langchain/templates/rag-self-query/ingest.py

52 lines
1.6 KiB
Python
Raw Normal View History

import os
from langchain.document_loaders import JSONLoader
from langchain.embeddings import OpenAIEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import ElasticsearchStore
ELASTIC_CLOUD_ID = os.getenv("ELASTIC_CLOUD_ID")
ELASTIC_USERNAME = os.getenv("ELASTIC_USERNAME", "elastic")
ELASTIC_PASSWORD = os.getenv("ELASTIC_PASSWORD")
ES_URL = os.getenv("ES_URL", "http://localhost:9200")
ELASTIC_INDEX_NAME = os.getenv("ELASTIC_INDEX_NAME", "workspace-search-example")
def _metadata_func(record: dict, metadata: dict) -> dict:
metadata["name"] = record.get("name")
metadata["summary"] = record.get("summary")
metadata["url"] = record.get("url")
# give more descriptive name for metadata filtering.
metadata["location"] = record.get("category")
metadata["updated_at"] = record.get("updated_at")
metadata["created_on"] = record.get("created_on")
return metadata
loader = JSONLoader(
file_path="./data/documents.json",
jq_schema=".[]",
content_key="content",
metadata_func=_metadata_func,
)
text_splitter = RecursiveCharacterTextSplitter(chunk_size=800, chunk_overlap=250)
documents = text_splitter.split_documents(loader.load())
if ELASTIC_CLOUD_ID and ELASTIC_USERNAME and ELASTIC_PASSWORD:
es_connection_details = {
"es_cloud_id": ELASTIC_CLOUD_ID,
"es_user": ELASTIC_USERNAME,
"es_password": ELASTIC_PASSWORD,
}
else:
es_connection_details = {"es_url": ES_URL}
vecstore = ElasticsearchStore(
ELASTIC_INDEX_NAME,
embedding=OpenAIEmbeddings(),
**es_connection_details,
)
vecstore.add_documents(documents)