mirror of
https://github.com/hwchase17/langchain
synced 2024-11-06 03:20:49 +00:00
147 lines
4.5 KiB
Python
147 lines
4.5 KiB
Python
|
from typing import Any, Dict, List
|
||
|
|
||
|
from langchain.chains.graph_qa.cypher_utils import CypherQueryCorrector, Schema
|
||
|
from langchain.chat_models import ChatOpenAI
|
||
|
from langchain.graphs import Neo4jGraph
|
||
|
from langchain.memory import ChatMessageHistory
|
||
|
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
|
||
|
from langchain.pydantic_v1 import BaseModel
|
||
|
from langchain.schema.output_parser import StrOutputParser
|
||
|
from langchain.schema.runnable import RunnablePassthrough
|
||
|
|
||
|
# Connection to Neo4j
|
||
|
graph = Neo4jGraph()
|
||
|
|
||
|
# Cypher validation tool for relationship directions
|
||
|
corrector_schema = [
|
||
|
Schema(el["start"], el["type"], el["end"])
|
||
|
for el in graph.structured_schema.get("relationships")
|
||
|
]
|
||
|
cypher_validation = CypherQueryCorrector(corrector_schema)
|
||
|
|
||
|
# LLMs
|
||
|
cypher_llm = ChatOpenAI(model_name="gpt-4", temperature=0.0)
|
||
|
qa_llm = ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0.0)
|
||
|
|
||
|
|
||
|
def convert_messages(input: List[Dict[str, Any]]) -> ChatMessageHistory:
|
||
|
history = ChatMessageHistory()
|
||
|
for item in input:
|
||
|
history.add_user_message(item["result"]["question"])
|
||
|
history.add_ai_message(item["result"]["answer"])
|
||
|
return history
|
||
|
|
||
|
|
||
|
def get_history(input: Dict[str, Any]) -> ChatMessageHistory:
|
||
|
input.pop("question")
|
||
|
# Lookback conversation window
|
||
|
window = 3
|
||
|
data = graph.query(
|
||
|
"""
|
||
|
MATCH (u:User {id:$user_id})-[:HAS_SESSION]->(s:Session {id:$session_id}),
|
||
|
(s)-[:LAST_MESSAGE]->(last_message)
|
||
|
MATCH p=(last_message)<-[:NEXT*0.."""
|
||
|
+ str(window)
|
||
|
+ """]-()
|
||
|
WITH p, length(p) AS length
|
||
|
ORDER BY length DESC LIMIT 1
|
||
|
UNWIND reverse(nodes(p)) AS node
|
||
|
MATCH (node)-[:HAS_ANSWER]->(answer)
|
||
|
RETURN {question:node.text, answer:answer.text} AS result
|
||
|
""",
|
||
|
params=input,
|
||
|
)
|
||
|
history = convert_messages(data)
|
||
|
return history.messages
|
||
|
|
||
|
|
||
|
def save_history(input):
|
||
|
input.pop("response")
|
||
|
# store history to database
|
||
|
graph.query(
|
||
|
"""MERGE (u:User {id: $user_id})
|
||
|
WITH u
|
||
|
OPTIONAL MATCH (u)-[:HAS_SESSION]->(s:Session{id: $session_id}),
|
||
|
(s)-[l:LAST_MESSAGE]->(last_message)
|
||
|
FOREACH (_ IN CASE WHEN last_message IS NULL THEN [1] ELSE [] END |
|
||
|
CREATE (u)-[:HAS_SESSION]->(s1:Session {id:$session_id}),
|
||
|
(s1)-[:LAST_MESSAGE]->(q:Question {text:$question, cypher:$query, date:datetime()}),
|
||
|
(q)-[:HAS_ANSWER]->(:Answer {text:$output}))
|
||
|
FOREACH (_ IN CASE WHEN last_message IS NOT NULL THEN [1] ELSE [] END |
|
||
|
CREATE (last_message)-[:NEXT]->(q:Question
|
||
|
{text:$question, cypher:$query, date:datetime()}),
|
||
|
(q)-[:HAS_ANSWER]->(:Answer {text:$output}),
|
||
|
(s)-[:LAST_MESSAGE]->(q)
|
||
|
DELETE l) """,
|
||
|
params=input,
|
||
|
)
|
||
|
|
||
|
# Return LLM response to the chain
|
||
|
return input["output"]
|
||
|
|
||
|
|
||
|
# Generate Cypher statement based on natural language input
|
||
|
cypher_template = """This is important for my career.
|
||
|
Based on the Neo4j graph schema below, write a Cypher query that would answer the user's question:
|
||
|
{schema}
|
||
|
|
||
|
Question: {question}
|
||
|
Cypher query:""" # noqa: E501
|
||
|
|
||
|
cypher_prompt = ChatPromptTemplate.from_messages(
|
||
|
[
|
||
|
(
|
||
|
"system",
|
||
|
"Given an input question, convert it to a Cypher query. No pre-amble.",
|
||
|
),
|
||
|
MessagesPlaceholder(variable_name="history"),
|
||
|
("human", cypher_template),
|
||
|
]
|
||
|
)
|
||
|
|
||
|
cypher_response = (
|
||
|
RunnablePassthrough.assign(schema=lambda _: graph.get_schema, history=get_history)
|
||
|
| cypher_prompt
|
||
|
| cypher_llm.bind(stop=["\nCypherResult:"])
|
||
|
| StrOutputParser()
|
||
|
)
|
||
|
|
||
|
# Generate natural language response based on database results
|
||
|
response_template = """Based on the the question, Cypher query, and Cypher response, write a natural language response:
|
||
|
Question: {question}
|
||
|
Cypher query: {query}
|
||
|
Cypher Response: {response}""" # noqa: E501
|
||
|
|
||
|
response_prompt = ChatPromptTemplate.from_messages(
|
||
|
[
|
||
|
(
|
||
|
"system",
|
||
|
"Given an input question and Cypher response, convert it to a "
|
||
|
"natural language answer. No pre-amble.",
|
||
|
),
|
||
|
("human", response_template),
|
||
|
]
|
||
|
)
|
||
|
|
||
|
chain = (
|
||
|
RunnablePassthrough.assign(query=cypher_response)
|
||
|
| RunnablePassthrough.assign(
|
||
|
response=lambda x: graph.query(cypher_validation(x["query"])),
|
||
|
)
|
||
|
| RunnablePassthrough.assign(
|
||
|
output=response_prompt | qa_llm | StrOutputParser(),
|
||
|
)
|
||
|
| save_history
|
||
|
)
|
||
|
|
||
|
# Add typing for input
|
||
|
|
||
|
|
||
|
class Question(BaseModel):
|
||
|
question: str
|
||
|
user_id: str
|
||
|
session_id: str
|
||
|
|
||
|
|
||
|
chain = chain.with_types(input_type=Question)
|