp38-musllinux_1_1_aarch64.whl" , hash = "sha256:5a2e2433eb9344a163aced6a5f6c9222c0786e5a9e9cac2c89f0b28433f56e23" } ,
{ file = "yarl-1.9.4-cp38-cp38-musllinux_1_1_i686.whl" , hash = "sha256:6ad6d10ed9b67a382b45f29ea028f92d25bc0bc1daf6c5b801b90b5aa70fb9ec" } ,
{ file = "yarl-1.9.4-cp38-cp38-musllinux_1_1_ppc64le.whl" , hash = "sha256:6fe79f998a4052d79e1c30eeb7d6c1c1056ad33300f682465e1b4e9b5a188b78" } ,
{ file = "yarl-1.9.4-cp38-cp38-musllinux_1_1_s390x.whl" , hash = "sha256:a825ec844298c791fd28ed14ed1bffc56a98d15b8c58a20e0e08c1f5f2bea1be" } ,
{ file = "yarl-1.9.4-cp38-cp38-musllinux_1_1_x86_64.whl" , hash = "sha256:8619d6915b3b0b34420cf9b2bb6d81ef59d984cb0fde7544e9ece32b4b3043c3" } ,
{ file = "yarl-1.9.4-cp38-cp38-win32.whl" , hash = "sha256:686a0c2f85f83463272ddffd4deb5e591c98aac1897d65e92319f729c320eece" } ,
{ file = "yarl-1.9.4-cp38-cp38-win_amd64.whl" , hash = "sha256:a00862fb23195b6b8322f7d781b0dc1d82cb3bcac346d1e38689370cc1cc398b" } ,
{ file = "yarl-1.9.4-cp39-cp39-macosx_10_9_universal2.whl" , hash = "sha256:604f31d97fa493083ea21bd9b92c419012531c4e17ea6da0f65cacdcf5d0bd27" } ,
{ file = "yarl-1.9.4-cp39-cp39-macosx_10_9_x86_64.whl" , hash = "sha256:8a854227cf581330ffa2c4824d96e52ee621dd571078a252c25e3a3b3d94a1b1" } ,
{ file = "yarl-1.9.4-cp39-cp39-macosx_11_0_arm64.whl" , hash = "sha256:ba6f52cbc7809cd8d74604cce9c14868306ae4aa0282016b641c661f981a6e91" } ,
{ file = "yarl-1.9.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl" , hash = "sha256:a6327976c7c2f4ee6816eff196e25385ccc02cb81427952414a64811037bbc8b" } ,
{ file = "yarl-1.9.4-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl" , hash = "sha256:8397a3817d7dcdd14bb266283cd1d6fc7264a48c186b986f32e86d86d35fbac5" } ,
{ file = "yarl-1.9.4-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl" , hash = "sha256:e0381b4ce23ff92f8170080c97678040fc5b08da85e9e292292aba67fdac6c34" } ,
{ file = "yarl-1.9.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl" , hash = "sha256:23d32a2594cb5d565d358a92e151315d1b2268bc10f4610d098f96b147370136" } ,
{ file = "yarl-1.9.4-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl" , hash = "sha256:ddb2a5c08a4eaaba605340fdee8fc08e406c56617566d9643ad8bf6852778fc7" } ,
{ file = "yarl-1.9.4-cp39-cp39-musllinux_1_1_aarch64.whl" , hash = "sha256:26a1dc6285e03f3cc9e839a2da83bcbf31dcb0d004c72d0730e755b33466c30e" } ,
{ file = "yarl-1.9.4-cp39-cp39-musllinux_1_1_i686.whl" , hash = "sha256:18580f672e44ce1238b82f7fb87d727c4a131f3a9d33a5e0e82b793362bf18b4" } ,
{ file = "yarl-1.9.4-cp39-cp39-musllinux_1_1_ppc64le.whl" , hash = "sha256:29e0f83f37610f173eb7e7b5562dd71467993495e568e708d99e9d1944f561ec" } ,
{ file = "yarl-1.9.4-cp39-cp39-musllinux_1_1_s390x.whl" , hash = "sha256:1f23e4fe1e8794f74b6027d7cf19dc25f8b63af1483d91d595d4a07eca1fb26c" } ,
{ file = "yarl-1.9.4-cp39-cp39-musllinux_1_1_x86_64.whl" , hash = "sha256:db8e58b9d79200c76956cefd14d5c90af54416ff5353c5bfd7cbe58818e26ef0" } ,
{ file = "yarl-1.9.4-cp39-cp39-win32.whl" , hash = "sha256:c7224cab95645c7ab53791022ae77a4509472613e839dab722a72abe5a684575" } ,
{ file = "yarl-1.9.4-cp39-cp39-win_amd64.whl" , hash = "sha256:824d6c50492add5da9374875ce72db7a0733b29c2394890aef23d533106e2b15" } ,
{ file = "yarl-1.9.4-py3-none-any.whl" , hash = "sha256:928cecb0ef9d5a7946eb6ff58417ad2fe9375762382f1bf5c55e61645f2c43ad" } ,
{ file = "yarl-1.9.4.tar.gz" , hash = "sha256:566db86717cf8080b99b58b083b773a908ae40f06681e87e589a976faf8246bf" } ,
2023-12-11 21:53:30 +00:00
]
[ package . dependencies ]
idna = ">=2.0"
multidict = ">=4.0"
2024-03-15 17:10:47 +00:00
[ [ package ] ]
name = "zhipuai"
version = "1.0.7"
description = "A SDK library for accessing big model apis from ZhipuAI"
optional = true
python-versions = ">=3.6"
files = [
{ file = "zhipuai-1.0.7-py3-none-any.whl" , hash = "sha256:360c01b8c2698f366061452e86d5a36a5ff68a576ea33940da98e4806f232530" } ,
{ file = "zhipuai-1.0.7.tar.gz" , hash = "sha256:b80f699543d83cce8648acf1ce32bc2725d1c1c443baffa5882abc2cc704d581" } ,
]
[ package . dependencies ]
cachetools = "*"
dataclasses = "*"
PyJWT = "*"
requests = "*"
2023-12-11 21:53:30 +00:00
[ [ package ] ]
name = "zipp"
2024-03-15 17:10:47 +00:00
version = "3.17.0"
2023-12-11 21:53:30 +00:00
description = "Backport of pathlib-compatible object wrapper for zip files"
optional = false
python-versions = ">=3.8"
files = [
2024-03-15 17:10:47 +00:00
{ file = "zipp-3.17.0-py3-none-any.whl" , hash = "sha256:0e923e726174922dce09c53c59ad483ff7bbb8e572e00c7f7c46b88556409f31" } ,
{ file = "zipp-3.17.0.tar.gz" , hash = "sha256:84e64a1c28cf7e91ed2078bb8cc8c259cb19b76942096c8d7b84947690cabaf0" } ,
2023-12-11 21:53:30 +00:00
]
[ package . extras ]
2024-03-15 17:10:47 +00:00
docs = [ "furo" , "jaraco.packaging (>=9.3)" , "jaraco.tidelift (>=1.4)" , "rst.linker (>=1.9)" , "sphinx (<7.2.5)" , "sphinx (>=3.5)" , "sphinx-lint" ]
testing = [ "big-O" , "jaraco.functools" , "jaraco.itertools" , "more-itertools" , "pytest (>=6)" , "pytest-black (>=0.3.7)" , "pytest-checkdocs (>=2.4)" , "pytest-cov" , "pytest-enabler (>=2.2)" , "pytest-ignore-flaky" , "pytest-mypy (>=0.9.1)" , "pytest-ruff" ]
2023-12-11 21:53:30 +00:00
[ extras ]
cli = [ "typer" ]
2024-03-15 17:10:47 +00:00
extended-testing = [ "aiosqlite" , "aleph-alpha-client" , "anthropic" , "arxiv" , "assemblyai" , "atlassian-python-api" , "azure-ai-documentintelligence" , "beautifulsoup4" , "bibtexparser" , "cassio" , "chardet" , "cloudpickle" , "cloudpickle" , "cohere" , "databricks-vectorsearch" , "datasets" , "dgml-utils" , "elasticsearch" , "esprima" , "faiss-cpu" , "feedparser" , "fireworks-ai" , "friendli-client" , "geopandas" , "gitpython" , "google-cloud-documentai" , "gql" , "gradientai" , "hdbcli" , "hologres-vector" , "html2text" , "httpx" , "javelin-sdk" , "jinja2" , "jq" , "jsonschema" , "lxml" , "markdownify" , "motor" , "msal" , "mwparserfromhell" , "mwxml" , "newspaper3k" , "numexpr" , "nvidia-riva-client" , "oci" , "openai" , "openapi-pydantic" , "oracle-ads" , "pandas" , "pdfminer-six" , "pgvector" , "praw" , "psychicapi" , "py-trello" , "pymupdf" , "pypdf" , "pypdfium2" , "pyspark" , "rank-bm25" , "rapidfuzz" , "rapidocr-onnxruntime" , "rdflib" , "requests-toolbelt" , "rspace_client" , "scikit-learn" , "sqlite-vss" , "streamlit" , "sympy" , "telethon" , "tidb-vector" , "timescale-vector" , "tqdm" , "tree-sitter" , "tree-sitter-languages" , "upstash-redis" , "xata" , "xmltodict" , "zhipuai" ]
2023-12-11 21:53:30 +00:00
[ metadata ]
lock-version = "2.0"
python-versions = ">=3.8.1,<4.0"
2024-03-15 17:10:47 +00:00
content-hash = "3bf95cf1fbf56e32eb64b0630fd6dbacad0a22274adee66b897ea30b0a6c75b1"