langchain/docs/snippets/modules/memory/how_to/buffer_window.mdx

186 lines
4.8 KiB
Plaintext
Raw Normal View History

```python
from langchain.memory import ConversationBufferWindowMemory
```
```python
memory = ConversationBufferWindowMemory( k=1)
memory.save_context({"input": "hi"}, {"output": "whats up"})
memory.save_context({"input": "not much you"}, {"output": "not much"})
```
```python
memory.load_memory_variables({})
```
<CodeOutputBlock lang="python">
```
{'history': 'Human: not much you\nAI: not much'}
```
</CodeOutputBlock>
We can also get the history as a list of messages (this is useful if you are using this with a chat model).
```python
memory = ConversationBufferWindowMemory( k=1, return_messages=True)
memory.save_context({"input": "hi"}, {"output": "whats up"})
memory.save_context({"input": "not much you"}, {"output": "not much"})
```
```python
memory.load_memory_variables({})
```
<CodeOutputBlock lang="python">
```
{'history': [HumanMessage(content='not much you', additional_kwargs={}),
AIMessage(content='not much', additional_kwargs={})]}
```
</CodeOutputBlock>
## Using in a chain
Let's walk through an example, again setting `verbose=True` so we can see the prompt.
```python
from langchain.llms import OpenAI
from langchain.chains import ConversationChain
conversation_with_summary = ConversationChain(
llm=OpenAI(temperature=0),
# We set a low k=2, to only keep the last 2 interactions in memory
memory=ConversationBufferWindowMemory(k=2),
verbose=True
)
conversation_with_summary.predict(input="Hi, what's up?")
```
<CodeOutputBlock lang="python">
```
> Entering new ConversationChain chain...
Prompt after formatting:
The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.
Current conversation:
Human: Hi, what's up?
AI:
> Finished chain.
" Hi there! I'm doing great. I'm currently helping a customer with a technical issue. How about you?"
```
</CodeOutputBlock>
```python
conversation_with_summary.predict(input="What's their issues?")
```
<CodeOutputBlock lang="python">
```
> Entering new ConversationChain chain...
Prompt after formatting:
The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.
Current conversation:
Human: Hi, what's up?
AI: Hi there! I'm doing great. I'm currently helping a customer with a technical issue. How about you?
Human: What's their issues?
AI:
> Finished chain.
" The customer is having trouble connecting to their Wi-Fi network. I'm helping them troubleshoot the issue and get them connected."
```
</CodeOutputBlock>
```python
conversation_with_summary.predict(input="Is it going well?")
```
<CodeOutputBlock lang="python">
```
> Entering new ConversationChain chain...
Prompt after formatting:
The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.
Current conversation:
Human: Hi, what's up?
AI: Hi there! I'm doing great. I'm currently helping a customer with a technical issue. How about you?
Human: What's their issues?
AI: The customer is having trouble connecting to their Wi-Fi network. I'm helping them troubleshoot the issue and get them connected.
Human: Is it going well?
AI:
> Finished chain.
" Yes, it's going well so far. We've already identified the problem and are now working on a solution."
```
</CodeOutputBlock>
```python
# Notice here that the first interaction does not appear.
conversation_with_summary.predict(input="What's the solution?")
```
<CodeOutputBlock lang="python">
```
> Entering new ConversationChain chain...
Prompt after formatting:
The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.
Current conversation:
Human: What's their issues?
AI: The customer is having trouble connecting to their Wi-Fi network. I'm helping them troubleshoot the issue and get them connected.
Human: Is it going well?
AI: Yes, it's going well so far. We've already identified the problem and are now working on a solution.
Human: What's the solution?
AI:
> Finished chain.
" The solution is to reset the router and reconfigure the settings. We're currently in the process of doing that."
```
</CodeOutputBlock>